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Abstract. We have investigated two stiff-fluid models in which the material distribution is that of viscous 
fluid. In the first model, the coefficient of shear viscosity is assumed to be constant while in the second model 
the coefficient of shear viscosity is proportional to the rate of expansion in the model. The paper also 
discusses some physical and geometrical aspects of the model. The behaviour of the model in absence of 
viscosity is also discussed. 

1. Introduction 

Stiff-fluid models are interesting in the sense that for such models speed of sound is 
equal to the velocity of light and its governing equations have the same characteristics 
as those of gravitational field. Johari et  al. (1981) have investigated spatially-homo- 
geneous and anisotropic models containing a barotropic fluid. Mohanty et al. (1982) 
have obtained a cylindrically-symmetric model for Zel'dovich fluid distributions and 
with A = 0 in general relativity. A class of shear-free perfect fluid models with equation 
of state in general relativity is investigated by Collins and White (1984). An exact 
solution for non-static perfect fluid spheres with shear and equation of state is obtained 
by Vanden and Wils (1985). Lorentz (1982) has obtained an exact Bianchi type-I 
cosmological model for dust distribution with electromagnetic field where A r 
Prakash and Roy (1979) have investigated an anisotropic incoherent fluid cosmological 
model in general relativity. General solutions for spatially-homogeneous cosmological 
models representing incoherent matter have been obtained by Heckmann and 
Schucking (1962). Roy and Singh (1977) have obtained a non-static plane-symmetric 
space-time filled with disordered radiation. A non-static cylindrically-symmetric space- 
time with two degrees of freedom representing a distribution of disordered radiation, has 
been obtained by Bali (1985). 

In this paper we have obtained two stiff-viscous fluid models in general relativity. In 
both models the coefficient of bulk viscosity is assumed to be zero and A = 0. In the 
first model the coefficient of shear velocity is assumed to be constant and in the second 
model the coefficient of shear viscosity is assumed to be proportional to scalar of 
expansion 0. Both models represent expanding shearing non-rotating and non- 
degenerate Petrov type-I in general. The flow vector is geodetic. Some other physical 
and geometrical aspects of the models are also discussed. 
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We consider the space-time in the form 

ds 2 = A 2 (dx 2 - d t  ~) + B 2 dy 2 + C 2 dz 2, (1.1) 

where A, B, C are functions of  t alone. 

We assume coefficient of  bulk viscosity to be zero. Thus energy-momentum tensor 
for viscous distribution is given by 

T{ = (5 + p)  v iv j + pgJ/ + M {  , 

where M / i s  the energy-momentum tensor given by Landau  and Lifshitz (1963) as 

MI = - ( <  + ~j; + ~J~'~;;, + ~;~'~?,) + 2 ~ ( , ( g j  + ~ y ) ,  (1.2) 

together with 

g , j v i w  i = - 1 , (1.3) 

e is the density ;p, the pressure;  t/, the coefficient of  shear viscosity; and v i the flow vector  

satisfying Equation (1.3). We assume the coordinates to be co-moving, so that 

v 1 = 0 = v 2 = v  3 and V 4 : A  -1  

The field equations 

R , " -  1 j ~,eg, = - 8 = r /  (1.4) 

for the line-element (1.1) lead to 

1 I B44 C44 B4C4 A 4 B 4  A 4 C 4 ]  + + = 
A 2 B C BC AB AC 3 

I p  A 4 2 1 
;1 (1.5) 

+ = 8re - + - tlV[l , (1.6) 
A 2 C A AzJ 2t]A-B 3 

1[.4  44< 1 + = 87t - 2 + - ~v[l , (1.7) 
A z B A A2]  ~/A-C 3 

1 r A 4 B 4  A4C 4 B4C4~ 
L A B -  + A C  + B C  _] = 8rc~. (1.8) 

The  suffix 4 after A, B, and C denotes ordinary differentiation with respect  to t. 

2. Solution of Field Equations 

For a complete determination of the set (1.5)-(1.8) we need an extra condition. We 
assume that  the model  is filled with stiff fluid of  viscous fluid distribution so that  we 
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have e = p. From Equations (1.5) and (1.8), we have 

B44 C44 2B4C 4 16rcr/A [-2 A 4 _ _ + _ _ +  
L B C BC 3 A 

From Equations (1.5) and (1.7), we have 

( A4)14 -I~ A4( B~4A -~- ~)  844B B4C4Bc 
and 

B44 B C44 - 167"cr/A ( ;  4 C ~ 4 ) .  

Equations (2.2), (2.3), and (2.4) lead to 

and 

B44 C 4 4 1 6 g r l L B ( B ) K ( c 4  ~ )  

where L and K are constants of integration. 
Equations (2.1) and (2.4) leads to 

B44 (;'44 2B4C 4 167rr/L(2K + 1) _ _ + _ _ +  
B C BC 3 

where two cases arise: 
Case (0 t/= constant. 
Case (i/) ~//0 = constant = l (say). 
We consider both the cases one by one. 

Case (i). When t/= constant 

From Equations (2.5) and (2.6), we have 

2 K +  1 
(BC)44 = (CB4 - BC4)4, 

3 

which leads to 

(BC)4 - 
2K + 1 

(CB4 - BC4) + M ,  
3 

B 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

M being constant of integration. 
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Equation (2.8) is not  integrable in general. Here we assume M -- 0 or K = - �89 when 

we take M = 0, we find that the scalar of  expansion vanishes and reality conditions 

+ p > 0 and e + 3p > 0 are also not satisfied. The metric in this case reduces to the 
f o r m  

L2 3 1 d S 2 =  
T ~ -  p 2 

+ T2(K- 1)/~2K+ 1) dy2 + T2(K+2)/(2K+ 1) d z  2 , 

(2.9) 

where R and P being constant  of  integration and 

? = 16n~ILR3/2  " 

N o w  we consider the second possibility: i.e., 

-' (2.10) g 
~ - - 2 *  

Hence, Equation (2.8) leads to 

I~ = M t  + N ,  (2.11) 

where N is constant  of  integration and B C  = #. 

I f  we put B C  --- #,  B / C  = v, and K = - �89 in Equation (2.5) and by use of  Equation 

(2.11), we have 

V J 4  

/~v4 

- 1 6 n r l L ( M t  + N )  1/2 , (2.12) 

which leads to 

v4 P -- 32/ '3 ~ r / L ( / ~ )  3/2 - - = - e  
v # 

From Equations (2.11) and (2.13), we have 

(2.13) 

p 
v = e x p  - -  e -  32/3 zcrlL(Mt + N) 3/2 d t .  

M t + N  
(2.14) 

Hence, 

A 2 = L 2 ( M t  + N ) ,  

B 2 -- ( M t  + N )  v ,  

(2.15) 

(2.16) 

M t + N  
C 2 - (2.17) 
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Thus the metric reduces to the form 

(Mt + N )  
d S  2 = L2(Mt + N ) ( d x  2 - d t  2) + (Mt + N ) v d y  2 + dz 2 , (2.18) 

Y 

where v is determined from Equation (2.14). 

In the absence of  viscosity, i.e., when r / ~  0, we have from Equation (2.14) 

v= R ( M t  + N) P/M, (2.19) 

where R is constant  of  integration. 

Hence,  in the absence of viscosity the metric reduces to the form 

dS 2 = L2(Mt + N )  (dx 2 - d t  2) + (Mt + N )  (e/M)+ 1 dy2 + 

+ (Mt + N )  l - (P/v~ dz 2 " (2.20) 

3. Some Physical and Geometrical Features 

The pressure and density for model (2.18) are given by 

1 87rp = 8roe = [3M 2 _ p2 e -  64/3 r c r l L ( M r + N ) 3 / 2  ] . 

4LR(Mt + N)  3 

The model has to Satisfy the reality condition given by Ellis (1971) as 

(i) ~ + p > 0 .  

(ii) e + 3p > 0 .  

Both the conditions leads to 

e(64/3)~rlL(Mt + N ) 3 / 2  ~ - -  

(3.1) 

p 2  

3M 2 �9 (3.2) 

The scalar of  expansion 0 and the non-vanishing components  of  shear tensor o'• are 
given by 

0 = --3m(mt + N )  -3/2 (3.3) 
2L 

and 

(1 - t ) M  
rr~t 2 (Mt  + N)  1/2' (3.4) 

V N )  1/2 [ M ( ]  P e - 32/3 ~ q L ( M t  + N)3/2] , (3 .5)  
~ = 2L(Mt  + 

a33 = [M(I  , l) - P e -  32/3 ,~nL(M,+N)3/2] (3.6) 
2L(Mt  + N)1/21~ 
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Hence, the coefficient of shear (0.) for model (2.18) is given by 

0 .2 = 

4L2(Mt + N) 3 
[3M2(1 _ / )2  + 2p2e-64/3~nL(Mt+N)3/2]. (3.7) 

The non-vanishing components of conformal curvature tensor are given by 

= c ;  = 
24L2(Mt + N) 3 

[ - 6MP{1 + 16~tlL(Mt + N) 3/2} x 

X e - 3 2 1 3 ~ t l L ( M t + N ) 3 / z  - 2 p 2 e  - 6 4 1 3 r t r I L ( M t + N ) 3 / 2 ]  , (3.8) 

ct2 = = 

24L2(Mt + N) 3 
[6MP{1 + l@trlL(Mt + N) 3/2} x 

• e - 3 2 1 3 ~ r t L ( M t + N P / 2  - 2P  2 e - 6 4 1 3 r ~ n L ( M t + N ) 3 / z ]  , (3.9) 

1 C~ 4 = Cs = [4P 2 e - 64/3 r~rlL(Mt + N)3/2]  . (3.10) 
24L2(Mt + N) 3 

The model in general represents expanding, shearing, and non-rotating universe in 
general. The coefficient of viscosity does not affect expansion of the model. The 
expansion in the model stops for large values of T. The model also represents Petrov 
type-I non-degenerate and ChU k vanishes asymptotically. 

The motion of test particle in the model (2.18) is governed by the equation of 
geodesics, given by 

d2x M ) (d x) (d_st) + = 0 (3.11) 
ds 2 2(Mt + N 

M + pe-32/3rtnL(Mt+N)3/2~ dy dt O, (3.12) d2y + 

ds ~ 2(~+~ ) ds ds 

d~z { M - p e- 32/3 ~trlL(Mt + N)3/2 ~ dz dt O, 

ds 2 2~t +-~ J ds ds 
(3.13) 

d2t + M ~(dx )  2 + (dt~Z~ 

ds z 2(Mt + N) ( k d s /  kds /  ) 
+ 

v{ L2 M+ pe-32/3~nI4Mt+uP/2~(dy~2 + 

+--,1 {M--p-32/3"~nL(Mt+N)3/2~(dz'] a=O. (3.14) 

vL 2 2 (Mt + N) J \dss) 

In the above S is the arclength along the geodesic. 
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If a particle is initially at rest that is if 

dx dy dz 

dS dS dS 
- o .  ( 3 . 1 5 )  

Then, we get 

dt 
- -  = k ( M t  + N ) -  v 2 ,  (3.16) 
dS 

where k is the constant of integration. 
From the equation of geodesics, we find that for all such particles, the components 

of spatial acceleration would vanish: namely, 

d2x d2y d2z 

dS 2 dS 2 dS 2 
- 0 (3 .17)  

and the redshift for model (2.18) is given by 

2 + (32 ~l(t) + U~ [L2(Mt  + N)] 1/2 

[LZ(Mt  + N )  - U211/2 
(3.18) 

The pressure and density in the absence of viscosity are given by 

[3M 2 _ p2] 
(3.19) 

8zcp = 8roe = 4L2(  M t  + N) 3 . 

The relatively conditions 

(i) ~ + p > 0 ,  

(ii) e + 3p > 0, 

lead to 

3M e > p2.  (3.20) 

The non-vanishing components of conformal curvature tensor in the absence of visco- 
sity, are given by 

1 
C~ 2 = C3~ = [ - 6 M P  - 2P21, (3.21) 

2 4 L 2 ( M t  + N )  3/2 

1 
C ~  -- C ~  = [ 6 M P  - 2P2], (3.22) 

2 4 L 2 ( M t  + N )  3/2 

4 p  2 

C 14 = C~2~ 24L2(  M t  + N)3/2 . (3.23) 
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In the absence of viscosity, the model is non-degenerate Petrov type-I and Cho k vanishes 
asymptoticaIly. 

Case (ii). When ~//0 = l (constant) 

I.e., 

+ - - +  
r] A \ A  B 

(3.24) 

From Equations (2.4) and (3.24), we have 

O-LB( C) K (K+2)~-+(I-K) . 
Equations (2.5) and (3.25) lead to 

(3.25) 

B44B C44=-16rcl[(K+2)~+(1-K)C4-]IBac -~]' (3.26) 

From Equations (2.6) and (3.25), we have 

B44 C44 2B4G 16nl(2K + 1) _ _ + _ _ +  
B C BC 3 

X 

B 4 X I(K + 2 ) B  + (1 _ K ) _ ~ ] ( B 4  ; 4 ) .  (3.27) 

If we put B C  = # and B / C  = v in (3.26) and (3.27), we have 

V ,/4 

bt 
I~  2K+ 1 ~ t v 4  - -  = - 16~zl ~t~4 + , (3.28) 

# 2 v 

/~44_ 16nl 2K + 1 ] [ 3  #4 + (3.29) 

Equations (3.28) and (3.29) lead to 

v4_ 3 ~u 4 M + , (3.30) 
v 2 K + l  # # 

M being a constant of  integration. 
From Equations (3.29) and (3.30), we have 

~ 4 4  = ~IIl- ~ ~4],0~ (3.31) 
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where 

8reM2(2K + 1) 2 
and fl = 8rrM(2K + 1). 

If we insert #4 = f(/~) in (Y31), we have 

#~a = N e_(~,/a)f(1 _ ~ f )_~,2/~2 

Let us assume N = e z, therefore, Equation (3.32) leads to 

t~ = [1 - ~/a f ) ] -~ /~ texp  fl--I 

From Equations (3.30), (3.31), and (3.33), we have 

v = y eMf/~l ; 

being constant of integration. 
After suitable transformation of coordinates, the metric reduces to the form 

dS2 L2 ~/2K+ 1 exp [ 2 ~  ~ 1 [  f iT]  -~'/~' = + 1 - -  X 

X ( dX  2 dT2 
( r r ' )  ~ 

[ M T  ~ 1 [ 1  I~T7 ~/p~` \ +exp  l~ - ' ~ s  d y 2 )  + 

(3.32) 

(3.33) 

(3.34) 

where 

and 

[ <  ;)] + exp - ~ + [1 - fl/~T]-~'/a2zdZ 2, 

TT'  = od l - fl- exp ~ -  

f = T .  

In the absence of viscosity metric (3.35) reduces to 

= 1 - -  - 4 -  

I_ fi ~A \ c~ 2 e -  2/~j 

(3.35) 

(3.36) 

+ e ~r d Y  2 + e -M'c/a d Z  2 . (3.37) 
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4. Some Physical and Geometrical Features 

The pressure and density for the model (3.35) are given by 

[1 - 8~aT] 3=/e~' ~- r -  3 T2 _ 1 - - 

The model (3.35) has to satisfy the reality conditions 

(i) ~ + p > 0,  

(ii) a + 3 p >  0 ,  

which lead to 

_ _  3T a M2( /? ~/)2 3 ~ T > -  + - -  1 - -  . 
2 8  4 4 

The scalar of expansion 0 is given by 

3~ I / ? T I  3/2~ 
0 = 2el/2c~/? LzK+ 1/2 1 - - 

The relation ~o is identically zero and the shear is given by 

[~ ~2 3'/,2 3~ T a 2 (  /~ T/21 1 /?TI 3~/[12l 
o2= /72 +-2 - fi + - - 2  1 - - ~  1 - - ~  , 

the non-vanishing components of the conformal curvature tensor are 

( 1 -  /?/eT)3=/_~'~_ 3 e l -  3 Mlfi 
C~22 = C3~-= 6e1/=Lay2K+' L 2 2 

M 2 9 Me 

2 2 
+ 

+ T ( ~  c~ 8 3 c~ 23 M182 M2fl 25-M) _ _  _ + _  - - +  + + 
2 8  ~ 

T 2 (  3_ 3M8 M2fl2~l + 
\2 2~ ~ / J ' 

(1 -- 8/o{Z)3~/fl2l F 3 o~l + 3 M[ 8 M 2 9 Mc~ 24 = _ -- _ _ q _  _ _  

c;2 = c~  ~ e > ~ i  L- 2 2 2 2 fl 

+ T ( ~ c ~ 8  3 c~ 3Mlfle+ Marl 15M)  + 
2 f i  2 c~ 

(~ 3Mfl M21~2~I 
+ T 2 + ~ 2c~ 2 ] . ] '  

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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C~ 4 = C2233 = (1 - ~/~T)3~/~2' F ( +1 [_ + M 2 + T - 3lfl- 2M2-----fi + + 

( 
+ T e t - 3  + ~ - - . ] _ l  (4.7) 

In general, the model represents Petrov type-I non-degenerate, Cho k vanishes asymptoti- 
cally if 3~/fi2l + 2 < 0. Since l i m T ~ ,  a/Or O. Hence, the model does not approach 
isotropy for large value of T. 

The motion of test particle in the model (3.35) is governed by the equation of 
geodesics, given by 

d2X (3ff T ) [  ~TI  ~/~1 (d~S) ( d 2 )  
- -  + - 2 1 - e r / ~  = 0 (4.8) 
dS2 

d2y c~ [ f l ~  ~/1~l (ddY) ( d ~ )  
- -  + 1 - - e T/fll = O, (4.9) 
d S  2 2 :r 

d2Z a fl =//~=t dZ dT 
- - +  1 - -  er/n~ = 0 ,  (4.10) 
d S  2 2 c~ 

--+d2Tds 2 (3c~fi__2T)[l__fl -]~//~2r~TJ e r / /~ l { t~ )  + ( / d X \ 2  \ d S J  (dT~2]_] + 

+ --72L_eil~,y2ZC+l . . . . .  [ 1--a r]~Je~' exp [ T C - - V ~  O L ' \ ~ - 2~1 (dr-t2e;O \as,, + 

1 I 1 -  I / (  = ' 2L 2 el/~y2K + -- TJ exp o: \ dS J 

(4.11) 

In the above S is the arc length along the geodesic. If a particle is initially at rest, i.e., 

dX dY dZ 
- - - 0 .  (4.12) 

dS dS dS 
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Hence, 

dT e x p f ( 2 T  3 c ~ ) ( ] ? T )  ~'/t~2t 
d S  - - f f  1 - -o~ er/tSt d T "  (4.13) 

From the equation of geodesics, we find that for all such particles, the components of 
spatial acceleration would vanish: namely, 

dZX d2y d2Z 
- -  0 - -  

d S  2 d S  2 d S  2 �9 

In the absence of viscosity, the shear a is given by 

az = ]?2 + e-3z/# 

The non-vanishing components of conformal curvature tensor in absence of viscosity 
are given by 

C;~ = 6e1-~-_ --7.:+ 1 , 

C13 = 6el/~L2~ -K+I 2 2 

e - 3~//~ 

C~ 4 = 6el/C~L2~2K + 1 [ m 2 ]  �9 

In absence of viscosity, the model represents expanding, shearing, and non-rotating 
universe in general. For large values of T, the expansion in the model stops and the 
space-time is non-denegerate Petrov type-I. For large values of T, the space-time is 
conformly flat. Since l imr~ o~, o/0 ~ 0. Hence, the model does not approach isotropy 
for large values of T also. 
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