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Abstract. We have investigated two stiff-fluid models in which the material distribution is that of viscous
fluid. In the first model, the coefficient of shear viscosity is assumed to be constant while in the second model
the coefficient of shear viscosity is proportional to the rate of expansion in the model. The paper also
discusses some physical and geometrical aspects of the model. The behaviour of the model in absence of
viscosity is also discussed. )

1. Introduction

Stiff-fluid models are interesting in the sense that for such models speed of sound is
equal to the velocity of light and its governing equations have the same characteristics
as those of gravitational field. Johari ef al. (1981) have investigated spatially-homo-
geneous and anisotropic models containing a barotropic fluid. Mohanty ez al. (1982)
have obtained a cylindrically-symmetric model for Zel’dovich fluid distributions and
with A = 0 in general relativity. A class of shear-free perfect fluid models with equation
of state in general relativity is investigated by Collins and White (1984). An exact
solution for non-static perfect fluid spheres with shear and equation of state is obtained
by Vanden and Wils (1985). Lorentz (1982) has obtained an exact Bianchi type-I
cosmological model for dust distribution with electromagnetic field where A # 0.
Prakash and Roy (1979) have investigated an anisotropic incoherent fluid cosmological
model in general relativity. General solutions for spatially-homogeneous cosmological
models representing incoherent matter have been obtained by Heckmann and
Schucking (1962). Roy and Singh (1977) have obtained a non-static plane-symmetric
space-time filled with disordered radiation. A non-static cylindrically-symmetric space-
time with two degrees of freedom representing a distribution of disordered radiation, has
been obtained by Bali (1985).

In this paper we have obtained two stiff-viscous fluid models in general relativity. In
both models the coefficient of bulk viscosity is assumed to be zero and A = 0. In the
first model the coefficient of shear velocity is assumed to be constant and in the second
model the coefficient of shear viscosity is assumed to be proportional to scalar of
expansion 6. Both models represent expanding shearing non-rotating and non-
degenerate Petrov type-I in general. The flow vector is geodetic. Some other physical
and geometrical aspects of the models are also discussed.
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We consider the space-time in the form
ds? = A% (dx? — dr®) + B? dy? + C?dz2, Ly

where 4, B, C are functions of ¢ alone.
We assume coefficient of bulk viscosity to be zero. Thus energy-momentum tensor
for viscous distribution is given by

T} = (& + p)v;v’ + pg/ + M,
where M/ is the energy-momentum tensor given by Landau and Lifshitz (1963) as
M = =/, + vl 070"+ o'el) + Sl (8] + o), (12)
together with
gyv'v = -1, (1.3)

¢1s the density; p, the pressure; #, the coefficient of shear viscosity; and v’ the flow vector
satisfying Equation (1.3). We assume the coordinates to be co-moving, so that

v!=0=0v?=v3 and v*=4"1.
The field equations
RI - iRgl = - 8T/ (1.4)

for the line-element (1.1) lead to

1[ B, Cu B4C4+A4B4+A4C4:l

42l B ¢ BC 4B  4C

A, 2
=8n|p-2n—2+°Z v.’:|, 1.5
[p na (L.5)

[ A Az B, 2
i "g‘ﬁ_’ii‘{"—‘l‘]:Snl:p—zﬂ"_‘l"i'“nv;ll]a (16)
A*L C A A? AB 3

I~ 2
1 mﬁé_f‘ﬁyﬂ]: n[,,_z,,&ﬁm;,], L7
A*L B 4 A? AC 3
Al__ %+é£ﬂ+§4_c‘ﬁ]=8ng. (18)
A*| AB AC BC

The suffix 4 after 4, B, and C denotes ordinary differentiation with respect to .

2. Solution of Field Equations

For a complete determination of the set (1.5)—(1.8) we need an extra condition. We
assume that the model is filled with stiff fluid of viscous fluid distribution so that we
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have ¢ = p. From Equations (1.5) and (1.8), we have

By, Cu  2B,C; 16774 [2 A, B,

B C BC 3
From Equations (1.5) and (1.7), we have

(é) +‘£<ﬁ+§i)_§ﬁ_§4&=
4), a\B ¢/ B BC

and
_Bi.ﬁ___c‘_‘tiz 1671;714(?_‘1_&)
B C C B
Equations (2.2), (2.3), and (2.4) lead to

K
A=LEB <§>
C

and

By C

“/c, B
i B 16m1LB<§) (J___“>,
B C C C B

where L and K are constants of integration.
Equations (2.1) and (2.4) leads to

Bus Cas  2B,Cy_16mnLQK+1) o

B C BC 3

where two cases arise:
Case (i) n = constant.
Case (ii) 1/8 = constant =/ (say).
We consider both the cases one by one.

Case (). When # = constant
From Equations (2.5) and (2.6), we have

2K +1
(BClay = ~

(CB4 - BC4)4 >

which leads to

2K+ 1

(BC), = - (CB, -~ BC,) + M,

M being constant of integration.
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Equation (2.8) is not integrable in general. Here we assume M = 0 or K = —3, when
we take M = 0, we find that the scalar of expansion vanishes and reality conditions
¢+ p>0and ¢ + 3p> 0 are also not satisfied. The metric in this case reduces to the
form

2p3 2
- LR dx2 _ ar + TZ(K— 1)/(2K + 1) dy2 + T2(K+2)/(2K+ 1) de ,

T? P2
| (l‘)g F) 2.9)

where R and P being constant of integration and

ds?

y=167yLR>? .
Now we consider the second possibility: i.e.,

K=-1. (2.10)
Hence, Equation (2.8) leads to

p=Mt+N, 2.1D)

where N is constant of integration and BC = p.
If we put BC = u, B/C = v, and K = ~3 in Equation (2.5) and by use of Equation
(2.11), we have

("),

HVy

v

= — 16mnL(Mt + N)V2 (2.12)

which leads to

Va _ P sapanin (2.13)

v ol
From Equations (2.11) and (2.13), we have

V= exp J Mti ~ e~ 323TALMI+ NYZ qp (2.14)
Hence,

A2 = LMt + N), (2.15)

B2 =(Mt+ N)v, (2.16)

c2 M+ N (2.17)

v
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Thus the metric reduces to the form

(Mt+N)d s

dS? = L*(Mt + N) (dx? — dr?) + (Mt + N)vdy? + 22, (2.18)

v

where v is determined from Equation (2.14).
In the absence of viscosity, 1.e., when #— 0, we have from Equation (2.14)

y=R(Mt + N)P'™ (2.19)

where R is constant of integration.
Hence, in the absence of viscosity the metric reduces to the form

dS? = L* (Mt + N) (dx? — dr?) + (Mt + N)EPD+1 42 4
+ (Mr + N)L-@M gz2 (2.20)

3. Some Physical and Geometrical Features

The pressure and density for model (2.18) are given by

Snp = Sme= —— [3AM? - P2 o SEALGRNIA] 3.1)
AL2(Mt+ NP

The model has to Satisfy the reality condition given by Ellis (1971) as
(i) e+p>0.
(i) e+3p>0.
Both the conditions leads to
PZ
M2

e(64/3)nr]L(Mz + N2 >

(3.2)

The scalar of expansion ¢ and the non-vanishing components of shear tensor g, are
given by

0=§2%4~(Mt+N)*3/2 (3.3)
and
1-HM
PR Gt L 3.4)
2(Mt + N)'7?
022

STy M D) ¢ P (3.5)
t+ o

1

= [M(l - l) _ Pe—32/3 71:;1L(Mt+N)3/2] (36)
2L(Mt + N)V2y

033
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Hence, the coefficient of shear (o) for model (2.18) is given by

o2 1 [3M2(1 _ 1)2 + 2P2e—64/3nr/L(Mt+N)3/2] )

AL*(Mt + N
The non-vanishing components of conformal curvature tensor are given by

1
Cl2=C¥=——" —[-6MP{1 + 16anL{Mi + N)*?} x
12 34 ULA(Mi + NY { nL( 2}

X @~ 323TNLUML+ N> _ ) p2 = 64/3 inL(Mi+ N)3/2] ,

1
CB=C3=———[6MP{1 + 16mnL(Mt + N)*/*} x
13 24 4L2(M1 + N) { nL( y?}

X @~ 323TNL(MI+NY? _ 3 p2 ,—64/3 nL(Mt+ N)3/2] ,

1

C14 — 23 _ 4P2 ea64/3 nnL(Mt+N)3/2]
14 T V23 .

- 24L%3(Mt + N)*

(3.7)

(3.8)

(3.9)

(3.10)

The model in general represents expanding, shearing, and non-rotating universe in
general. The coefficient of viscosity does not affect expansion of the model. The
expansion in the model stops for large values of 7. The model also represents Petrov

type-I non-degenerate and C,;, vanishes asymptotically.

The motion of test particle in the model (2.18) is governed by the equation of

geodesics, given by

d2x N M (d_x) (ﬂ{) o
ds®>  2(Mt+ N)\ds/ \ds ’
d*y {M+ Pe’32/3ﬂnL(Mt+N)3/z} dy dt
— +

ds* 2(M:t + N)

dZZ M—-Pe™ 32/3 nnL(Mt+N)3/2} dz dt
— +
ds? { 2(Mt + N)

d?s M {(m)z (dt)z}
— =] +[— +
ds?  2(M:+ N) (\ds ds

v (M+Pe™ 32/3 inl(Mt+ N )32 dy 2
+ — — +
o &)

1 M—-P —32/3 anl(Mrt+ N)3/2 dz 2
4 — — = 0 .
sz{ 2(Mt + N) }<ds)

In the above S is the arclength along the geodesic.

(3.11)

(3.12)

(3.13)

(3.14)



VISCOUS FLUID UNIVERSE 217

If a particle is initially at rest that is if

dx _dy _dz (3.15)
ds ds ds
Then, we get
de _12
5 k(Mt + N)y~V2, (3.16)

where k is the constant of integration.
From the equation of geodesics, we find that for all such particles, the components
of spatial acceleration would vanish: namely,

2 2 2
&Ex _d&y dz (3.17)
ds?  ds?  ds?

and the redshift for model (2.18) is given by

A+ 82 _ O+ U, [LAMt+ N)V?

p &) LMt + Ny - U2 (18)
The pressure and density in the absence of viscosity are given by
8np = 8n8=4—§%. (3.19)
The relatively conditions
@) e+p>0,
(ii) e+ 3p>0,
lead to
3M?> P2, (3.20)

The non-vanishing components of conformal curvature tensor in the absence of visco-
sity, are given by

1
C2=Ci=——— — [-6MP-2P, (3.21)
2T a2 (Mr + Ny

1
CB=C%=___ ~ _ [6MP-2P?], 3.22
B= G sl ] (3.22)

4p?
24L2(Mrt + NP2

14 _ ~23 _,
Cl4 - C23 -

(3.23)
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In the absence of viscosity, the model is non-degenerate Petrov type-I and C,,; vanishes
asymptotically.

Case (ii). When #/0 = [ (constant)

le.,

1{4, B, C4>
=—[=+=24+2}). 3.24
1 (A B C ( )

From Equations (2.4) and (3.24), we have

{

"= LBBJO)

B C
K+2)2+(1-K —“-]. 3.25
[( ) 2 ( ) c (3.25)
Equations (2.5} and (3.25) lead to

Baa Cas_ -16n1[(1<+2)%+(1 —K)g‘-‘][%-?ﬁ] (3.26)
B C B clLB ¢

From Equations (2.6) and (3.25), we have

Bua , Cay  2B,Cy _16nIQK +1)

B C BC 3
B C. B, C
x| (K+2)=2+(1-K J](—“-J) (3.27
[( )B ( )C 2 C )
If we put BC = p and B/C = vin (3.26) and (3.27), we have
()
v
‘e —16x1[§&+2K+1 3}3, (3.28)
u 2 u 2 vl]v
Has _ 16nl[2K+ 1][3 he 2K 11 3]3. (3.29)
U 3 2 u 2 vl

Equations (3.28) and (3.29) iead to

i Sk M

= - LA (3.30)
2K+1 u

b

M being a constant of integration.
From Equations (3.29) and (3.30), we have

Hlgg = “1[1 - ﬁ H4:l ) (3.31)
.4
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where

, _ 8nM2QK + 17

3 and B=8aM(Q2K +1).

If we insert pu, = f{p) in (3.31), we have

B —- a?/p?
p = Ne—(a/B)f<1 _ _f) . (3.32)

o4

Let us assume N = ¢, therefore, Equation (3.32) leads to

o

p=1[1- ﬁ/af)]“"‘”’z’eXP[-g-ﬁE]A (3.33)

From Equations (3.30), (3.31), and (3.33), we have

v=ypeMi*, (3.34)

7 being constant of integration.
After suitable transformation of coordinates, the metric reduces to the form

— /B2l
d52=L2y2K+1exp[%+1][l—§ :I X

o e

2 o/
x(dXz— 7 +exp[jl/[—T——T~][1—gz] dY2)+
(rr'y? la I %

Mr T 2
+exp[~<———+~>][l-,B/ocT]‘“/ﬁ’de, (3.35)
lo 1B
where
1+ (o/B1)
TT’=a1[1—gT] exp[z—}]
o Bl o
and
f=T. (3.36)

In the absence of viscosity metric (3.35) reduces to

2
as? = 2% texp| 204 U faxr - 95 ),
B« e H*

+ eMIedY? 4 e~ MU2dZ2, (3.37)
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4. Some Physical and Geometrical Features

The pressure and density for the model (3.35) are given by

gnp:gm:w[égT-éTZ__M:(I_ETTjI.

[2p2K+1elix [ 5 B 4 4 o
The model (3.35) has to satisfy the reality conditions
1)) e+p>0,
(ii) e+ 3p>0,
which lead to
% %T>§T2+¥4—2(1 —§T>2.

The scalar of expansion 6 is given by

3/20/821
o= _3“_[1 -ET] .
2e1/2aﬁL2K+1/2 o

The relation w is identically zero and the shear is given by

2 2 2 3/B21
02={§Q—+ET2—§ET+AL<1—§T>J[l—ET:l :
25 2 B 2 o o

the non-vanishing components of the conformal curvature tensor are

- 3alp 3 M? 9M
C}§=C§j=w)——[—§al——Mlﬂ—————J+
6el/ocL2,y2K+1 2 2 2 2 ﬁ

2 2
+T(§aﬁ—§g+§Mlﬁ +Mﬂ+EM>+
28 2

2 o o 2
202
(138 ey
2 202
- 3a/8%1 2 M
C113?= szzzw_[_éal+§M[ﬁ_£+g _OC_{.
6el/ch2y2K+1 2 2 2 2 ﬁ

2 2 15
+T<§aﬁ—§§~§MlB +Mﬁ~-M)+
2 28 2 «o o 2

2p2
o]
2 o 202

(4.1)

4.2)

(4.3)

(4.4)

4.5)

(4.6)
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1 - plaT)#F 2M? 3
C{2=C§§=ﬂ%—2—~ 3ul+ M?+ T -3ip - LA
6el/o¢L2,y2K+l o ﬁ

+ T2<—3+M2f2>]. 4.7)

o

In general, the model represents Petrov type-I non-degenerate, C,,;, vanishes asymptoti-
cally if 3e/f%1 + 2 < 0. Since limy _, ., 6/6 # 0. Hence, the model does not approach
isotropy for large value of T.

The motion of test particle in the model {3.35}) is governed by the equation of
geodesics, given by

x (55 _ ZT) [1 - ETT/B [ew(@> (d_T> -0, (4.8)
dsz \ g x s/ \ds
[T+M<1 —éT)] -

r - N /- [1 —éT] eT/ﬂ’<d—Y) (9}")20, (4.9)
ds2 2 % s/ \ds

2 [T—M(l -ﬁyﬂ .
d_Z+___°‘_[1-§TJ eT/‘B’(gZ)<d—T)=O, (4.10)
ds? 2 2 as ) \ds

s o[- e () (5]
sz \ g o ds ds

[T+M(1—§T)i|
a [ g :rﬁz{ [T<M 2>]<dy)2
+ 1-= expl! —| —~—— — | +
2L2 MoK +1 o INae B ds

-2
-t e [N
+ 1-- exp| - —-——-— — 1 =0
212 el/xy2K+1 o { x f ds

(4.11)

In the above § is the arc length along the geodesic. If a particle is initially at rest, i.e.,

ga_¢ar_daz (4.12)
ds ds ds



222 R. BALI AND D. R, JAIN

d /p>1
l=expj(2T—§%>(l ~ET) eTIP T, (4.13)
ds B o

From the equation of geodesics, we find that for all such particles, the components of
spatial acceleration would vanish: namely,

Hence,

X _,_¢Y_&¢z

ds®  ds? ds?’
In the absence of viscosity, the shear ¢ is given by
2
o2 = I:§ _a_z + M_]e‘%f/ﬂ_
2/ 2

The non-vanishing components of conformal curvature tensor in absence of viscosity
are given by

e 3 [ M? 9Moc:|

bel/=[2y2K+1 2 2 B
13 Gella[2y2K+1 2 2 B ’
Cl - .

ellmp2y2K+1

In absence of viscosity, the model represents expanding, shearing, and non-rotating
universe in general. For large values of 7, the expansion in the model stops and the
space-time is non-denegerate Petrov type-I. For large values of T, the space-time is
conformly flat. Since lim,-_, , 6/6 # 0. Hence, the model does not approach isotropy
for large values of T also.
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