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Abstract. The main results of Whitham's averaged Lagrangian method for the treatment of linear 
wave-trains in a weakly inhomogeneous, moving medium are presented briefly. This method is then 
applied to an ideal, isotropic, one-fluid plasma which can be taken for the lowest order approximation 
for the interplanetary solar wind expansion. 

1. Introduction 

In order to obtain the expressions for the parameters of small amplitude, linear, 
harmonic waves in a given system one usually solves the eigenvalue problem of the 
characteristic wave equations derived from the equations of motion for this system 
and a linear, harmonic perturbation ansatz for the corresponding field variables. The 
disadvantage of such a procedure is, however, that e.g. the propagation equations for 
the waves' parameter (amplitude, frequency, wave vector, etc.) cannot be stated with- 
out difficulties. This is especially true if more realistic problems are considered, e.g., 
waves propagating in weakly inhomogeneous, moving media. 

These difficulties can be omitted if one starts directly from the Lagrangian of the 
system in question. According to Whitham and others one now makes this perturba- 
tion ansatz for the Lagrangian, and obtains thus a Lagrangian for the small amplitude, 
linear harmonic waves. This Lagrangian is then averaged with respect to all wave phases. 
The variation of this averaged Lagrangian then yields the characteristic wave equations 
(which are treated in the usual way), while in addition the propagation equations for 
the waves' parameters can be derived in a rather uncomplicated and straightforward 
way from the general Lagrangian theory. Though these propagation equations can 
also be derived by using a multidimensional W.K.B. approach (Ablowitz and Benney, 
1970), the advantage of this averaged Lagrangian method is that there is no change 
in the formalism if the theory is applied to non-linear systems. 

In Section 2 we derive the main results of this averaged Lagrangian method for 
linear waves in non-moving and moving, weakly inhomogeneous media. This method 
is then applied to a moving, ideal, isotropic, one-fluid plasma (i.e., zero electrical 
resistance, viscosity, and thermal conductivity, and a scalar pressure). Such a plasma 
can be taken for the lowest order approximation for the quietly, large-scale expanding 
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interplanetary solar wind. In Section 3 the Lagrangian density for this plasma, the 
averaged Lagrangian for the plasma waves, and by variations the characteristic wave 
equations are obtained. In Section 4 these wave equations are solved generally, and 
the waves' parameters and their propagation equations are derived. 

2. Propagation Equations for Wave-Trains in Inhomogeneous, Moving Media 

In this chapter we shall briefly explain how Whitham's method of the averaged Lagran- 
gian (Whitham, 1970; Dougherty, 1970; and Bretherton and Garrett, 1969) can be 
applied to the propagation of wave-trains in a slowly varying background medium. 

A wave-train is a superposition of almost sinusoidal, propagating waves. It can be 
described by a slowly time and space dependent amplitude, a dominant local frequency 
co and wave vector k. Thus the field variables of the wave-train are of the form: 

&o (ex, zt) e i~ . . . .  t)/, + c.c., (2.1) 

where ~ is a small parameter that usually characterizes the smallness of the background 
variations. The phase 0(ex, et)/e is related to the frequency co and the wave vector 

k by: 
8 

co = - i 0 ( 2 . 2 )  

k = v o  (2.3) 

It seems to be generally true that equations which admit wave-trains as solutions 
can be derived from a variational principle: 

(5 dt d3xL (Pv, c?xl ~t x, O, (2.4) 

were v= 1, ..., n and i = 1, 2, 3. Thereby L is the Lagrangian density for the set of field 
variables (pv. The Euler-Lagrange equations obtained from (2.4) are the field equations 
(or an equivalent set) of the system considered: 

3 

8 8L ~ 8 c~L g;L 

i = 1  

(2.5) 

We now separate each ~0 v into a smoothly varying part %o, and into a small ampli- 
tude disturbance (waves) ~ov~ of the form (2.1), i.e. : 

~o v (x, t) = ~Ovo (ex, et) + e~0,, 1 (x, t). (2.6) 

This yields a formal expansion for the Lagrangian density of the form: 

L = Lo + eL1 + gZL2 + e3L3 + ' " .  (2.7) 
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Assuming that the qg,o satisfy the lowest order of (2.4), then the corresponding Euler- 
Lagrange equations give the field equations for the background state. As a consequence 
the variation of L~ with respect to the ~o~t vanishes identically. Hence, the waves are 
governed by the variation principle 

a f dt f d3x[~2La +a3L3 +- . - ]  = 0 ,  (2.8) 

where the variation is performed with respect to the ~0,~. The background state is 
regarded as given. 

In the following we shall neglect all terms of higher order than L 2, i.e., we shall only 
discuss linear waves. 

Generally the q),~ consist of a number of wave-trains which differ by their wave 
vectors and/or belong to different modes. We therefore make the following ansatz: 

~~ = E 6go~(ex, at) e i~ . . . .  o/ . .  (2.9) 
.a.~o 

Thereby 2 (), > 0) counts the different wave-trains, and in order to ensure reality for the 
q)~j it is: 

a ~  ~ = ( ~ z ) * ,  0 -~" = - 0 ~ . (2.10) 

As a consequence we get m - x =  -co  a and k - a =  - k  z. 

The aim is now to derive equations of motion for the parameters 6q0~, ma and k a of 
the wave-trains. According to Whitham this can be done in the following way: 
Inserting (2.9) into the Lagrangian L 2 of the waves, and averaging then L2 with respect 
to all phases 0 z an averaged Lagrangian density 

W~ = ~ 2  (&o$, .~ ,  k z, ax, at) (2.11) 

is obtained. Bisshopp (1969), Witham (1970) and others proved that the desired 
equations can now be derived formally by the variation of s 2 with respect to the 
&p~-z and 0 z (remembering the definitions (2.2) and (2.3)). The variation with respect 
to the &o~- ~ gives: 

g~z 
eae~_ a o,  (2.12) 

and thus yields a system of  linear equations for the amplitudes fiq~z. This system can 
then be treated in the usual way as an eigenvalue problem to give the dispersion 
relations for the different modes: 

co x = f2 ~ (k z, ax, at), (2.13) 

and the values for the corresponding amplitudes. From the variation with respect to 
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the 0 a one obtaines on the other hand: 

~s 2 
0t &o z 

3 

0 0 A e  z 

i = 1  

- - - - = 0 .  (2.14) 

Furthermore, from (2.2) and (2.3) follow the consistency conditions: 

t3 
Z k ~ + Vco ~ = 0 (2.15) 
0t 

V • k z = O .  (2.16) 

The Equations (2.12), (2.14)-(2.16)form a complete set of  equations of  motion for 
the wave parameters. They can, however, be cast in a more attractive form by using 
the energy density of the wave-disturbances. For non-moving media this density is 
obviously given by: 

E = ~176 
c3t 

v=l 

6qL2 
L 2 . (2.17) 

Using the ansatz (2.9), the Equation (2.2), and averaging then L 2 with respect to all 
phases 0 k, we obtain from (2.17) : 

&o*- - ~ =" ~ U ,  (2.18) 

as, because of  (2.12), ~ z  = 0. Thus, 0~2/&o ~ can be interpreted as the energy density 
E z of the wave 2 divided by its fi'equency co z. This is just the definition of  the wave 

action density NZ: 

N* ~3 s162 EZ 
. -  &~ z - ~ (2.19) 

Then equation (2.14) becomes: 

where 

N z + V. (u~N ;') = 0, (2.20) 
3t 

u a :=  0s162 OQ z 
g~q~2/cgcoa c3ka (2.21) 

is the group velocity of  the wave-train ),  (The second identity follows from ~za z = 0.) 
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Equation (2.20) shows that N z is convected along the path x ~ (t) of the wave-train 2. 
This path is given by the solution of  the equation 

where: 

d xa = u~ " (zx, et) 812a (2.22) 
dt ~3k x ' 

d 0 
: -  + (u ~ .v) .  

dt ~t 

The slow modulation of the frequency co ~" and the wave vector k z along this path is 
given by Equations (2.13), (2.15) and (2.16), i.e., by 

and 

&oz OQz ~k z df2~ 

Ot -Ok  ~ Ot + O~ 

3 

Ok~_ ~ &Q~ ~k~ 0(2 z 

~t Ok~ Ox~ Ox~" 

These equations can also be written in the form 

and 

dU" Of 2 z 

dt Ot " 
(2.23) 

dk z 
- Vg2Z. (2.24) 

dt 

Thus we obtain the well-known result that the frequency and the wave vector do not 
change along the wave path if and only if the system is closed (i.e., L does not depend 
on x and t explicitly) and if the background is constant. It should be mentioned that 
the Equations (2.22)-(2.24) are very similar to the Hamiltonian equations, if Qa is 
regarded as the Hamiltonian. 

We want now to generalize the above results, which are valid for a weakly inhomo- 
geneous but not moving background, to the propagation of wave-trains into moving 
media: 

Let Vo(ex, et) be the velocity field of such a medium, (x, t) the coordinates of a 
particle in the fixed frame of reference, and (x', t) its coordinates in the frame moving 
with the local velocity Vo, i.e. : 

x (x', t) = Vo (ex, et). (2.25) 

The relation between (co '~, k 'x) measured in the moving frame and (~o ~', k )') measured 
in the fixed frame follows from the transformation of the phase function: 

0 '4 (ex', et) = 0 ~ (ex (x', t), et). (2.26) 



378 DIRK J. OLBERS AND ARNE K. RICHTER 

Hence, with (2.2), (2.3) and (2.25) we obtain: 
3 

co,z : -  8 0, ~ (~x', et)/e = _ _9 0~./e _ ~ 30~'/~ 3x~ 
8t 8t 8x~ 8t ' 

i = 1  

o r  

o r  

co ~ = co 'z + k x'Vo. 

3 3 

k ; ~ : =  - -  0 ,4 (~x', ~t)l~ = 
&)  & ,  &J  ' &5' 

i = 1  i = 1  

,=~ ~x~. ( j =  1 ,2 ,3) .  

(2.27) 

(2.28) 

Introducing now the intrinsic dispersion function f2 'z (k 'z, ex', et) by 

a z (k z, ex, st) = :  ~2 '~ (k 'a, ex', st) + k a" Vo,  (2.29) 

we see that the group velocity u z becomes 

&2 'z 
u z = u  ' z + v o  with u ' ) ' ' - -  

�9 - 8k ~. 
(2.30) 

Thus the group velocity u z is the sum of the bulk velocity V o of the background 
medium plus the intrinsic group velocity fla. 

Considering (2.30) we may therefore say that all the above Equations (2.13)-(2.24) 
with exception of the Equations (2.17), (2.18) and (2.19) remain valid even for the case 
of a moving medium. Corresponding to (2.18) we obtain, of course, for the averaged 
energy density of the disturbances in the moving frame the expression 

(E ' )  = Z c~ Lea, (2.31) 

where Le~=Le~(&p'va, k '~, co 'k, ex', st) is the averaged Lagrangian density in this 
frame. Thereby f ~  may be derived from s z by transforming the variational principle 
(2.4) into the moving frame. First we obtain for the Lagrangian densities: 

122 q~'~,~x~, 3 t '  x ' , t  = 

3 

( X  ' &o; ~x i 
t = J L 2  c#', 3xj ex~ 

j = t  

3 

Z ) 
' @9; axj o~0v+ , , x ( x ' , t ) , t  , 

~t 8xj Ot 
j = l  

(2.32) 

where J is the Jacobian of the transformation x = x (x', t). Then the averaged Lagran- 
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gian density becomes using the procedure mentioned before: 

~~ i (~o "~, k 'a, e) '~, ex', et) = 
3 

= / ~  ~ ; ~ ,  ~ ~ ,  ~o'* - k "~7'  ex(~' ,  t), ~t = 

j = l  

= / z e ~  ( 6 ~ ,  k*, ~ ,  ~x, ~t). (2.33) 

The last identity follows from (2.27) and (2.28), and the fact that the particle's coordi- 
nate x' is constant along the particle's path, i.e. 

- x' + (Vo'V) x' = 0. (2.34) 
0t 

Then (2.31) gives together with (2.33) and s = 0  the relation 

and thus 

(E ' )  ~ J c o  'z 05e2 ~ E '~ = - -  =:  (2.35) O~ z ' 

0~~ E z = J E  '~ = co';" &o z = co'AN" . (2.36) 

Hence, we have shown that in general the action density is the quotient of the pertur- 
bation energy density and the intrinsic frequency. Furthermore it may be seen from 
(2.20) and (2.36) that the total wave action is always conserved, while the total wave 
energy is conserved if and only if the intrinsic frequency is constant along the wave's 
path. 

Finally we want to derive a propagation equation for the amplitudes g~oz~ of the 
wave 2, strictly speaking for the absolute value of 3~of. Let c~q)z~----ez, for brevity. Then 
each 69~ can be expressed by ez because of (2.12). Inserting these expressions into 
N a, which is a quadratic form of the 6q~., we obtain an expression of the following 
general type: 

N ~ = sign (~)[~12 7to ~ (k;', ~x, et). (2.37) 

The explicit (ex, et) dependence of ku~ originates from the field variables of the back- 
ground medium. From (2.20) and (2.37) we then deduce 

[ ,d  
dt 18~1 = - -~- Idl (V. u ~) + ~e-~ ~ " 

The last term in the bracket may be cast into the following form by means of (2.22) 
and (2.24): 

3 

dt 7t~ = z_a L ~  ?xi ~?x~ Ok{_] + h g'~ (2.39) 
i = l  
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This again shows the close analogy to the Hamiltonian theory with 12 a as the Hamil- 
tonian. From (2.38) we may conclude that the waves' amplitudes are constant if and 
only if the background medium is constant in space and time, which, of course, is a 
very familiar result. 

3. Averaged Lagrangian for the Ideal MHD-Plasma 

Isotropic, one- or multi-fluid hydromagnetic equations are mainly used in the literature 
in order to describe the quiet, large-scale solar wind expansion. On the other hand the 
interplanetary solar wind plasma is treated without exception in the ideal (i.e., zero 
electrical resistance, viscosity and thermal conductivity), one-fluid approximation for 
the identification of continuous and discontinuous waves. Thus studying wave-trains 
in the quietly expanding solar wind by means of the theory presented in the chapter 
above we shall start with the ideal, isotropic, one-fluid description of the interplanetary 
medium. 

It is well known that in this approximation the equations of motion may be cast into 
one continuity equation (involving the mean average density 0 (x, t) and the average 
bulk velocity V (x, t)), into one momentum equation (involving V and the magnetic 
field B(x, t)), into one Maxwell's equation (expressing the frozen-in condition of  the 
magnetic field lines), and that the energy equation (using the first law of thermodynam- 
ics) may be converted into one propagation-equation for the entropy s(x, t). Let 
e (~, s) be the internal energy per unit mass, then the Lagrangian density for the ideal, 
isotropic, one-fluid hydromagnetic solar wind plasma in the Eulerian description 
reads (see also Lundgren, 1963; or Seliger and Whitham, 1968): 

1 B 2  ^ ^ "" 
L = ~ o V  ~ - 0e - - -  + ~, D , e  + ~ D , ( 0 ~ )  + q ' D , ( 0 ~ )  - 

8Jr 

- h- ~t B - v • ( v  • B)  . ( 3 . t )  

Thereby (p, r/, q and h are Lagrangian multipliers, and r (x, t) the initial coordinates 
that do not change along the particles' path. Furthermore we used the following 
abbreviations: 

-- 0 
D , : :  ~i  + V . ( V ) ,  (3.2)  

Dr: = ~ + (V-V), (3.3) 

so that: 
J .  

Dt = Dt + (V" V). (3.4) 

The variations with respect to the Lagrangian multipliers and the field variables lead to: 
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A 

q~: Dt~ = 0 (3.5) 

rl: D t s =  0 (3.6) 

q: Dtr = 0 (3.7) 

8 
h: o t B - V x  ( V x B )  (3.8) 

o~: �89 2 -  (e + p / o ) -  Dt~ - sDdl - r 'Dtq  = 0 (3.9) 

s: Dt~ / = -  T (3.10) 

1 
V: V = Vtp + sVr/+ (r-V) q -  - B x IV x h] (3 . l l )  

r :  Dtq = 0 (3.12) 

8 1 
B: - - h = - - B + V  x IV x h ] .  (3.13) 

8t 4re 

Thereby T and p denote the mean average temperature and scalar pressure, respective- 
ly. In addition we made use of the first law of thermodynamics: 

T ds = de + p d(1/ff). (3.14) 

Thus we obtain by variations of L the known equations of motion for an ideal, 
isotropic, one-fluid mhd-plasma: For (3.5) is the continuity equation, (3.6) the energy 
equation, (3.8) the frozen-in magnetic field condition, and (3.7) the conservation 
equation for the initial coordinates along the particles' path. From (3.9)-(3.13) the 
momentum equation (the equation for DtV) may be obtained (Lundgren, 1963) by 
differentiating Equation (3.11) and then using (3.11), (3.9), (3.10), (3.12), (3.13) and the 
constraint equations. From (3.11) it follows that the formally introduced Langragian 
multipliers 9, i/, q and h really are potentials describing the vector field V. 

According to the theory and because of (3.11) we make the following perturbation 
ansatz for the field variables (0, V, B, s, r) = : A (x, t)  and the potentials (q~, r/, q, h) = 
= :  * ( x ,  t)  

A (x, t) = A o (ex, et) + eAt (x, t) 

, (x, t) = 4o + (x, t) .  

(3.15) 

(3.t6) 

For A 1 and Ill 1 w e  now use the ansatz (2.9). We then derive the averaged Lagrangian 
density (2.11): 
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Thereby:  

~ {  __ ~To 1 OPo ~ 2  = �89 ]6VZl 2 1 c~ 1~5~12 _ �89 - -  lbszl  2 - - -  - -  bO )" ~s-~" - 
- 2 0 o  OSo eo OSo 

2~0 

1 
- - - l ~ s ~ l  ~ - ~ h - ~ . [ -  i o ) ' ~ J B  ~ - i k  ~ x ( J r  ~ x B o ) ]  + 

8~ 

+ (6q~ - z  + So 61/-~ + ro "3q - ' )  [ -  i~o 'z 3r + ~o i (kz'6VZ)] - 

- i~o"~Oo [g~  - ~  6 s  ~ + 6q-Z . J r~]} .  (3.17) 

2. OPo (3.18) 
C~ = ~Qo' 

and as denoted before:  

co '~ = co z - (kX.Vo). 

The variations with respect to the Jd~- a and J A -  a then yields the following character- 

istic equations for  the different waves: 

j q - ~ :  

j h - ~ :  

@ - z :  

j V - ~ :  

- ico 'z 60 ~ + i~o (k~-JV ~) = 0 (3.19) 

- -  ico'~Oo Js  ~ = 0 (3.20) 

- ico'~Qo J r ~ =  0 (3.21) 

-- i~o '~ JB ~ - ik z x (6V ~ x Bo) = 0 (3.22) 

_ _  1 @ 0  
cg @~ _ _ _ _  disk + iog,a(j~oz + So fiqa + ro.jqX ) = 0 (3.23) 
~Oo ~Oo ~3,So 

~o o fiV;" - i 6h~ (kZ'Bo)  + ikZ (Jh~'Bo)  -- 

-- i~ok)~ (6q9 ~ + s o 6q z + ro .bq  z) = 0 (3.24) 

1 
j B - ~ :  - - -  JB z - ico 'z Jh z = 0 (3.25) 

47z 

d T o  j s  ~ 1 0 p o r  ~ , ico,aQ o J~la 0 (3.26) 
6 s - ~ :  - eo ~s-~ Oo OS~o oe  -e = 

J r - a :  i~o'~ 0o Jq~ = 0 .  (3.27) 

As we are in the following only interested in the ' t rue '  wave-trains we require that  

f rom now on:  

o9 'a # 0.  (3.28) 
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Then we obtain from (3.20), (3.21) and (3.27) that: 

6s z = 3r ~ = 8q z = 0. (3.29) 

Thus the characteristic equations reduce by expressing them in terms of A o and 6A z 
only to : 

- o9'z 60 ~ + ~o ( kz" 6VX) = 0 (3.30) 

- co '~ 6B z + B o (k~'6V ~) - 6Va(k~'Bo) = 0 (3.31) 

_ _  1 1 
- co 'z 6V z + c~ 60Zk z + (8B~'Bo) k ~" - - -  (k ~'Bo) 8B a : 0. 

0o ~ 4n~o 
(3.32) 

We now use (3.29) in the expression (3.17) of 5e 2. Then we form ~72/~(D'~" and 82~a2/ 
/Sk )'. By eliminating now the potentials fop z in terms of Ao and 6A z by means of (3.19)- 
(3.26) we finally obtain after some vector algebra: 

0(DtA = ~TA |~OO [~Q&[2 .~_ 4~  16B)'I 2j  , (3 .33)  
t o 

8~20k z _ a) '~1 Ic 2 Re{6~ z6V - z } +  

1 ] ~$2 
+ ~ Re{(6Bz'Bo) 6V -z _ (6B~.3V -;.) Bo} - V o &o,z. (3.34) 

We shall now go on in the following way: 
i) First we shall treat(3.30)-(3.32) as an eigenvalue problem. Thus we shall obtain the 

number of the different modes that may exist in the isotropic solar wind plasma with 
e) '~#0, their dispersion relations f2~(k ~, Ao), and finally the relationship between 
their characteristic amplitudes 3~ z, 6V x and fib z. 

(ii) Inserting these into (3.33) and (3.34) we shall be able to obtain for each 
different mode separately its group velocity u ~" from (2.21), its energy E ~ and its action 
density N z from (2.36) and finally the propagation equation for its amplitudes from 
(2.38). 

Thereby we shall treat all necessary equations in the most general way, i.e., we shall 
not for example introduce special coordinate systems, as it is done normally. Further- 
more it should be kept in mind that because of the subsidiary condition V . B = 0  the 
expression 

k ~. 6B z = 0 (3.35) 

holds throughout. In addition we shall make use of the following abbreviation: 

^~ k ;~ 
k ' : -  ik~l" 
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4. Solutions of  the Characteristic Wave Equations and the 
Propagation Equations 

In this chapter we shall specify the solutions of  the characteristic wave Equations 
(3.30)-(3.32) and the propagation equations for the different modes. By eliminating 
fi0 ~ from (3.30) and 6B ~ from (3.31) we obtain from (3.32) and the definition of: 

Bo 
bo :-- 

an equation for 6V ~ only: 

6V;" [(ka'bo) 2 - (co'~) 2] + k ~ [(co 2 + b 2) (ka'3V z) - 

- (bo.6V a) (ka.bo)] - b o [-(ka.bo) (ka'aVa)] = 0. (4.1) 

Thus : 
C 2 

(bo" aV e) = ~ (k ~" 6V a) (k s" bo), (4.2) 
~eo ) 

(k~.6V ~) (k~') 2 (co z + bo z) - (co';') 2 (a~,~) 2 (k~-bo) 2 = 0. (4.3) 

We now want to distinguish between the following two cases: Case I with (k s- 6VX) = 
= 0, and Case II with (k z. 6V a) r 0. 

CASE I: (k ~. aV ~) = 0 (TRANSVERS~ WAWS) 

Then we obtain from (3.32) 

60 ~ -- 0. (4.4) 

Assuming (ka.Bo)=0, then 6Ba=0 from (3.31), and thus aVX=0 from (3.32). To 
exclude this trivial case, let 

(k ~" Bo) • 0. (4.5) 

Thus if 6V~=0 or 6B~=0, then 6B~=0 or 6VZ=0 from (3.32), respectively. We may 
therefore assume in addition to (4.5): 

(av  ~, aB ~) ~ 0. 

Then it follows from (4.2) and (3.31) that: 

(av aB • (k s, Bo). 

Because of (4.7) and (4.6) it follows from (4.1) that: 

(co'~) 2 = (k~.bo) 2 . 

(4.6) 

(4.7) 

(4.8) 
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The mode  satisfying (4.4)-(4.8) is called the transverse mode  ( 2 - t ) .  Its dispersion 

relat ion reads: 

a t (k t, Ao) = sign (t)Ikt-bol + kt'Vo, (4.9) 

so that  its intrinsic phase velocity becomes:  

C' = bo Icos ~1, (4.10) 

where g ~ :  = g: (k t, bo). 
Let  t be an arbitrary unit  vector perpendicular  to k t and B o. Then  we make the 

following ansatz because of  (4.6) : 

x / 4 - ) o  - (dbo) t ,  (4.11) 

where letl denotes the relative change in Bo originating f rom this transverse wave. 
Thus we obtain f rom (3.31) together with (4.8) : 

3V t = - sign (kt-Bo) (dbo) t .  (4.12) 

By using now these expressions for  60t, 6V t and OB t in Equat ions (3.33) and (3.34) 
for  ~. =- t, we obtain f rom the equations of  Section 2 the group velocity u r, the energy E t, 
the action density Nt: 

u t = sign (k~.Bo)bo + Vo. (4.13) 

E'  = 00 {all 2 bg- (4.14) 

o~ (4.15) N t =  sign ( t ) / I  2 ]kt.bo I 

and the amplitude's equat ion for e f rom (2.38) with: 

Oobo 2 
~ : =  lkt.bo--- ~ �9 (4.16) 

Remark: The total  energy density o f  the transverse wave is, o f  course, E + t + E -  t = 2E t. 

CaSE ,r: (k*" aV*) # 0 (MAaNETOSONm WAVES) 

F r o m  (3.30)-(3.32) it follows that  normally 

((~O ~', aV ~, aB*) r 0.  

We now form the following expressions: 

[k* x , kZ" ( b o x  ] 
and 

[(SV a x , 6V a. , k ~'- (Bo x ] 

(4.17) 

(4.1) 

(3.31) 
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From the equations thus obtained and from (4.3) we derive the following results: 
(a) k ~ I[ Bo if and only if 

= Co or  ( o ; : )  = 

and 
0 # 6 V  ~{Ik~ and fiB ~l lk  ~, i.e., ~B ~ = 0 .  (4.18) 

The wave satisfying the first equation of (4.18) is called the (degenerated) fast-mode 
( 2 - f ) ,  while the wave belonging to the second Equation of (4.18)is known as the (de- 
generated) slow-mode (2 - s ) .  This last mode propagates with the same velocities as 
the transverse mode for k t II Bo- Thus the dispersion relations read: 

f2: = sign ( f )  Ik:[ Co + k: .  V o 

f2 ~ = sign(s) Ik~[ bo + k~'Vo �9 
(4.19) 

Because of the sonic character of these modes we make the following ansatz: 

~ y ,  S = ~f ,  S~O . 

Then we obtain from (3.32) because of bBS'~=0: 

(4.20) 

and 

Co 
d r :  = sign ( f )  efcok: = sign ( f )  e: b0 bo, 

6W = sign (s) a s c~ k~ sign (s) e ~ c~ 
bo bo 2 bo. 

(4.21) 

Inserting now the expressions (4.20) and (4.21) into Equations (3.33) and (3.34) 
for 2 - f  and s, we obtain, according to the theory, the group velocities u: '  s, the ener- 
gies E:" s, the action densities N : : ,  and the propagation equations for the amplitudes 
,gf  ,s : 

.-, C O 
u: = sign ( f )  cok* + V o = sign (j') bo- bo + Vo, (4.22) 

and 
u s = sign (s) bo k~ + Vo = sign (s) bo + Vo. 

E :'~ = OoC~ [e:' 512. (4.23) 

Q~176 - :  sign ( f )  le:[ 2 7% ~ , (4.24) N s = sign(f)leS[ 2 [kS[ 

O o C~_~ s 
N ~ = sign(s)}a~12 bo ]kS[ =:  sign(f)Ig~l 2 kg o , 

and the equations of motion for the amplitudes from (2.38) together with (4.22) and 

(4.24). 
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p~ ,  I t  (b) kZr  B o and therefore e.g., o9 r . We then obtain for the fast- and slow- 
modes: 

2 _ , / i 4  + --- ( k )  ~[(e o + boa) + boa) z - 4coa (~Z.bo)2] 

= : (kZ) 2 (CS") 2, (4.25) 

where f belongs to the plus-sign and s to the minus-sign in front of the root. In general 
the vectors 8V z and 6B z lie in the kZ-Bo  plane with 6BZlk  ~'. If  and only if k~_l_Bo 
it is 6V* II ka and 6B a i k  a but 6B a 1] Bo" For this special case only the fast-mode, now 
called the magnetosonic mode, can propagate (with the phase velocity CS= 
= ( 4 + b g ) ' / b .  

Thus the general dispersion relations for the fast- and slow-modes read: 

and 
QJ = s ign( f ) [kf l  C y + kS.Vo 

Os = sign(s)}k~l 0 + k*.Vo . (4.26) 

Because of the ansatz (4.20)we obtain from (3.30) and (4.1): 

6V f'~ = sign ( f  , s) J"~ CI '*[k f '~  (CI" ~)z _ bo (kS'S'bo)] 
[ ( c  s,~)2 ~s,~ 2 - (k "bo) 1 

(4.27) 

And therefore it follows from (3.31) that: 

(4~o) - , /2  ~Bs,~ = ~s,~(cs,,)2 [bo - f,s, ~!ijs, * " '~0 ) ]  
(4.28) 

Using now the expressions (4.20), (4.27) and (4.28) in Equation (3.33) and (3.34) 
for 2 =-f and s, we obtain the group velocities, the energies and the action densities 
for the fast- and slow-waves: 

A - -  2 A 

C: ' " [ (C: '* )  4 k:'* Co (k: '* 'bo) bo] 
n:'* -- sign ( f ,  s) 

[ ( c : ,  ~)~ - c~ (f,s, ,. bo)2] 
2 " # , ~  = ~Oo I d '  ~1 ~ [ ( c  s'")~ - ~o (k  s' %o)~]  

[ ( c  s, ,)2 _ (U, ~. bo) 2] ' 
and 

+ V o , (4.29) 

(4.30) 

N s'* = sign ( f ,  s) le s' sl2 ~o [(C s' ~)4 _ coa (kS"~.bo)z ] 
IU"I c S ' s [ ( c  s's)2 _ ([(.r,,.bo)Z ] 

=:  s ign(f ,  s)leZ'*l = %s,, ,  (4.31) 

while the propagation equations for the amplitudes d., ~ follow from (2.38) together 
with the expressions for u I '"  from (4.29) and 7@ ~ from (4.31). 

Remark:  From Equation (4.26) we may deduce that (CS) 2 >i Max (coa, bo a) and (CS) 2 ~< 
Min (e2o, b2). Thus we have, of course, Ef ,  s>O. 
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5. Discussions 

In this paper we have first discussed the main ideas of the Lagrangian method of 
wave-trains in a general continuum mechanical system, as it has been proposed by 
Whitham and others. According to this theory a linear, harmonic perturbation ansatz 
of the Lagrangian is made instead of the corresponding equations of motion. Thus 
the Lagrangian Lz for all different wave-modes is obtained. By averaging L 2 over all 
phases an averaged Lagrangian ~2  is derived. The variations of ~ z  then yields the 
characteristic wave equations, from which the number of different modes in such a 
system, their dispersion relations, and the values of their relative amplitudes may be 
obtained. The main advantage of this method is, however, that in addition the ex- 
pressions for the group velocities, energies and action densities, and the conservation 
equations of the action densities along the waves' trajectories may be derived for 
these different modes in a rather uncomplicated, straightforward way. Besides one 
thus obtains coupled systems of partial differential equations which describe the 
changes in the amplitudes, the wave-vector and the frequency of each different mode 
propagating into a weakly inhomogeneous, moving (or not moving) medium caused 
by this medium itself. 

We then applied this theory to the quietly, large-scale expanding solar wind plasma. 
Thereby we used, to begin with, the ideal, isotropic, one-fluid approximation for this 
interplanetary medium. Considering only wave-trains with non-zero phase velocities 
relative to the moving plasma, we obtained the propagation equations for the different 
wave modes that may be possible in such a system, namely for the transverse, the 
fast- and the slow-modes, respectively. 

Now, it is well-known that for a more realistic description of the large-scale solar 
wind expansion its two-fluidity and/or the influence of the various transport phe- 
nomena have in addition to be taken into account. From the general theory it then 
follows, however, that these different descriptions will have a strong influence on the 
different wave modes and their propagation equations. These problems will therefore 
be discussed thoroughly in forthcoming papers of this series by using different solar 
wind models (reviewed recently by Richter, 1971). In addition we shall also discuss 
the reaction of the various wave-trains on the different sets of equations of motion 

of the expanding solar wind. 
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