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Abstracl. Several techniques useful in the analysis of data from coded-mask telescopes are presented. 
Methods of handling changes in the instrument pointing direction are reviewed and ways of using FFT 
techniques to do the deconvolution considered. Emphasis is on techniques for optimally-coded systems, but 
it is shown that the range of systems included in this class can be extended through the new concept of 
'partial cycle averaging'. 

1. Introduction 

Coded-aperture telescopes provide a means of imaging at X-ray energies greater than 
those which can be focussed by grazing incidence optics but the associated computer 
analysis can be highly computer-intensive. We consider here some of the tasks which 
must be accomplished and present some analytical techniques and procedures which 
have been found to be useful in minimizing the processes involved, including algorithms 
which provide alternatives to previously published methods. Although we concentrate 
on methods for optimally-coded systems, we first show that, given appropriate analysis 
techniques, systems which would otherwise be considered as non-optimum can be 
included in this category. 

2. Optimum Coded Mask Telescopes and Systems which can be Treated as Such 

The term 'optimum' is used here to refer to coded mask telescopes in which the design 
is such that coding errors are non-existent. The only errors are those due to noise - 
typically counting statistics on the signal and on the detector background. This may be 
achieved by using cyclic mask designs based on cyclic difference sets and ensuring that 
the shadow cast on the detector by any source is a whole number of cycles of the mask 
pattern (Gunson and Polychronopoulos, 1976; henceforth referred to as GP; Fenimore 
and Cannon, 1978; Proctor et al., 1979). Typically a mask containing N x + 1 by Ny + 1 

cycles of the pattern and a detector equal in size to N x by Ny cycles (suitably scaled if 
the object is not at infinity) are used. An example of such a system with Nx = Ny = 1 
is shown in Figure l(a). 

If necessary a collimator is used to ensure that flux does not reach the detector from 
directions such that incomplete shadows would be received. Such a collimator may be 
combined with the detector (e.g., GP; Proctor et aL, 1979) or with the mask (GP) or 
at an intermediate position (Palmieri, 1974). It must have a full-width-to-zero-response 
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Fig. la. An example of an 'optimum' coded-mask telescope. The detector receives one cycle of the shadow 
of a cyclic mask  with two cycles in each direction. 

/ / 

/ / 

Fig. I b. A coded-mask telescope with circular detector and a cyclic mask. The arrangement may be treated 
as an optimum system by using partial cycle averaging. The mask size and shape shown is the minimum 

for which the shadow of  any source in the unambiguous field of  view will not be vignetted. 
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no larger than the angle subtended at the detector by one cycle of the mask or coding 
errd)s may arise in the reconstruction. 

We will here extend the concept of optimum coded systems to include ones in which 
the constraint that a whole number of cycles of the mask pattern are recorded is relaxed 
and we require only that every position in a cycle is recorded at least once and that the 
data are analysed in such a way that coding errors are absent. Consider as an example 
the system shown in Figure l(b) which has a circular detector with a square cyclic mask. 
In this example the mask cycle is chosen to match the maximum square which can be 
inscribed in the circle, but the 32~ of the sensitive area of the detector in the segments 
surrounding the central square need not be wasted. The pattern received by any part 
of the detector within such a segment duplicates that in a position within the square. 
The two estimates of this signal may be averaged, with a consequent reduction in the 
uncertainty and, hence, in the noise level in the reconstructed image. We will refer to 
this technique as 'partial cycle averaging'. 

In this example we overcome the problem of properly matching a circular detector 
to a coded mask, but other circumstances can be envisaged when additional partial 
shadows are recorded. Provided the data are analysed by folding the recorded data into 
a single cycle and combining multiple samples, where they occur, by averaging, the 
imaging properties are unimpaired and we will class such systems as optimum. 

The signal to noise ratio obtained in the above example is not quite as good as if it 
had been possible to utilize the signal from all over the detector with equal weight (some 
positions in the cyclic shadow are recorded once, others twice). An appropriate figure 
of merit, proportional to the attainable signal to noise ratio for weak sources, is given 
by 

where the integrals are over the detector area and w is the weight given to a pixel as a 
result of the averaging. For example, where the events in a particular detector pixel will 
be combined with those from one other which samples the same phase of the mask cycle, 

1 

As shown in Table I, the performance in the example we have taken is considerably 
better than if the data outside the square region had been disregarded. Hexagonal-celled 
masks which utilize most of the area of a circular detector have been proposed (Cook 
etal., 1984; Haberl, 1984; Fenimore, personal communication). The signal to noise 
ratio attainable using partial cycle averaging is marginally superior to that obtained by 
using such a mask (unless of course the hexagonal mask is used in conjunction with partial 
cycle averaging). 

3. The Effect of Pointing Errors 

The situation will frequently arise where the pointing direction of the telescope is not 
stable throughout an observation or where data from observations with somewhat 
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TABLE I 

Figures of merit for coded mask telescopes with square and hexagonal masks, with and 
without partial cycle averaging. The figures are normalised to the value for a hypothetical 
system in which the entire area of a circular detector is used with equal weight given to all 

pixels. 

Configuration Relative signal/noise ratio (~b) 

Hypothetical system using whole 
of a circular detector with equal weight 

Square mask cycle 
Data outside square disregarded 

Hexagonal mask cycle 
Data  outside hexagon disregarded 

Square mask cycle 
Using partial cycle averaging 

Hexagonal mask cycle 
Using partial cycle averaging 

1.0 

{2/It} ~ = 0.798 

{3 ,,/3/2~} ~ = 0.909 

2{~(3 - 7~/2)}-o.s = 0.944 

{27/1t(9 x/3  - 2n)} ~ = 0.961 

different pointing directions are to be merged. In some circumstances the data may be 
combined in the detector plane into a single amalgamated detector plane image requiring 
only a single transformation for deconvolution. 

This is clearly the case if the telescope motion is a small rotation c~ x or ey about any 
axis parallel to the mask plane. Such a motion merely translates the shadow cast on 
the detector by a distance Ic~, where l is the telescope length. If the sensitive area of the 
detector is physically slightly larger than C mask cycles then the data will still be 
recorded. More particularly, even if the detector is only the nominal size, the cyclic 
properties of the system may be utilized. Data which drops off one side of the detector 
appears on the other! All that is needed is a cyclic shift of the detector data. 

What is the limit to this procedure? If the shifts become too large then one of several 

effects may start to become important. 
(a) As a result of telescope motion X-rays are accepted, taking the observation as 

a whole, from a field of view larger than that defined by the collimator. Effectively, the 
collimator response becomes blurred and wider. Ambiguities can then occur - sources 
just outside the field of view in one direction can appear, translated by one cycle, just 
within the opposite border of the field of view. Making the collimator width somewhat 
smaller than the angle subtended by one mask cycle can alleviate this problem. 

(b) The blurring of the collimator response described above will have to be taken into 
account even for the central parts of the image if intensities are to be determined 
accurately. This will normally involve some simplifications and approximations and 
these may become intolerable if the cyclic shifts become too large. 

(c) For wide field systems projection effects become important. For a photon from 
a source at an angle ~0 off-axis in the direction of the telescope movement the correction 
le should strictly be le sec 2 (p. Of course q0 is not known for individual photons, so any 
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correction made is only approximate and the application of large corrections can lead 
to errors. 

We have so far only considered rotations of the telescope about axes parallel to the 
mask. A rotation ez about an axis normal to the mask is less serious if small, as the 
maximum amount by which a feature in the shadow is displaced with respect to the 
detector is le z tan cp where cp is again the off-axis angle of the source causing the shadow, 
which is necessarily smaller than the size of the field of view. If, however, the motion 
cannot be ignored (which occurs when shifts near the edge of the field become 
comparable with the dimensions of one pixel) then ez errors are more difficult to handle 
because cp is different for photons from different sources. The only possibility is to 
reconstruct images for periods during which the effect is negligible for the sources at 
greatest cp and then to add the resultant images. We return to methods for adding offset 
images in Section 5. 

4. The Deconvolution Process 

4 . 1 .  T H E  P R O B L E M  T O  BE S O L V E D  

Consider an 'optimum' coded-mask telescope (in the sense used above) with m by n 
elements. We ignore for the present the effect of any collimator. The best estimate of 
the source flux distribution is a linear function of the 2-d (two-dimensional) cyclic 
cross-correlation function between the array (D) of intensities observed in the detector 
plane an an array (M) representing the mask pattern, is 

1 ] 
S ( x ,  y)  = P + Q D ( i , j ) M ( ( x  - i)mod,, . (y J)~o,~) �9 (1) 

L i : O  j=O 

Although strictly this equation does not apply to non-optimum systems it is often a 
useful approximation. 

Here m and n are the dimensions of the array into which the detector data are binned. 
They do not have to be equal to the number of elements in a mask cycle - we may choose 
to make the summation over sub-pixels, smaller in each dimension than the mask pixels 
by integer factors. M will then have repeated values. Fenimore and Cannon (1981) have 
called this case fine-sampling and a simple variation of it, in which the + ls in M are 
not repeated, delta-decoding. We use the term sub-pixelling here to refer to either of 
these methods, but we note that the latter is more generally useful because the equivalent 
'fine-sampled' image can be obtained from a 'delta-decoded' one with a simple block 
filtering operation. 

The values of P and Q depend on the definition of flux used, on the form chosen for 
M and the way that background levels are to be handled. It is convenient to choose flux 
units such that an image value of S x means that there were S x photons detected from 
a source in that pixel during the time for which the data were accumulated. If M has 
the values _+ 1 and we wish to use 'balanced decoding', as defined by Fenimore and 
Cannon (1978), such that the flat sides lobes of the point source response function are 
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at the zero level then the required values are 

N ( 1 - 2 t ) +  1 N - 1  
P - - -  ED,  Q , 

2N(1 - t) 2N(1 - t) 

where t is the fraction of transparent elements in the mask pattern (the fraction of + 1 
elements in M), ZD is the total signal in the detector (after any background has been 

subtracted) and N = n m .  

Balanced decoding in this sense has little advantage in practice as the circumstances 
in which coded mask telescopes offer an advantage are those in which detector 
background dominates over the signal. Generally the background counting rate will not 
be sufficiently accurately known for it to be precisely subtracted and in these 
circumstances the above values of P, Q lead to a bias level in the image which is equal 
to B, where B is the mean (residual) background rate per detector pixel. 

An alternative which is particularly appropriate where one is searching for a small 
number of weak sources is to arrange that the image has a known mean level - 
conveniently a mean of zero. This can be achieved by using 

P ( 1 - 2 t )  ZD and Q -  1 
2(1 - t) 2(1 - t) 

An image obtained in this way obviously contains no information about a very extended 
source having the same intensity in every pixel. The problem is inevitable because we 
cannot deduce independent measurements of the rnn  image pixels and the detector 
background, a total of rnn  + 1 parameters, from the r n n  measurements of the fluxes in 

the detector pixels. 
We note that this does not mean that data from coded mask telescopes contain no 

information about the diffuse X-ray background as we have so far ignored the effect of 
any collimator which is used to limit the field of view. Typically such a collimator will 
modulate the diffuse background, imposing a pyramidal form on it in the intensity units 
used here and, given sufficient sensitivity, allowing information about it to be derived. 

4.2 .  P E R F O R M I N G  THE DECONVOLUTION 

If the mask pattern is one based on Singer cyclic difference sets (i.e., on base-2 
m-sequences) the cross-correlation is most easily performed using Hadamard transform 
techniques (Skinner, 1980; Gunson and Skinner, 1979; Fenimore, 1983). For other 
mask patterns the best procedure is not so obvious. We will discuss in a future paper 
fast techniques which can be used with mask patterns based on twin-prime cyclic 
difference sets and restrict ourselves here to considering the optimum strategy for using 
Fourier transform techniques, which are not restricted to any particular pattern. 

A cross-correlation such as (1) can be performed by a Discrete Fourier Transform 

(DFT) 

S = P + Q (DFT-~  (DFT(D)DFT(M))) .  (2) 
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The Fast Fourier Transform (FFT) algorithm can be used to perform the transforms, 
but in a typical case doing this in a straightforward way leads to a very inefficient 

implementation. Often m, n will be either prime numbers (for mask patterns based on 
twin-prime cyclic difference sets) or of the form 2 p - 1, 2 p + 1 (for those based on base 
2 m-sequences). The most efficient and common 2-d FFT algorithm requires that each 
dimension of the array transformed is of the form 2 N. To use this involves either 
extending the arrays or re-sampling. 

Extending the D array in each direction by repeating it cyclically and the M array by 
padding with zeroes, such that each dimension is at least twice the original one and is 
equal to a power of two as shown in Figure 2(a), achieves the desired effect. The size 
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Fig. 2a. Use of a 2-d FFT to cross-correlate two arrays with arbitrary dimensions. One array is repeated 
cyclically and the other padded with zeroes to obtain arrays of dimension 2 ~v~ by 2 ~v~ where 2 ~v~ > 2m and 

2 ~v2 > 2n. 
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Fig. 2b. 
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Mapping a two-dimensional array onto a one-dimensional one so that a 1-d FFT can be used with 
padding by less than a factor of 2. 

of  the transforms to be performed is, however, greatly increased. For  example, in the 

case where m = 2 p - 1, n = 2 p + 1 the number of  elements in the arrays to be trans- 

formed goes up by a factor ~ 8. This scheme is similar to that proposed by Fenimore 

and Cannon (1981), although they suggested a larger extension of  the arrays. 

Re-sampling can reduce the amount  of  processing but formally destroys the ideal 

mask properties (although Fenimore and Cannon (1981) show that the additional noise 

may be small) and may introduce systematic biases in source positions. 

For  arrays where m and n have no common  factors there is an alternative approach 

in which we map the arrays D, M, S onto 1-d arrays 

D ' ( k )  = D ( i , j ) ,  M ' ( k )  = M ( i , j )  , S ' ( k )  = S ( i , j )  ; 

where 

i = (k)mod m and j = (k)mod n , 

(see, for example, Figure 2(b)). I f  m and n are mutually prime, the Chinese remainder 

theorem ensures a one-to-one correspondence between the elements of  1-d and 2-d 

arrays. This mapping has the property that 

k( i  + Ai, j + A j) = k(i, j )  + k(Ai,  A j) ; 

with the result that 

D * M  = K - I ( K ( D ) * K ( M ) ) ,  
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where i, j, k are defined modulo m, n, mn and where * is the convolution operator and 

K, K -  1 are operators describing the forward and reverse mapping. Thus we may replace 

the 2-dimensional cross-correlation by a 1-dimensional one. 

The extension of the arrays to allow a base 2 FFT to be used is now required only 

in one dimension. In the most unfavourable case this requires tess than a factor of 4 

increase in the number of elements; for the m = 2 p - 1, n = 2 p + 1 case the factor is 

22p+ 1/(22p - 1) ~ 2.  

By way of example we show in Table II the array sizes and some processing times 

for a 255 by 257 element array using this technique and employing a 2-d FFT. Despite 

the overheads associated with the mapping and unmapping, the 1-d approach is faster 

by nearly a factor of four. 

TABLE II 

Array sizes and processing times for a 255 by 257 element deconvolution using the method 
of Section 4 and using a straightforward padded 2-d FFT. The times are measured cpu 
seconds on a MicroVax II with 9 Mbites of memory. In each case deconvolution is by 

cross-correlation with a pattern for which the Fourier transform is precalculated. 

Method Array Size of FFT Overall execution 
cross-correlated time (s) 

l-d 1 by 65535 1 by 131072 51.6 
2-d 255 by 257 512 by 1024 192.4 

Provided that no sub-pixelling is used the requirement that m and n have no common 

factors is met by arrays corresponding to both of the types of mask pattern mentioned 

above. If sub-pixelling is used the property will be lost unless the numbers f~, fy of 

sub-pixels per pixel in the two dimensions are different and are selected carefully. The 

delta-decoding transform can, however, still be accomplished by separating the 2-d 

arrays into fxfy interleaved component arrays and performing separate transforms of 

size ~ 2mn/fxfy on each component, a similar size computation. This is analogous to 

the technique used to achieve sub-pixelling when Hadamard transforms are employed, 
which has been described in detail by Fenimore and Weston (1981). 

5. Combining Data from Different Pointing Directions 

Combining images when there has been appreciable telescope movement is a compara- 

tively straightforward task if the instrument has a small field of view. One of the 

advantages of coded-mask telescopes is, however, that a wide field of view can be 
obtained and it will frequently be the case that small-angle approximations cannot be 

made. Efficient handling of the computation involved is particularly important as the 
effect is most likely to be important when there are many pixels. 

The result of a single reconstruction operation is a map representing the intensities 
in sky pixels whose directions are such that radiation falling on a reference point in the 



346 G. K, SKINNER ET AL. 

detector, for example the centre, will have passed through different elements of the mask. 
Thus the image is regularly sampled on a regular grid in a gnomonic projection of the 
sky, the pole of the projection being the pointing direction. When we come to combine 
data from different observations the images will, in general, be grids in gnomonic 
projections with different poles and with different orientations. If we adopt one such 
grid as a standard onto which we will add data from the other observations, then we 
have the problem of finding the position in the base grid corresponding to each point 
in each subsidiary grid. 

/ x ~ 

u 

\ 

/ 
/ 

l 
/ 

I 
t ~ . J  

Fig. 3. The projective geometry for transform between two pointing directions. The arrows show the only 
direction of the axes; the origin is at the centre of the celestial sphere. 

As can be seen from Figure 3, this is a simple problem in projective geometry. 
Computationally it is efficiently handled in the following way. The pixel P' in the 
subsidiary plane can be represented by Cartesian coordinates (x ' ,y ' ,  1) in the 
coordinate system shown. We have chosen a scale such that z is unity for points in the 
tangent plane. Expressed in a similar coordinate system in the base frame, P' will have 
coordinates (x, y, z), where z is no longer unity. 

The transformation from (x, y, z) to (x', y ' ,  z') is described by the rotation of the 
telescope from the base frame to the subsidiary frame. This can be described by Euler 
angles e~, c~ x, c~y (these are the rotations about the z-axis, the (new) x-axis and the (new) 
y-axis necessary to move from the base pointing direction to the subsidiary one). The 
sky direction corresponding to P' will be represented in the base frame by a point P 
whose coordinates are obtained by applying the inverse rotation matrix to those of P 



ANALYSIS OF DATA FROM X-RAY TELESCOPES 

matrix to those of P and renormalising: i.e., 

347  

: (R -~ )  

where 

R 1 = 

X 0 = X / Z ,  

cos c~y cos ez - cos ~x sin c~ z 
- sin ex sin ~y sin 

cos ~y sin c~ z cos ~x cos c~ z 
+ sin c~ sin C~y cos c~ z 

- cos c~ sin c~y sin ~x 

Yo = y / z .  

sin ey cos 

+ sin c~ x cos c~y sin ~z 

sin C~y sin c~ z 

- sin ex cos ey cos ~z 

cos ~x cos c~y 

Clearly R - 1 and, hence, the trigonometrical functions, need be computed only once for 

each subsidiary image and further savings can be made if the x ' ,  y '  grid is rectangular. 
When corresponding points in the two images have been identified the incident flux 

estimates, corrected for the collimator response and observation time in each case, can 
be combined. It is important to form a weighted mean as the uncertainties in the two 
measurements can be very different, particularly if the pixel is close to the edge of the 
collimator response in one case. 

6 .  C o n c l u s i o n s  

As an example of the application of the techniques described in Sections 3 and 5 we 
show in Figure 4 a part of an image of the Crab nebula X-ray source obtained with the 

Spacelab 2 coded-mask telescope (Willmore et al., 1984). In Figure 4(a) no corrections 
have been applied for telescope movement during the observation. Although the pointing 

of the telescope z-axis was relatively stable, the fact that only a two-axis gimbal-mount 
was used resulted in an appreciable rotation about the pointing axis. Separate images 
were then obtained from 38 subsets of the data, correcting photon positions for x and 
y rotations within each. The images were combined using the method described in 
Section 5. The resulting peak (4b) is consistent with the nominal resolution of the 

telescope (3.0 arc min full width at half maximum (FWHM);  6.0 arc min to zero 
response), slightly broadened by the finite size of the X-ray emitting region (42 arc sec 
FWHM, Wolff, 1975) and by the detector spatial resolution (equivalent to ~ 40 arc sec 
FWHM).  

We have presented techniques useful in all the stages of coded-mask telescope data 
analysis. In forming arrays recording the mask shadow we have shown how the concept 
of an optimum coded-mask telescope may be extended. In the deconvolution process, 
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Fig, 4. An X-ray Image of the Crab nebula (a) without correction for pointing direction changes, 
(b) corrected using the techniques of Sections 2 and 5. 
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the correct procedures to use in order to handle bias levels due to detector background 

in the best way have been discussed and a method of  efficiently performing the 

deconvolution using a one-dimensional F F T  was given. Lastly, we have discussed the 

procedures necessary to cope with telescope movement-correcting photon positions in 

the detector plane where this is possible and combining shifted images where it is not. 
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