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Abstract. A statement of the problem of gravitational collapse and a computational method are 
described. The main feature of the collapse - its extremely high heterogeneity - is taken into account. 
The structure of a collapsing star is characterized by a dense and hot nucleon core which is opaque 
with respect to neutrino radiation and is embedded into an extended envelope, almost transparent to 
neutrinos. The envelope is gradually being accreted onto the core. The enormous amount of energy, 
radiated in the form of neutrinos and antineutrinos, make us pay particular attention to relatively 
small absorption of neutrino radiation by extended envelope (so-called energy of deposition). The 
inclusion of the energy deposition in the calculations is of importance for the problem of trans- 
formation of art implosion into an explosion. The deposition is taken into consideration in the 
approximation of diluted neutrino radiation which escapes from neutrino photosphere and is partially 
absorbed in the envelope. Both the generation of energy due to deposition and the change of neutron- 
to-proton ratio are taken into account. The increase of the mass of the core, which is opaque with 
respect to neutrino radiation, is fully taken into account in the calculations of the gravitational 
collapse. 

1. Introduction 

Colgate and White (1966) were the first to take account  o f  the neutrino opacity in the 

dynamics o f  the gravitational collapse. As a result, the problem of  energy transport  

f rom collapsing stellar core to stellar envelope with the aid o f  neutrinos has been put  

forward (so-called deposition problem). It  was believed that, under  favourable 

conditions, this energy transport  could either induce the ejection o f  an envelope, 

observed as supernova outburst  (pure deposition), or stimulate a flash o f  unburnt  

nuclear fuel (oxygen) in stellar envelope (deposition as a triggering mechanism in the 

Fowler 's  and Hoyle 's  (1964) supernova model). The subsequent investigations 

(Arnett,  1966, 1967; Ivanova  et al., 1969) have indicated that  the deposition problem 

is indeed a very complex one, both  in the physical and mathematical  sense. We have 

no possibility to go here into details (one can refer to Zel 'dovich 's  and Novikov ' s  

book  (1971) and to an article by Imshennik and Nadyozhin  (1974) presented at 
Copernicus 's  Assembly o f  IAU).  

I t  is worthwhile to note that  the main difficulty in the solution o f  this problem 

consists in the correct t reatment o f  neutrino interaction with those layers o f  the 

collapsing core which are either semitransparent or  opaque to neutrino radiation. 

The straightforward way o f  investigation o f  the neutrino deposition problem involves 

the numerical solution o f  hydrodynamical  equations together with the equation o f  
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neutrino transfer (Wilson, 1971). However, a number of inevitable simplifications 
(very crude physical approximation, inadequate size of difference, mesh, etc.), which 
arise from the extreme complexity of the problem, bring the calculations of this kind 
at best to a status of numerical experiment. 

A different approach is utilized in the present paper. It deals with the use of two 
asymptotic solutions of the equation of transfer: one solution being valid inside the 
collapsing core, which is highly opaque to neutrino radiation, and the other is applicable 
to neutrino interaction with the nearly transparent stellar envelope. The transfer of 
energy and lepton charge by means of neutrinos and antineutrinos inside the collapsing 
stellar core after onset of neutrino opacity is considered here in the neutrino thermal 
conductivity approximation (Imshennik and Nadyozhin, 1972). The gravitational 
collapse proves to be highly heterogeneous. Therefore, an intermediate layer between 
the opaque stellar core and transparent envelope contains a small fraction of stellar 
mass. This property of the collapse facilitates considerably the fitting of the envelope 
to the core in the course of computations. 

In the present paper we consider the basic equations and the main methodical 
features of the calculations which were fulfilled for rather massive iron-oxygen stars. 
The astrophysical side of these calculations will be discussed in the next paper. 

2. Initial Models and Differential Equations of the Problem 

The initial hydrostatically equilibrium model can be conveniently represented in the 
form of a gaseous sphere with a polytropic index n =  3 (Ivanova e t  al. ,  1969). It will 
hereafter be assumed that the interiors of the initial model consists of iron-group 
nuclei and its envelope is composed of unburnt nuclear fuel (oxygen). The boundary 
between the iron core and oxygen envelope is chosen as close to the stellar centre as 
possible in order to meet the requirement of oxygen being unburnt up to the beginning 
of the collapse. This model gives themaximal efficiency of oxygen burning against 
a background of the collapse. Indeed, oxygen in this case is in the closest vicinity of 
the iron core - i.e., under the most favourable conditions for detonation. The stellar 
structure-like adopted initial model could be formed either as a result of large-scale 
mixing at the advanced stages of stellar evolution or due to intensive outflow of 
hydrogen-helium envelope, followed by an extinction of silicon and oxygen burning 
shells. However, the investigation o f  the evolution of carbon-oxygen stars (see, for 
example, Ikeuchi e t  al . ,  1971, 1972) within the framework of classical spherically- 
symmetric theory without mass loss and large-scale mixing (due to meridional 
circulation, for example) indicates that the forming iron core to be separated from mas- 
sive envelope by one or two burning shells. The stellar models, obtained in these 
calculations, have rather a giant-like structure just before the onset of dynamical 
instability. Therefore, the main storage of unburnt nuclear fuel is settled down at the 
radii which are considerably greater than in our simplified model. 

For a specified mass of initial model, the single arbitrary parameter is the radius of 
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the model. It  is fixed by a tr ial-and-error method at the value which corresponds to the 

initial model  being just  at the bounda ry  of dynamical  instability, owing to dissociation 

of i ron into alpha-particles and free nucleons. The initial  temperature dis tr ibut ion is 

calculated from known equat ion of state and  known  pressure dis tr ibut ion over 

polytropic gaseous sphere for the initial model  to be in hydrostatical equil ibrium. 

With the initial  model  chosen in this way, the small perturbat ions,  in t roduced by the 

difference approximat ion  of differential equations,  are quite sufficient to bring the 

model  (after some calculations) into a state of collapse. The collapse of two models 

of masses 2 Mo and  10 Mo was computed. The initial characteristics of these models 

are presented in Table I. 

TABLE I 

The characteristics of the initial models at the boundary of dynamical stability 

The total mass of the star Mo 
The mass of the iron core Mve 
The radius of the star Ro 

The central temperature Tc 
The central density Qc 
The total gravitational energy E~ 
The total internal energy Ej. 
The stores of nuclear energy E16 

in oxygen envelope 
The energy necessary to EvN 

dissociate iron core into 
free nucleons 

The total neutrino luminosity Lvo 
The contribution of URCA L~ RcA 

process in total neutrino Lvo 
luminosity 

2 3//o 10 M| 
1.82 Mo 6.48 Mo 
7.0 x 10 -3 Ro 3.5 x 10 -2 Ro 
4.9 x 108 cm 2.45 • 109 cm 
7.42 x 109 K 5.62 x 109 K 
4.45 x 108 g cm -3 1.78 x 107 gcm -3 

- 0.326 x 1052 erg - 1.630 x 1052 erg 
0.272 x 1052 erg 1.460 • 1052 erg 
2.65 x 105o erg 5.18 x 1051 erg 

3.08 x 1052 erg 1.10 x 1053 erg 

4.61 x 1047 erg s -1 3.56 • 1048 erg s -1 

0.072 0.030 

Let us write down now the basic differential equations of the problem. At  the first 

stage of the collapse when a star is transparent to neut r ino  radiat ion the following set 

of  differential equations in Lagrangian form have to be used 

Dr 
9-7 = ~'  (1)  

Ou OP Gm 
a't = - 47cr20m r2 ,  (2) 

Or 3 3 

0m 47~Q (3) 

--~ + Ot = - e ~  + e16, (4) 

OX16 = -- O)(~6(T9/5.3) 26, (5) 
0t 
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where independent variables are t (time) and m (mass enclosed in a sphere of radius 
r) ;  e~ denotes the volume neutrino energy losses and e16, which is proportional to the 
right-hand side of Equation (5), denotes the rate of energy generation due to oxygen 
burning in reaction O16+ 016 . The right-hand side of Equation (5) approximates 

Fowler and Hoyle's (1964) data with sufficient accuracy in the relevant range of 
temperatures, (2.5-4)x 109 K. The same approximation has been used by Ivanova 
et al. (1969). A dependence of pressure P, specific energy E, and e~ on temperature T 
and density 0 will be discussed in the following sections. 

In accordance with the initial model described above, the initial conditions for 
Equations (1)-(5) may be written down in the form 

I 
r = to(m), ~ = Oo(m), T = To(m), 

f l  for M ~ o < . m ~ M o ,  
For t = 0 X16(m)  = 0 for 0 ~< m ~ MFe  , (6) 

u = 0 ,  ~ = 0  for O<<.m<~Mo, 

where the distributions ro(m), Oo(m), and To(m) are determined uniquely by a poly- 
tropic structure and a given equation of state, P=P(Q,  T). The boundary conditions 

are 

r = 0 and u = 0  for m = 0, (7) 

P = 0  for m = M o .  

The neutrino ' optical' depth % is increasing slowly as the collapse proceeds. From 
a certain time, the partial absorption of neutrinos begins to change the temperature 
distribution within the core in spite of neutrino 'optical '  depth at the centre r~c being 
much less than 1. This phase of the collapse will henceforth be referred to as a semi- 
transparent stage. At the semitransparent stage Equation (4) should be modified to 

yield 

~-7 + 0t = -~"  + ~16 + ~d, (4)' 

where e~d is the rate of heating due to the partial absorption of neutrinos and anti- 

neutrinos. 
According to Ivanova et al. (1969), the volume energy density of neutrinos with 

energy e~ at any radius r is given by 

R 

1 f r + r '  U~(e~, r) = ~-ccr r'Q(r')B,(e,, r') In ~ dr' ,  (8) 

o 

where R is the radius of the star and B~ d,e is the energy radiated by unit mass, at 
energy interval de~, per unit time. A quite analogous expression may be written down 
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for antineutrinos. Using (8) and integrating with respect to the energies of neutrinos 
and antineutrinos, we obtain the expression for evd in the form 

= - - - -  de, + de~ , (9) eve(r) ? iv(ev, r) ' J ~ - ~  
o o 

where iv and [~ are the mean free paths of neutrinos and antineutrinos with allowance 
for the stimulated absorption (see Equations (43), (44) in Section 4). The collapse 
could be calculated by use of Equation (4)' instead of (4) from the beginning. In that 
case, however, the time of  calculation would be highly increased, since the estimation 
of eve involves a double integration with respect to radius and energy for each space 

mesh point at every time step. Therefore, it is reasonable to make use of Equation (4)' 
only for those times when neutrino ' optical' depth exceeds a certain value. We made 
use of Equation (4)' in the case of 0.001 ~<rw<l. In the course of time, a central 
region of the collapsing star becomes opaque to neutrinos and antineutrinos (rv > 1). 
The transport of energy by means of neutrino radiation can be approximated under 
such conditions by neutrino thermal conductivity equations (Imshennik and Nadyo- 
zhin, 1972). 

Let us discuss now the equations to be applied to the core which is opaque with 
respect to the neutrinos and antineutrinos.* The Equations (1) and (3) are valid also 
in the 'neutrino core'. Equation (2) has the same form as for the transparent stage of 
the collapse, except that the total pressure P is the sum of material and neutrino- 
antineutrino pressures. According to Imshennik and Nadyozhin (1972), Equation (4) 
should be changed radically. One equation of energy has to be replaced now by a 
couple of differential equations describing diffusion of both energy and lepton 
charge 

~E p ~  (~) _ _ 4 n ~ _ ~ ( r 2 H ) _ ~ , ,  (10) 
a-7 + at 

a--t + 4n (r2F) = 0, (11) 

where P and E are the total pressure and specific energy with the contribution of 
neutrino-antineutrino gas being included; A is the mass density of lepton charge 

A = (nv + he- - n~ - n~+)/O. (12) 

The temperature within the 'neutrino core'  is so high that the heavy nuclei are prac- 
tically all dissociated into free nucleons. Since, moreover, an inequality kT>>mec 2 

holds for the 'neutrino core', the transfer coefficients in the expressions for energy 
flux H and lepton charge flux F can be written out explicitly in terms of the densities 
of free neutrons n, and protons np and the chemical potentials of  neutrinos q/v and 

* For simplicity, this core will hereafter be referred to as 'neutrino core'. 
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electrons gt~ (Imshennik and Nadyozhin, 1972): namely, 

H =  -K1 (1 +0 0)2 T2r2 _[@2~0T +A1 ~t~]~mj 

F =  _K2 (1+ 0)2~ 2 [_~ ~T ~gtv] 
l r  ~ + OmJ' 

where 

(13) 

(14) 

0 - - 1  
AI = ~ 0 +  1' 

zc z 0 -  1 (15) 

where O=n,,/np is connected with chemical potentials g/~ and ~ue (in the units of kT) 
by the condition of statistical equilibrium of beta-processes by 

0 = exp (gte - ~ ) .  (16) 

The electroneutrality condition np=n~--ne+ yields an additional relation between 
~ue and 0: 

~y3 e + 7ZZgte = K30/[(1 + 0)T3]. (17) 

With the aid of Equation (17) the expression (12) for lepton charge can be reduced 
to the form 

1 T 3 
Am~, = I +----0 + ~ (~ta + n2~t~)' (18) 

where mp is the proton mass and Amp is the lepton charge per barion. The above 
equations for the 'neutrino core' should be supplemented by the equation of state 
(Section 6), the law of volume energy losses due to muon neutrino (Section 5) and the 
boundary conditions for the fluxes of energy and lepton charge. When the volume 
neutrino radiation of the transparent envelope may be neglected in comparison with 
neutrino emission form the surface of the 'neutrino core' (this is the case for reasonable 
choice of the 'neutrino core '  boundary M~, see Section 7), the boundary conditions 
(Imshennik and Nadyozhin, 1972) are of the form 

T--H,  
for m = Mo. (19) 

cN 
5-  F. 

At the centre of the 'neutrino core' the fluxes of energy and lepton charge have to 
vanish - i.e., 

H = 0 ;  for m = 0 .  (19)' 
F = 0  ) 
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The total energy density of neutrinos and antineutrinos U= Uv + U~ and the difference 
between the densities of neutrinos and antineutrinos N = n v - n ~  can be expressed in 
terms of temperature and neutrino chemical potential as 

7~r*~ 
u = K,T* + + - i T ] '  (20) 

T 3 
N - - -  (W~ a + 7r2~). (21) 

2K3m~ 

The constants K1,/(2,323, and K, in Equations (13), (14), (17), (20), and (21) are given 
by 

- - - ,  K2 = K ~ / h ;  K1 3 rn,c ~o 

3 ( ~ ) 3  ( k ) 3  (22) 
323 = 8um---~ ; K4 = 7ck ~c ' 

where h is the Planck's constant; k, the Boltzmann's constant; me, the mass of the 
electron; c, the velocity of light; and ao= 1.7 • 10-** cm 2 is the characteristic cross- 
section of the weak interaction. 

After the 'neutrino core' being formed, Equations (1), (2), (3), and (5) remain, 
nevertheless, valid for the external envelope (M~ < m ~< Mo) which is still transparent 
to neutrinos and antineutrinos. It is only Equation (4) that should be modified. 
Though its new form is similar to (4)', ~vd now has to be calculated from an equation 
which takes into account the absorption of diluted neutrino-antineutrino radiation 
escaping from the photosphere of the ' neutrino core' (see Section 4). Besides, the law 
of the volume neutrino energy losses in the envelope is to be somewhat altered, mainly 
owing to changes of the neutron-to-proton ratio by means of the interaction of the 
photospheric neutrinos and antineutrinos with envelope matter. 

3. Volume Neutrino Radiation 

We shall discuss next the volume energy losses due to neutrino emission which have 
been used in calculations at various stages of the gravitational collapse. 

A. TRANSPARENT STAGE 

The universal Fermi interaction (UFI) and URCA processes are the main sources 
of neutrino and antineutrino emission at this stage. The total rate of energy losses is, 
therefore, given by 

~v = ~uH + eurcA. (23) 

For euF~, the interpolation formula of Beaudet et al. (1967) was used. It takes into 
consideration the emission of the neutrino-antineutrino pairs due to the annihilation 
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of the electron-positron pairs, the interaction of photons (7) with electrons (e-) and 
positrons (e+), and the decay of plasmons (pl) in accordance with the following 
reactions: 

e-  + e + --+ v + ~ ,, 

)) + e+--+ e :~ + v + ~, (24) 

pl--+v + ~. 

The energy losses by means of URCA process were calculated with the aid of the 
following equation, which has been used also by Ivanova et aL (1969) and is based on 
the assumption of beta-processes being in kinetic equilibrium (Imshennik et aL, 1966): 

i.e., 

6URCA = 7.8 x 1011T6S~b erg g-1 s-~, (25) 

where the dimensionless factors ~b and S stand for account of degeneracy and dis- 
sociation of heavy nuclei into free nucleons, respectively. The factor S is equal to 

( f t ) ,  Xv.  • X,  + X ,  + 0.0017XFe, (26) 
s = x .  + x .  + A~o(ft)F~ 

where X,, X v, and XFe are the mass fractions of the free neutrons, free protons, and 
iron-group nuclei, respectively; Ave is the mean atomic weight of iron-group nuclei. 
The numerical value of the coefficient in front of Xve in Equation (26) v(as obtained 
for the minimal value of ( f t )Ve~ 104 (Fowler and Hoyle, 1964). For sufficiently high 
temperatures and low densities, we have Xve.-~0, X,+ Xp~ 1, ~b~ 1 and Equation (26) 
is reduced to an expression obtained by Imshennik et al. (1967) for matter consisting 
of free nucleons. The factor S may be estimated with allowance for X, ,  Xp, XFe, 

obtained by Imshennik and Nadyozhin (1965). It depends both on temperature and 
density. However, in the relevant range of temperatures (6 < T9 <20) in which the 
dissociation of iron-group nuclei occurs, it depends weakly on density if the density 
varies in the range of 3 x 108 < 0 < 10 it g cm-a. These intervals of temperatures and 
densities just correspond to the physical conditions which stellar matter pass through 
during the collapse. Therefore, the S was approximated by an interpolation formula 
with retaining the dependence on temperature only: i.e., 

S =  1/600 (Tg~< 6) 

log~oS= 0.38(T9-  6 ) -2 .7781512  (6 < T9 ~ 11) 

log~o S = - 1.083 950 6 x 10-2T92 + 0.433 580 24T9 - 4.335 953 6 

(11 < T9 < 20) (27) 

S = I  (20 ~< Tg). 

The factor ~b is given by (Ivanova et aL, 1969) as 

Fs(Ne) + O F s ( - ~ )  (28) 
= Vs(0)(1 + 0) 
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where 

0 .= __nn = F4(Ne) .  
f/p / 7 4 ( - / # ' e ) "  ( 2 9 )  

In Equations (28) and (29) F5 and F4 are the Fermi-Dirac functions of indexes 5 and 4, 
respectively. They were interpolated by cubic splines, which ensure continuity of the 
first and the second derivatives in the range of interpolation and make allowance for 
fitting to the left and right asymptotes with the continuous first derivatives (Ahlberg 
et al., 1967). If T and ~ are specified, one can solve Equation (17) along with (29) to 
obtain the values of Ve and 0 and calculate afterwards the URCA energy losses with the 
aid of Equations (28), (27), and (25). In the case of S=  1, Equation (29) proceeds from 
the kinetic equilibrium of beta-processes with free nucleons: i.e., 

e -  + p - +  n + v, e + + n - +  p + ~. (30) 

The dependence of ~b and 0 on o / T  3, as given by the solution of Equations (17), (28), 
and (29), has been tabulated by Ivanova et al. (1969). We made, however, use of these 
equations directly at every step of the calculations. 

oo 

P l i , 

hog p=fi. 

Fig. 1. 

t i ' ~ I , 

'~" u~ p=12 

I 
0.5 1.0 

Jog r~ 
I , I 

1,5 2.0 

The  overall neu t r ino  energy losses versus tempera ture  for  different values o f  densi ty Q f rom 
10 s g c m  -3 to 1012 g c m  -3 with the  step A loglo o = l .  
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Figure 1 shows the total rate of energy losses according to Equation (23). The 
contribution of URCA process to e~ is overwhelming at ~ > 109 g cm -a. 

B. SEMITRANSPARENT STAGE 

The law of neutrino emission at this stage was taken in the same form as for preceding 
transparent stage. It would be desirable to include in the law of neutrino emission the 
changes of concentrations of free nucleons due to interaction of neutrinos and anti- 
neutrinos with stellar matter. However, this would highly complicate the calculations. 
We took into account only the main effect of energy deposition at this stage (Equations 
(4)' and (9); see also Section 4 for further details). 

C. OPAQUE STAGE 

At this stage the law of neutrino energy losses in the envelope (for M, < m < Mo) has 
to be modified, since the neutron-to-proton ratio 0 is affected by the neutrinos and 
antineutrinos escaping from the surface of the'  neutrino core' (photospheric neutrinos 
hereafter for simplicity). Let us denote the photospheric radius, temperature, and 
chemical neutrino potential (in the units of kT) by R~p, T~p, and ~uvp, respectively, and 
assume the neutrino spectrum to be a Fermi-Dirac distribution with parameters Tvp 

and gyp. 
The photospheric neutrinos interact with matter of 'optically' thin envelope 

through the reactions: 

vp + n - + p  + e-, (31) 
~p + p-+ n + e +, 

where vp and ~p are photospheric neutrino and antineutrino. In this case the kinetic 
equilibrium of the reactions (31) should be considered along with the reactions (30). 
The resultant expression for 0 proves to be rather complex. It generally contains 
integrals which depend both on photospheric temperature, T~p, and local one, T. 
However, T is several times smaller than Tvp and, besides, kT~p is about ten times as 
large as mee 2. Therefore, the interaction of photospheric neutrinos with matter of the 
envelope may be consideredwith the use of inequalities T~v>> T and lcT, p>>mec z. Then, 
the condition of kinetic equilibrium of reactions (30) in common with (31) is greatly 
simplified and can be reduced to the form 

0 = a~F4(~e) + F4(-g/~p)(T,p/T) s W~. (32) 
a~r4(- W) + F4(~t~p)(T~p/T) 5 W~ 

The factors a~ and a; in Equation (32) allow for the Pauli principle in reactions (30) 

and are given by 

w~ 
a v - -  1 - 

1 + exp ( -  ~%)' 

wo 
a ~ = l -  1 + exp (v/~)' 

(33) 
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where W, and W~ are the modified dilution factors which are connected with the usual 
dilution factor 

1 J 1  ( _ ~ ) 2 ]  (34) W = ~ [ 1  

by the relations 

w~ = ~vw, w0 = ~ w ,  (35) 

where factors ~ and ~ take into account the partial absorption of neutrinos and anti- 
neutrinos in the envelope (Section 4). 

The function q~ is also affected by the Pauli principle, and Equation (28) should be 
replaced by 

0 = avFs(ve) + a~OFs(-I[.le) 
Fs(0)(1 + 0) (36) 

Moreover, the Pauli principle has an influence on the processes of the Universal Fermi 

celq 

Fig. 2. 

I . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . .  I . . . . . . . . .  ~ . .  
j -o0 

I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I , ,  
- 3  -2  -1 0 1 2 

l o g  X 

The dependence of 0 o n  x=~o7/T 3 for different values of q=(Wo/2- Wo)(T~,p/T)S; loglo q is 
shown at the right ends of the curves. 
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Fig. 3. The dependence of q/e on x for the same values of q as in Figure 2. 

Interactions. Inasmuch as each of processes (24) produce a v~ pair with v and 
energies of  the order of  kT, a correction for the Pauli principle is reduced in the 

approximation T,,p>>T merely to multiplication of eVF~ in Equation (23) by a, and 

ao: i.e., 

eUFI = evFiava~. (37) 

I t  should he noted here that the corrections, brought in by the Pauli principle, are all 
unimportant  quantitatively owing to T,p>>T; but, nevertheless, they are of  basic 

and methodical interest. 
Figures 2 and 3 illustrate the effect of  photospheric neutrinos on the values of  0 and 

~e in the stellar envelope. A simplified case with ~/~p = - ~ p  = 0 and 14z~ = 14z~ = Wo is 

presented in Figures 2 and 3 for this effect to be clarified. In this case 0 and ge, as 
given by the solution of  Equations (17) and (32), depend on two va r i ab l e s :x=  Q/T a 
and q = (Wo/2 -  Wo)(T,p/T) s. When the photospheric neutrinos are absent ( q =  0) we 
obtain the results of  Ivanova et al. (1969). The photospheric neutrinos lead to 
noticeable decrease of  0 and an increase of  ~u~. 
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4. Neutrino Energy Deposition 

The energy deposition was taken into account both at semitransparent and opaque 
stages of collapse. In both the cases Equation (9) is a starting point for calculation of 

~ v d  �9 

A. S E M I T R A N S P A R E N T  S T A G E  

The total rate of the volume energy losses per unit mass may be obtained by integration 
of specific volume emissivities B~ and B~ with respect to neutrino and antineutrino 
energies 

oo r  

e~(r) = fB~(e~,r)de~+ fB~(e~,r) de,. (38) 

0 0 

Then Equation (9), with allowance for Equations (8) and (38), can be reduced to the 
form 

R 

1 ~ In r + r '  dr'  Gd = ~ ~r'o(r')G(r') ~ ~ ,  (39) 

o 

where ](r', r) is the effective neutrino-antineutrino mean free path at radius r, averaged 
over the spectrum of volume energy losses at radius r', and is given by 

~o oo 

' ( ' B ~ G ,  r ' )  , ] 1 [ (B~(G, L) dG + ~ z~" aeo �9 (40) 
[l(f', r ) ]  -~ = e,.(r') [ d  [(G, r) J L(eo, r ) ] 

o o 

Consider the case of free nucleons. Then, according to Ivanova et al. (1969), we get 

B~(G,r') 4~GoC (~__e) a 1 (G/meC2) s 
= - -  ( , ) ,  (41) 

my 1 + O' G 
1 + e x p  ~ - 7 -  ~ur 

B/e~,r') 4~raoC (~_~) 3 0' (edm~c2) s _ _  ( ,), rn~ 1 + 0' e~ 
1 + exp ~Tw+ ~ur 

[~(G,r) mpl +0(m~c212 [ ( e v  )1 = 1 + exp - ~ - ~ +  Ve x 
ao 00 \ G / k 

x 1 + e x p  --~--~+ V, , 

[~(e~,r) rnpl +0(m~c2~2[ ( e ~  )] 
= 1 + exp - } - - ~ -  ~G x 

Go Q \ e~ I k 

[ x 1 + exp - / ~ -  p,~ 

(43) 

(44) 
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The primed quantities 0', ~'e, T' in Equations (41)-(44) depend on r' and unprimed 0, 
~e, ~'~, T on r. The factors in the first square brackets in Equations (43) and (44) 
proceed from the Pauli principle for electrons and positrons, and in the second square 
brackets - from the effect of stimulated absorption of neutrinos and antineutrinos. 
The quantity N, in Equations (43) and (44) is connected with 0 and ~'e by Equation 
(16); however, for the determination of 0 and ~,'e as functions of T and ~ the thermo- 
dynamically nonequilibrium expression (29) should be used together with Equation 
(17). The substitution of Equations (41)-(44) in (40) results in the integrals which 
depend parametrically on T, T', g/e, ~z'e, and ~G. They could be integrated for example, 
numerically with the Gaussian method. However, the account of energy deposition 
at the semitransparent stage is necessary mainly for the temperature profile to be 
fitted smoothly to the solution of neutrino thermal conductivity equations at the 
following opaque stage of the collapse. 

The principal property of the function ~d(r) - the ability to maintain the qualitative 
correctness of the temperature profile - is kept even with the Pauli principle and 
stimulated absorption is neglected by omission of the square brackets in Equations 
(43) and (44). In this case, the integrations with respect to energy may be completed 
in terms of Fermi-Dirac functions Fs(x) and FT(X), which are evaluated easily by means 
of the rapidly convergent expansions in a series (Nadyozhin, 1974). The eventual 
relations to be calculated have the form 

](r', r) m v 1 + 0 {mec2] z 1 F~(g/) + O'Fs(-  ~'~) (45) 
= Oo O I,-Vf-! S(T)0F~(~,;) + O'F,(-~,;) '  

R 

evd(r) = (70 (kT/m~c2) 2 S ( T )  f r' o(r') In r +  r' 
rnp 2r(1 + 0) r - r ' x 

0 

0FT(~,;) + O'FT(-~,;) 
x Fs(gz'~) + O'Fs(- ~'~) ev(r') dr', (46) 

where an additional factor S(T) is introduced in Equation (45) in order for the 
properties of beta-processes with heavy nuclei to be taken into account effectively; 
for 8v(r') the Equation (25) should be used since at the semitransparent stage the 
URCA process is the main contributor to the total neutrino energy losses. The value 
of ev~ at each mesh point was estimated numerically by the summation of the integrand 
in Equation (46) over the all difference mesh points. This procedure was repeated 
anew at every time step of the calculations. 

B. OPAQUE STAGE 

The neutrinos and antineutrinos, emitted from the photosphere of the 'neutrino core', 
penetrate through the envelope and their energy densities, calculated per unit volume 
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and per unit energy, can be approximated by 

U = 4 ~ ( _ ~ )  3 (ev/meC2)aW~ 
1 + exp (k__~p _ ~ p ) '  (47) 

47~meC'~ 3 (edmec2)aW~ 
= \-7?/1 1 + exp (k@~p + g'vp)' (48) 

where W~ and W~ are determined by Equations (34) and (35), respectively. The 
deposition of energy due to the absorption of the photospheric neutrinos and anti- 
neutrinos in the envelope can be estimated now by introducing of U, and U0, as 
defined by Equations (47) and (48), into Equation (9). In this case, the free paths of 
neutrinos iv and antineutrinos 1~, entering in Equation (9), have to be substituted for 
those given by Equations (43) and (44) and multiplied in addition by factor S-1. 
After some transformations, Equation (9) is reduced to 

47~~176 ST6p [W,.I~ + W, Fs(-g,.,)], (49) 
e~a.(r) = mpham~c~ 1 + 0 

where 

o [1 +exp(~-~ 'vp ) ] [1  + e x p ( ~ e - ~ ) ]  

The dependence of e, da on r takes place due to the changes of W~, W~, T, ~e, and 
0 within the envelope. While deriving Equation (49), we have neglected the stimulated 
absorption of antineutrinos and the Pauli principle for positrons resulted from the 
second reaction (31). As a result, the respective integral L was reduced to the Fermi- 
Dirac function Fs ( -~p) .  This approximate treatment of the absorption of anti- 
neutrinos is justified because of: (a) the positrons are nondegenerated in the envelope, 
and (b) the main contribution to the energy deposition is due to the absorption of 
neutrinos, but not of antineutrinos, as the number density of neutrons is greater than 
that of protons. The integral Iv, given by Equation (50), was evaluated with the aid of 
the Gauss-Laguerre's four-point formula with the weight function of xSe -x  (Rabino- 
witz and Weiss, 1959). 

Another source of energy deposition is the neutrino- and antineutrino-electron 
scattering. It is of importance for the external layers of the envelope, where the 
absorption is suppressed by a low beta-activity of the iron-group nuclei. The neutrino- 
positron scattering may be neglected inasmuch as the number density of positrons 
in the envelope is much less than that of electrons. We are interested in the case of 
neutrino and antineutrino energies being much greater than electron energy (with 
allowance for rest energy). In this case, according to Bahcall (1964), the angle-averaged 
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cross-section of (v, e - )  and (~, e - )  scattering are given by 

o-, = �89 ev ee 2 '  0-~ = 10_0 e~ ee . ( 51 )  
me c2 meC n~e C2 me c2 

In the external layers of the envelope, where scattering dominates over the absorption, 
the electron gas is nondegenerate. Bearing this in mind, we can obtain the mean free 
paths of neutrinos and antineutrinos with respect to scattering in the form 

]v -= 2 mP fie me c2 1 
Go ~ e~ (ge)' (52) 

2 mp fie me c2 1 
l v -  30"o Q e~ (ee>' (53) 

where @e)=(ee/me cz) is electron energy averaged over Maxwell distribution; and 
/~e, the mean molecular weight per electron, was taken as /2e=2 (oxygen) in our 
calculations. 

As the neutrinos and antineutrinos lose only a part of their energies at every 
elementary scattering, the energy distributions (47) and (48) should be multiplied by 
the coefficients of energy conversion before use of them for the estimation of the 
energy deposition. For ev>>ee, the coefficients of energy conversion are about �89 and �88 
for neutrinos and antineutrinos, respectively (Bahcall, 1964). Inserting all above data 
in Equation (9), we obtain the rate of the energy deposition due to scattering in the 

final form 

~ro k5 T~p [WvF4(~tvp ) + 1W_~W4(_ gtvp)](ee), (54) 
ev as(r) = rrtphameC4 Ire 

where F~ is the Fermi-Dirac function. For  calculation of (e~), we made use of a crude 

interpolation formula 

1 (x ~< 1), 

@e) = 0.25X 3 + 1.75X 2 -  2.75X+ 2.25 (1 < X < 3), (55) 

(3 < x), 

where x = 3kT/(rnec2). The cubic spline in Equation (55) gives a smooth fitting between 
low-temperature and high-temperature asymptotes. In the case of kT<<rn~c z, the main 
part of ee is due to the rest energy and therefore (ee) ~ 1. On the contrary, for k T >  
rnr z, the rest energy is small in comparison with the mean energy of nondegenerated 
electrons which equals about to 3kT; and, therefore, ( e e ) z  3kT/(rn~c2). The overall 
rate of energy deposition, which was used in calculations at the opaque stage of the 

collapse, is given by 

e,.a(r) = e, a,(r) + e, as(r). (56) 
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Let us consider now the effect of attenuation of the neutrino-antineutrino flux in the 
envelope surrounding the 'neutrino core'; i.e., the nature of the factors e~ and c~ 
which were included in Equation (35). At first sight, it seems that, for a reasonable 
choice of the 'neutrino core' boundary, the attenuation of the neutrino-antineutrino 
flux in the 'optically' thin envelope is insignificant. However, it is not the case. First 
of all, the criterion of the 'neutrino core' boundary position is based on the mean 
neutrino-antineutrino ' optical' depth, which is calculated with the use of the neutrino- 
thermal-conductivity coefficients, averaged properly. Just around the 'neutrino core' 
there is a layer consisting of a hot neutron-proton gas. The concentration of neutrons 
in this layer is about an order of magnitude greater than that of protons. Therefore, 
the ' optical' depth of this layer with respect to neutrinos is several times the ' optical' 
depth with respect to antineutrinos. Besides, the mean neutrino-antineutrino ' optical' 
depth in the 'neutrino core' corresponds to the averaging of the mean free paths, lv 
and l~, of neutrinos and antineutrinos over the derivatives of Fermi-Dirac distribution 
(an analogy with the Rosseland mean). However, in the case of the energy deposition 
law, we deal with the averaging of the reciprocals, l~ 1 and 171, over the Fermi-Dirac 
distribution itself (an analogy with the Planckian mean) with the photospheric values 
of temperature and neutrino chemical potential, but not with the local ones. 

Taking into account the above discussion and the fact that the cross-section of 
neutrino-antineutrino interaction with matter is proportional to the square of the 
energy, we conclude that the main contribution to the energy transport in the case of 
neutrino thermal conductivity is due to the neutrinos and antineutrinos with the 
energies of about 2kT, and in the case of the energy deposition the relevant energies 
are about 5kT. In essence, we discuss here the structure of the intermediate layer 
which separates the 'neutrino core' from the transparent envelope. On the one hand, 
the neutrino-thermal-conductivity approximation is violated in this layer but, on the 
other hand, the attenuation of the antineutrino (and especially neutrino fluxes, 
generated in 'neutrino core') cannot be neglected on careful examination. Fortunately, 
this layer proves to contain a small fraction of the total mass of a collapsing star, and 
influences but weakly the overall dynamics of the collapse. However, it may influence 
the details of the neutrino and antineutrino energy spectra radiated by a collapsing 
star. 

We restrict ourselves to a crude allowance for the attenuation of the neutrino and 
antineutrino fluxes. Let us neglect the deformation of the neutrino and antineutrino 
spectra due to the high-energy tail of the Fermi-Dirac distribution being absorbed in 
the first place. Then, we may describe the attenuation with the aid of certain c0- 
efficients % and c~ diminishing the intensity of the Fermi-Dirac distribution uniformly 
at all energies (grey-body approximation). The dependence of ~ and ~ on the 
Lagrangian mass-coordinate m is given then by 

d~v o(O) ~vd v  

d--m = -L~---~. ~ '  (57) 
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dcx~ o(o) 
. . . .  ~ ,  (58) 
dm L~c 

where ova,~176 and o,a~~176 stand for neutrino and antineutrino component of the overall 
deposition rate (56) without allowance for the factors c~v and ~ ,  correspondingly; 
L~c and L~ are the neutrino and antineutrino luminosities of the "neutrino core'. 
Equations (57) and (58) can be solved easily. For c~, for example, we find out 

m 

e~(m)=exp - |~ ' e~dm , (M~ ~<m~<3/o), (59) 

My 

where _M~ is the mass of the 'neutrino core'. 

5. Muon Neutrinos 

At Tg> 150, muon pairs and at somewhat higher temperatures pion pairs are being 
created. The decays of positive and negative muons and pions give rise to muon 
neutrinos and antineutrinos. The 'optical '  depth of a collapsing star for muon 
neutrinos and antineutrinos is smaller than for electron neutrinos and antineutrinos. 
However, the difference is not so high as Arnett (1967) claimed. According to Domo- 
gatsky (1969), the collapsing stellar core becomes opaque in respect to muon neutrinos 
and antineutrinos when 7"9 > 200. In the case of the central region of a collapsing star 
being opaque for both electron and muon neutrinos and antineutrinos, Equations (10) 
and (11) should be supplemented with another diffusion equation, like Equation (11), 
which ensues from the conservation of muon lepton charge, and with an expression for 
the muon-lepton-charge flux. Besides that, another additive term, proportional to the 
gradient of muon neutrino chemical potential, should he added in energy flux H which 
enters in Equation (10); and coefficient Az in Equation (15) should be appropriately 

modified. 
However, these modifications would highly complicate the problem. Therefore, we 

have treated muon neutrinos by an approximate method, which has been applied 
formerly to electron neutrinos by Ivanova et al. (1969) (see also Imshennik and Nadyo- 
zhin, 1974). According to this method, the volume energy losses are multiplied all over 
a star by the same factor, exp (-zuc), where z~c is the mean 'optical' depth of the 
collapsing star with regard to muon neutrinos and antineutrinos. For the rate of 
volume energy losses O, and the mean free path of muon neutrinos and antineutrinos, 
l t ,  we made use (Domogatsky, 1970) of the equations 

= 1.05 • 10" /  3'2 
e \m l • 

[ muc2] [ mnc2~] 
X exp \ - - -~-~]  + 52.7 exp g-I s-,, (60) 
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l~ -1 = 2.58 x 10 -3 1 + - -  x 
22 

 3,2 
x i rn.c2l exp \ k T  ] cm-l '  (61) 

where m. is the mass of the muon; and m~, that of the pion. The first and the second 
terms in the square brackets of Equation (60) give the contributions of muon and pion 
decays, respectively. Equation (61) takes into account the absorption of muon 
neutrinos and antineutrinos by positive and negative muons. We took the eventual 
calculating formula for e. in Equation (10) in the form 

Rv 

o exp - , (62) 

0 

where R~ is the radius of the 'neutrino core ' .  

6. Equation of State 

Consider first the equation of state for the ' neutrino core' where temperature is high 
enough (T9/> 40-50) for matter to consist of free nucleons. The total pressure and 
specific energy are the functions of the three independent variables, temperature T, 
density ~, and neutrino chemical potential ~u,: i.e., 

e = & ~ Z  -q- -~aZ4[1 -q- �88 -31- 7g(~cv)], (63) 
mp 

E = 3 k T + aT4 [1 + �88 + 7B(~'0] + Cro. (64) 
mp 

The implicit dependence of electron chemical potential, Ve, on T, ~, and ~u~ is given by 
supplementary Equations (16) and (17). The function B(x )  in Equations (63) and (64) 
is a sum of the third-order Fermi-Dirac functions and can be expressed analytically 
(Rhodes, 1950; see also Nadyozhin, 1974) in the form 

B(x )  = F3(x) + F3(-x)  15 ( 7zc4~ 
2F3(0) = 7re 4 x4 + 2:rZx2 + -i5-]" (65) 

The three terms in square brackets of Equations (63) and (64) account for the photon 
radiation, electron-positron gas, and neutrino-antineutrino gas, respectively. The 
first sums in the right-hand sides of Equations (63) and (64) represent the pressure and 
specific energy of nondegenerate nucleons. During the collapse of iron-oxygen stars of 
masses M > 2  Me, nucleon gas appears to be practically nondegenerate excluding, 
perhaps, the latest stage when a hot neutron star is formed in hydrostatic equilibrium. 
A constant Cv~=8.77 x 10 ~s erg g-1 in Equation (64)is the energy of dissociation of 
iron-group nuclei into free nucleons. It was introduced for the equation of state in the 
'neutrino core' to be fitted continuously to the equation of state in transparent 
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envelope. The thermodynamical properties of the above equation of state were briefly 
discussed by Zentsova and Nadyozhin (1975). 

Consider now the equation of state in the envelope, which is 'optically' thin in 
respect to neutrinos and antineutrinos. At the transparent and semitransparent stages 
of the collapse this equation of state was applied to all the star. It should be noted that 
the equation of state is of special importance only at the beginning of the collapse - 
i.e., at the moment of instability onset. However, soon after the loss of stability (when 
the velocity of collapsing matter approaches that of sound) the motion of nearly free- 
falling matter is only slightly affected by the special features of the equation of state. 
For massive stars, the main reason of the loss of stability is the dissociation of iron- 
group nuclei into alpha-particles and free nucleons (Fowler and Hoyle, 1964). Conse- 
quently, this process should be taken into account in full details. The equation of state, 
with allowance for dissociation of iron, has been calculated by Imshennik and 
Nadyozhin (1965). We extended the range of densities, investigated in this work, up to 
0 = 1013 g cm-3 and tabulated P and E in a rectangle on ~T-plane, determined by the 
inequalities 105 ~< 0 4 1013 g cm- 3 and t ~< Z 9 ~ 20. 
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Fig. 4. The pressure versus temperature for different values of logxo 0. 
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The tabulation steps were chosen as follows. The density step is the same in log- 
arithmic scale and equals to A loglo ~ =0.25. However, the temperature step is varied 
in order for the majority of mesh points to fall in the strip of violent dissociation of 
iron-group nuclei (6< T9 < 10). The total amount of points for tabulation in density 
and temperature are equal to  33 and 46, respectively. The resultant tables for log P 
and log E of dimensions of 33 x 46= 1518 mesh points each were disposed in a com- 
puter memory. When the specific values of T and Q get into the tabulation rectangular 
on Tp-plane, the four-point Bessel's interpolation formula (Korn and Korn, 1961) is 
applied to estimate the pressure and the specific energy by interpolation of log P and 
log E in respect to log ~ and log T. Figures 4 and 5, plotted just with the use of above- 
mentioned tables, show the dependences of P and E on Tfor a number of values of Q. 

Outside the tables the equation of state is described by the various asymptotic 
expansions involving the contributions of nondegenerated nuclei, black-body photon 
radiation, positrons, and electrons (Figure 6). The regions on T~-plane, labelled in 
Figure 6 with integers (1) to (6), are characterized by the following features: (1) for 
electron component, the perfect gas law with small corrections due to degeneracy and 
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pair creation is taken here; (2) the positrons are neglected, and for electrons an ex- 
pansion in half-integer Fermi-Dirac functions is used; (3) the well-known Chandra- 
sekhar's expansion for degenerate electron gas is used with three temperature terms 
being included; (4) in this region, an intensive creation of electron-positron pairs 
takes place and the two-term expansion for electron-positron gas is used here (Nadyo- 
zhin, t974); it should be noted that collapsing matter never passes through this region 
but it would be of importance if external low-density matter were heated up by a 
powerful shock wave; (5) the above-mentioned tables operate here; (6) the following 
equation of state for matter consisting of free nondegenerated nucleons and ultra- 
relativistic electrons and positrons is used 

p = k QT + �89 + �88 (66) 
W/p 

3 k aT 4 Cpn 
E = ~ T +  Q [1 +�88 l + C v ~ -  1 +  0' (67) 

where the function B(~v~) is determined by Equation (65). The dependence of ~,~ on T 
and Q is specified by Equation (17) and either Equation (29) or (32); Equation (29) being 
used at the initial, transparent, stage of the collapse while Equation (32) comes into 
action at the opaque stage. The last term in the right-hand side of Equation (67) takes 
into account an increase of specific energy due to the transformation of protons into 
neutrons. The constant Cp, equals to 1.2 x 10 ~8 erg g-1. 

The different forms of equation of state, presented in Figure 6, fit each other quite 
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well along the lines of demarcation. There are, nevertheless, very small gaps in P and 
E across each line of demarcation. To remove these gaps, which are undesirable in 
calculations, the buffer bands were introduced (for simplicity, they are not depicted in 
Figure 6). The values of P and E inside each buffer band are estimated with the aid of 
logarithmic interpolation between the two nearest forms of the equation of state. 

7. Neutrino Optical Depth, Neutrino Core Boundary, and 
Neutrino Photosphere 

In order to control the position of the ~ neutrino core' boundary during the calculations 
it is necessary to specify the distribution of the neutrino 'optical' depth all over the 
collapsing star. As the 'neutrino core' occupies a region in which the equations of 
neutrino thermal conductivity operate, the neutrino optical depth should be expressed 
by the mean free path, averaged in conformity with neutrino thermal conductivity law 
(an analogy with the Rosseland mean). In theory of photon radiation conductivity, 
the energy flux H is related to the mean free path I by 

= - �89 -~r U, (68) H 

where U is the bulk energy density. Let us try to make use of an analogous relation 
for neutrino thermal conductivity. We meet, however, with a difficulty resulting from 
the fact that the energy flux in the theory for the thermal conductivity of neutrinos is 
affected by gradients both of temperature and of neutrino chemical potential. 

The calculations of the collapse show that, in the external layers of the 'neutrino 
core', the chemical neutrino potential is small enough and, therefore, the lepton charge 
flux F is small too; i.e., FkT<<H. In the case of F=0,  Equation (14) yields 

~'~ A1 ~T 
. . . . .  (69) ~m T Om 

Introducing U and H from Equations (20) and (13) into Equation (68) and eliminating 
~G/Om with the aid of Equation (69), we get 

TL "2 ( 0 -  1] 2 
l - m, (1 + O) z (mece] z 3 \0 + II 

oes [-f-r-! 2 [0 - 1 ) 8zc415 (70) 
/ 

In Equation (70), the additional factor S is included for an increase of the mean free 
path in matter, consisting of iron-group nuclei, to be properly taken into account. 
The dependence of the ' optical' neutrino depth on Lagrangian mass-coordinate m is 
given by 

M o  

r~(m) = f dm' 
4~rr2Ql (71) 

m 
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The function z~(rn) was estimated at each time-step of numerical calculations; outside 
the 'neutrino core', ~ and 0 being computed with the aid of Equations (16) and (32). 

The automatic advance of the '  neutrino core' boundary was being carried out in the 
course of calculations by the following method. Let ~1 and z2 be some fixed numbers 
satisfying to inequalities T2 < zl < 1. When, at a certain time-step of calculations, the 
value of z~(M~) estimated from Equation (71) with m=M~ becomes greater than ~1 
(i.e., zv(M~)>v0, all layers which are located just above the 'neutrino core' and 
satisfying the inequality z,(rn)> zz, are immediately adjoined to the 'neutrino core', 
with a resulting increase of M~. Thus the position of the 'neutrino core' boundary 
corresponds to the inequality zz < %(M~)< vl. A number of special trial calculations 
have shown that the most favourable values of zx and vz are r ~ 0 . 0 3  and zz~0.01. 
It is the kinetic boundary conditions (19) that make the solution of neutrino thermal 
conductivity equations be correct qualitatively in the outer region of the 'neutrino 
core' in spite of z~(M~)<< 1. 

The concept of neutrino photosphere is more complex than the usual notion of 
photon photosphere. This is due to the fact that, in the case of neutrino radiation, there 
are the fluxes of both energy and lepton charge and, besides the temperature gradient, 
another gradient of chemical potential bears on the problem. We restrict ourselves 
here with a crude approximation only. According to the boundary conditions (19), 
the fluxes of energy and lepton charge at the boundary of the ' neutrino core' are twice 
as large as those following from the Stefan's law. The energy density Uincreases rapidly 
with depth and, at a certain level the energy flux H determined by Equation (13), attains 
just Stefan's value of �88 It is this level that we assume to represent the neutrino 
photosphere. It should be emphasized that the flux F of lepton charge is not generally 
bound to be equal to �88 at this level. The characteristics of the neutrino photosphere 
Rvp, T,p, and ~t,p were estimated by a linear interpolation of r-, T-, and ~-distributions 
between those two mesh points where the difference H-�88 changes its sign. 

8. An Outline of a Computational Scheme 

Equations which we used at various stages of the collapse are all listed in Table II. 
A star was divided into 151 mass shells. The mass-step Am is varied with the number 
of mesh point in order for the central region of the collapsing star, where the steep 
gradients of physical quantities occur, to be treated in more detail. The distribution of 
Am over the mesh point number is presented in Table III. According to Table III, in 
the internal half of the star's mass Mo the relative mass-step 3m/Mo is of the order of 
5 • 10 -3, and in the outer region it is about twice as large. 

Shock waves were treated with the method of an artificial viscosity Q (Richtmyer, 
1957). The difference equations were written out in terms of integer and half-integer 
mesh points (Richtmyer, 1957). The variables r, u, m, and fluxes H, and Fare  estimated 
at integral mesh points, while T, Q, P, E, ev, X16,816, tvd, 0, ~/~, ~/e, and Q, are related 
to half-integral mesh points. The difference equations were taken in explicit form, 
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TABLE II 

The equations in question 

The stage of 
the collapse 

The total 
neutrino 
optical depth 
of the star 
�9 ~, Equations 
(70), (71) 

The dif- The boundary The additional 
ferential conditions physical 
equations relations 

Remarks 

Transparent "r~,< 0.001 (1), (2), (3), (7) 
(4), (5) 

(23), (25), (27), 
(28), (29), (17). 
For P and E, 
Figures 3, 4, 5 
(Section 6) and 
Equations (66), 
(67) are used. 

Equation (5) and 
e16 in Equations 
(4) and (4)' are 
used for 
m > Mve only. 

Semi- 
transparent 

Opaque 

0.001 < r ~ < l  

T~>I 

(1),(2), (3), (7) 
(4)', (5) 

The relations are 
all the same as 
for transparent 
stage with 
Equation (46) 
being added for 
accounting of 
e~a 

Inside of the neutrino core, for m ~< My. 

(1), (2), (3), For m = 0  (15), (16), (17), The boundary of 
(10), (11), conditions (18), (60), (61), the neutrino 
(13), (14) (19)' and the (62), (63), (64), core, My, is a 

first one from (65) function of time 
(7). For in accordance 
m = My con- with Section 7. 
ditions (19), 
(20), (21) 

Outside the neutrino core within the envelope, for m > M~. 

(1), (2), (3), For m = M o ,  
(4), (5) the second 

condition 
from (7) 

(17), (23), (25), Equation (5) and 
(27), from (33) e16 in (4)' are 
to (37), (49), used for m > Mve. 
(50), (54), (55), For neutrino 
(56), (59). For photosphere see 
P and E Figures Section 7 
3, 4, 5 and  
Equations (66), 
(67) 
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TABLE III 

The distribution of mass intervals adopted in calculations (the arrows 
indicate a smooth variation of the values) 

The number The relative mass step The current relative mass 
of mesh point Am/Mo m/Mo 

1 2.50 x 10 -4 2.50 x 10 -4 
2 2.00 x 10 -s 2.25 x 10 -a 
3-93 4.99 x 10 -3 7.24 x 10 -3 -+ 0.4763 

99-103 5.99 x 10 -3 --~ 9.98 x 10 -3 0.4823 -+ 0.5162 
104-141 1.198 x 10 -z 0.5282 -+ 0.9713 
142-151 9.98 x 10 -3 ~ 9.98 x 10 -6 0.9813 -+ 1.0000 

excluding only the equations o f  energy and lepton charge diffusion in 'neut r ino  core '  

(see below). We do no t  have the space to write down the full system of  difference equa- 

tions and, therefore, give only a short account  of  the main features o f  numerical 

procedure.  Let  all the quantities be specified at a moment  t,,. I t  is required now to 

estimate the quantities at the next momen t  t,+ ~ = t, + Lit,. In  the first place, for  all 

space mesh points we evaluate new velocities U "+1 f rom Equat ion (2) (from its 

difference representative, rather), then f rom Equat ion (1) we obtain radii r "+~, and 

Equat ion (3) gives densities ~"+~ at the momen t  t,+~. I t  remains temperature and 

neutrino chemical potential in the 'neut r ino core '  at the opaque stage o f  the collapse 

to be determined. The difference approximat ion of  Equat ion (4)' is given by 

l( pn 
At .  + -~ .  + + Q" = 

e.+l  + e. + ~a + e~6. (72) = . o n + l / 2  

2 

The subscripts, denoting mesh point  number,  are omitted in Equat ion (72) for the sake 

o f  simplicity. The rate e~6 of  energy generation due to oxygen burning is different f rom 

zero for m > M w  only;  the rate o f  energy deposition ~'+ ~/z is absent at the transparent  

stage of  the collapse. At  the semitransparent stage e~"~- ~/2 was estimated by the numerical 

evaluation o f  integral (46) with the use o f  new distributions r "+ 1, ~.+1 and preceding 

distribution T". A t  the opaque  stage, however, the rate o f  energy deposit ion was taken 

in time-centred fo rm (just as ev did) 

~ n ~ l - 1 / 2  ~ l { o n + l  n ~,~,a + e~,d). (73) 

In  the difference equations, representatives o f  Equations (10) and (11) for  the 

' neutrino core ' ,  coefficients before the derivatives o f  T and ~t~ with respect to m and t 
were taken at preceding momen t  t , ,  while the derivatives themselves were considered 

at the current momen t  t ,+ l .  Thus, the implicit difference scheme was obtained in 
which the values o f  T and ~uv at every mesh point  were calculated with the aid o f  the 



THE COLLAPSE OF IRON-OXYGEN STARS 425 

me thod  o f  successive exclusion ( G o d u n o v  and  Ryabenzhki i ,  1964). In  this method,  the 

values o f  vector  (T, ~/v) a t  all successive pairs  o f  mesh points  are connected  by recurrent  

l inear  re la t ions;  the coefficients o f  these relat ions being matr ices  of  the second order.  
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