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Abstract. The radiation of ultrarelativistic particles is examined in a quasi-uniform magnetic field super- 
imposed by a wide spectrum of magnetic, electric, and electron density inhomogeneities created in a 
turbulent plasma. The radiation spectrum from a particle of a given energy is shown to acquire a 
high-frequency power-law tail with the same spectral index as the index v of small-scale turbulence. For a 
power-law spectrum of ultrarelativistic electrons, dN(g)/d ~ ~ S - r with a cut-off at some energy gm~x, the 
radiation spectrum consists of a few power-law ranges; the radiation intensity may suffer jumps at 
frequencies which separate these ranges. 

In the high-frequency range the spectral index v is determined by small-scale magnetic and electric fields. 
At intermediate frequencies the main contribution comes from the synchrotron radiation in a large-scale 
field; the radiation spectrum has an index ~ = (4 - 1)/2. The same index may be produced by large-scale 
Langmuir waves. At lower frequencies the radiation spectrum increases owing to the transition radiation 
caused by electron density fluctuations; in this case the spectral index is equal to ~ + 1 - v. 

The possibility of diagnostics of high-frequency cosmic plasma turbulence from radiation of high-energy 
particles is discussed. It is shown that the proposed theory may explain some features in the spectra of 
several cosmic objects. 

1. Introduction 

The synchrotron radiation from ultrarelativistic electrons plays an important  role in 

experiments with laboratory plasma (see, e.g., Bekefi, 1966) and also as a source of  

cosmic radioemission (Ginzburg and Syrovatskii, 1964). In the presence of  a plasma 

turbulence an electron simultaneously interact with a more or less uniform regular 

magnetic field and random electric and magnetic fields of  various scales produced by 

turbulent plasma pulsations. The radiation is also affected by plasma electrons and by 

inhomogeneities of  electron number  density. 

The emission of  electromagnetic waves due to the interaction o f  highly energetic 

particles with different modes of  plasma turbulence has already been examined by a 

number  of  authors (see, e.g., Kaplan and Tsytovich, 1969; Bel 'kov et  al. ,  1980; Ginz- 

burg and Tsytovich, 1984, and references quoted therein). However,  to our knowledge, 

these authors do not take into account  a joint effect of  regular magnetic field and 

turbulent pulsations. The only exception is the work of  Tamoykin (1978) who analysed 

the transition radiation from ultrarelativistic particles due to electron-number-density 

inhomogeneities in a uniform magnetic field. Nevertheless, for realistic conditions the 

radiation spectra are usually formed under the joint action of  a large-scale magnetic field 
and small-scale turbulent fields. A study of  spectral and polarization properties of  the 

radiation is important  not only for clarifying the effect of  the turbulence on the 

synchrotron emission but also for solving an inverse problem: how to investigate the 

properties of  the turbulence using observational data on highly energetic particles. This 
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second aspect is of special importance in astrophysics since nowadays direct methods 
to examine the turbulence in highly ionized hot regions are still absent. 

In this paper we consider the formation of the radiation from an ensemble of 
ultrarelativistic particles in a magnetic field in the presence of turbulent pulsation. In 
Section 2 the radiation intensity is expressed through the distribution function of 
radiating particles, and the kinetic equation for the distribution function is derived. The 
latter equation is accurate enough to describe the behaviour of an ultrarelativistic 
particle over time-scales important for the problem under discussion. In Section 3 we 
obtain a solution to the kinetic equation and find the non-stationary distribution 
function of the radiating particle with account for a large-scale magnetic field, small-scale 
electric, and magnetic fields, and the density effect. 

The emission spectrum produced by a separate ultrarelativistic particle is analysed 
in detail in Section 4. It is shown that for a small-scale turbulence with a minimum scale 
lmi n ,~ mc2/eB (B being the large-scale magnetic field) the emission spectrum extends 
into the frequency range co >> coc = coBY 2, up to comax ~ (C/Imin)~ '2, where cob --- eB/mc, 
~, = 8/mc 2. In this range the spectrum is power-law, Io~ oc co- v, where v is the spectral 
index of the turbulence. At co < cor the spectrum is determined by a joint effect of regular 
and random fields, its shape being expressed via some integrals over single variable 
which depend on several parameters and are simplified in some limiting cases. We 
evaluate the spectrum numerically for various relations between the regular and random 
field components. 

If co ~< copy, the transition radiation due to plasma inhomogeneities becomes 
important. The role of the transition radiation is analysed in Section 5. The main effect 
is produced by the radiation concerned with fluctuations of electron number density, 
provided cob "~ cop (which is often the case in astrophysics). Here cop is plasma 
frequency. That is why the transition radiation in the presence of developed MHD 
turbulence will be determined mainly by magneto-acoustic waves and shock fronts but 
not by Alfvtn waves. The spectrum of the transition radiation in a low-frequency range 
is power-law, I~o oc coy-2. 

In Section 6 we study the formation of the radiation spectra in radiosources with 
account for a large-scale magnetic field, smaU-scale random fields and the transition 
emission. If the energy distribution of radiating particles is power-law (with a cut-off at 
some energy O~max), the emission spectrum consists of several power-law parts whose 
slopes, boundaries and relative intensities may provide information on the turbulence 
in a radiating object. 

In Section 7 we propose an interpretation of some available observational data on 
the ground of the developed theory with allowance for the radiation polarization. 
Section 8 presents a summary and main conclusions. 

2. Radiation Intensity from a Relativistic Particle in Random Fields 

The intensity of the particle emission in a magnetic field with random inhomogeneities 
in the presence of a turbulent plasma may be evaluated by the method developed by 
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Migdal (1954) to study the bremsstrahlung from ultrarelativistic particles in a medium. 

A Fourier component  of  the radiation field generated by one particle is given by 

+ 0 0  

ie 
pl 

B.  ~o = e ~ | [k, v(t)] e i t~  d t ,  (1) 
, 2rcc2R I t /  

- - 0 0  

where e, r(t), and v(t) are the particle charge, radius-vector, and velocity, respectively; 
n is a unit vector along a line of sight, and k is the wave-vector of  the radiating 
electromagnetic wave in a medium. Hereafter  we adopt  the condition 

cop > cob (2) 

( %  and o~ being the electron plasma- and electron-cyclotron frequencies, respectively), 
and will be interested in radiation frequencies co >> cop. Under  these conditions, one can 
neglect the plasma gyrotropy and use a scalar dielectric function e(co) = 1 - (cop/co) 2, 
so that k = (co/c) x /e  n. If  in Equation (1) we keep the current produced by the emitting 
particle itself, we neglect the effects of  the transition emission and transition scattering 
due to plasma inhomogeneities. These effects become important  at sufficiently low 
frequencies co < % y, and will be analysed in Sections 5-7.  

An energy g,. ~, radiated by the particle in a direction of  n at a frequency co is found 
as a flux of  Pojnting vector within a unit solid angle. With the aid of  (1) it may be written 
as  

T oo e2 2 f f  
~n, co - 2 ~ 2 C  3 r~Re0o dt dzeiO.. (e-ik[r(t+ . ) -  r(t)] [n ,  v( t  + z) ]  • 

- T  0 

X [n, v(t)])  . (3) 

Brackets ( . .  �9 ) denote averaging over possible particle trajectories which are random 
owing to the presence of turbulent fields. The averaging may be expressed as 

--ikr(t+ x)+ ikr(t) [n, v(t + Q] [n, v(t)])  = f d3v d3v ' d3r d3r ' x ( e  

• e - i k ( r ' - r )  [n, v'] [n, v]F(r, v, t)W(r, v; r', v', Q,  (4) 

where W is the probability that a particle in a state (r, v) at a moment  t will appear in 
a state (r ' ,  v') at a moment  t + z. If  the random field is statistically uniform and 
stationary, W depends only on the differences r '  - r and t' - t = z but not on r and 
t. Also note that W obeys the initial condition 

W(r, v ; r ' ,  v ' ;  0) = b(r - r ' )  6(v - v ' ) .  (5) 

Furthermore,  in Equation (4) F(r ,  v, t) is the familiar particle distribution function. Let 
us adopt  the initial condition 

F(r ,  v, 0) = b(r - r~) b(v - Vo). (6) 
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Let the particle move in the uniform magnetic field B o superimposed by random 
magnetic and electric fields, B(r, t) and E(r, t), defined by corresponding correlation 
tensors. The probability W may be found from the kinetic equation averaged over 
fluctuations of random fields, The averaging procedure is well-known from the theory 
of particle scattering by random electromagnetic fields (Toptygin, 1985). However, in 
the case under discussion the kinetic equation should be derived with better accuracy 
because the conditional probability W must describe the particle motion over time-scales 
of the order of the time required to emit photons of given wavelengths. This typical time 
z depends on radiation frequency co and may appear to be shorter than the correlation 
time of small-scale fields. As for the standard scattering problems, they commonly 
require time-scales much larger than the correlation times. 

For correct description of the particle emission at co >> cop, one needs to keep the 
time-integral in the collisional term of the kinetic equation (Toptygin, 1985) 

~W OW OW 
- -  + v - -  - ( ~ ( 9 )  W + e E  - 

& Or ~ p  

= dz (9~ T~a(Ar(Q, Q(ga + 

0 

+ e 2  0 .  K~/~(kr(z), z) c3 e2c ( ~ S 63 

op--  ape \ + 

a S = ~ ( 9 ~  W ( r - A r ( z ) , p - A p ( z ) , t - z ) .  (7) + 
/ )  

In this case 

(9= v, , 

T = # ( r ,  t )  = / B = ' l r  t ~ ) B ~ ' ( r 2 ,  t 2 ) )  r = r 1 - r 2 , ", = ~ 1 ,  , ( 8 )  

K~a(r, t) = / E =tt" =t \ = ~ . ' l ,  t l ) E 3 ( r 2 ,  t 2 ) )  , t = t I - t 2 ,  

S~#(r, t) = (E~t(rl, tl)BSBt(r2, t2) ) 

are the correlation tensors of small-scale components of random fields. Under small- 
scale we mean those fields which contain harmonics with wave-numbers k > k . ,  where 
the critical value k .  obeys the inequality 

R ,> k .  1 >> R/7,  (9) 

where R is one of two Larmor radii: either R • = cpz/e  I Bo + B I which corresponds 
to a particle moving with given pitch-angle in a large-scale field of definite direction; or 
R=, = cp/e ~ / ~ )  ) that is a typical gyroradius in random fields. In this case/~ denotes 
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the large-scale component of random fields which contain harmonics k <  k . ;  
p• = p sin~7 is the transverse particle momentum (with respect to the large-scale field 
B o + B). If sin 0 I Bo + B [ > ( V / ~ ) )  in Equation (9), one should set R = R • and in 
opposite case one should set R = R~. 

Equation (7) is simplified at B~t >> E,t (e.g., for MHD turbulence) or at E~t >> B~, 
(Langmuir turbulence). Under these conditions one may keep only one term, containing 
either T ~  or K ~ ,  on the right-hand side of Equation (7). For an MHD turbulence, the 
phase velocities of waves are much smaller than the particle velocities. Hence, one can 
treat magnetic inhomogeneities as static ones, and neglect the second argument of T~p: 

~) = f T~(k)e  ~1'~(~) d3k T~n(Ar(z), 

- �89 <B~,> {@(Ar) ban + tis,(Ar)Ar~art~lAr2}. (10) 

The latter equality corresponds to the case of the static isotropic turbulence, and @i is 
expressed via ~ (see Toptygin, 1985). 

Furthermore, variation of the particle velocity and momentum along the correlation 
length of random field is small, and 

Ap(z) = 0, Ar(r) = vz. (11) 

Finally, since vn (9~ -- 0, for MHD turbulence Equation (7) may be written as 

3W OW 
- - + * r  - - - -  

Ot Or 
0 

(12) 

For a Langmuir turbulence, the phase velocities of sufficiently large-scale harmonics 
may exceed the velocity of light: namely, Vlph ~ cop/k > c at l > 2no~cop. This does not 
allow one to omit the second argument in the correlator K~n. In the isotropic case this 
correlator takes the form 

K~<n(v~, ~) = f [EIg(k~k~/k2) e i ( k v -  ~n,)~ d 3 k  

{0(w, ~) ~ + 0i@~, ~)~B/~}. (13) 

The corre]ator K ~  is real, if co_ k = - oh,; in the case of a Langmuir turbulence without 

account for thermal corrections one has cou = cop = (4 7zNe2/m~) I/2. The kinetic equation 
may be simplified because radiating particles are ultra-relativistic. In this case the 
operator (~/@~)K~n(O/Opz) may be replaced by (1/3p 2) <E~} (920(vz, r). The relative 
error introduced by this replacement does not exceed 7-2, that is the ratio of the 
'transverse' mass of the relativistic particle to its 'longitudinal' mass. Finally, we obtain 
that Equation (12) remains valid for a Langmuir turbulence, if one replaces 
<B~> E 2 -+ < ,~>, ~(~)-+ <~(w, ~). 

~(OW= 1 (B~} dz 4s(w)W(r - vz, p, t - z). 
3 
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3. Solution of the Kinetic Equation 

To find the conditional probability W from Equation (12) let us carry out Fourier 
transformations with respect to coordinates and time. In this case, according to (3) and 
(4), frequency co and wave-vector k correspond to a radiating wave 

-i(co - kv)Wk, o~ - I I  (g Wk. ,o = (92 q( co, O) Wk, o~ , (14) 

where 

1 
q(co, O) = 3 ( B ~ t )  O(vz)  ei(~~ d z .  (15) 

o 

The exponent in the latter integral depends on an angle 0 between k and v. Hence, 
we have the second-order differential Equation (14) whose coefficients are complicated 
functions of independent variable 0. This equation cannot be solved analytically. To 
avoid this difficulty we approximate q(co, 0) by an expression which is independent of 
0. Let us make use of the fact that relativistic particles emit radiation into a narrow cone 
with a half-cone angle 0 o ~ 7-1 and replace 0 2 by some quantity (a - 1)7 -2, with 
a - 1 ~ 1. The value of a may be determined, for instance, from the requirement that 
at high frequencies, where the perturbation expansion (the method of equivalent 
photons, see Appendix) is valid, the present method yields the same result as the 
perturbation expansion. For power-law spectr a of random fields, this gives 

a = [ 4 ( v +  2)] '/v. 

Then, at small 0 we have 

co 0 2 co~/co 2] co co - kv = -- [~,-2 + + = (a~ -2 + coT/co 2) (16) 
2 2 ' 

where the dielectric function e(co) = 1 - cop2/C0: is used. 
Let q(co) denote q(co, 0) at 0=  x / ( a -  1)~ -1. We consider now instead of 

Equation (14), different equations 

~Wk(~) 
3~ 

- -  + (ikv - ~ (9)Wk(Z) = q(co)(92 W k ( z ) .  (17) 

The effective scattering rate q(co) is a complex function of co. The quantity Wk. ~o to be 
found is the Fourier transform of Wk(z) with respect to z, taken at a given frequency co. 

Let us simplify Equation (17) by means of several substitutions. The substitution 

Wk(z) = exp(~'l (9 z)fk(O, z) (18) 

reduces (17) to the equation 

~f_ 
w k +  ikv(z)fk= q(co)O2fk,  (19) 
~z 
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where 

v(z) = e x p ( -  ~ (_gz)v e x p ( ~  (.oz) = vii + v .  cosf~z  + [b, v .  ] sinf~z (20) 

is the particle velocity in a uniform magnetic field; b is a unit vector  along the large-scale 
field B o + l]. Substituting 

f k ( O ' ~ ) = v - 2 b ( v - v ~  i ~ ( 1 - c ~  (21) 

and expanding the coefficients o f  the equation up to second-order  terms over small 
angles 

0 = v_ _ n ( 1  - 0 2 / 2 ) ,  0 o  = v ~  - n ( 1  - 0 g / 2 ) ,  l ' ~ z  ( 2 2 )  
v Vo 

we obtain the final equation for u(0 o, 0, z), 

Ou io9 
- -  - - -  (0 - In, ~ ] z ) 2 u  = q(co)Aou. (23) 
0z 2 

In this case A o = ~32/00ff + O2/O0f is the Laplace operator  with respect  to 0, 0 o is an 
initial-angle 0. According to (18), (21), and (5), 

U(0o, 0, 0) = b(0 o - 0) .  (24) 

A solution to Equation (23) may  be sought in the form 

u = exp {e(0 - [n, g~]z) 2 +/~00o + r 2 + b0[n, l'~] + e0o[n, ~ ]  + 7}, (25) 

where e,/~, r ~, e, and ? are functions of  z. Substituting this solution into (23) and 
separating coefficients at different powers  of  0 and 0o, we come to the set of  ordinary 
nonlinear equations, 

- �89 = 4q~ z ,  ~ -  2~ = 4qo~b, 

]} = 4q~/~, ~ = - 4q~flr  + 2qf l t ,  (26) 

= q/~Z, ~ = q(4~ + ~ 2 6 2 )  _ 2~f~2 ~(1 + 2qb) .  

In this case f~2 = [n, ~2] 2 is the squared componen t  of  the gyrofrequency transverse 

to line-of-sight. These equations may  be solved successively, beginning from the first 

one. The integration constants  are chosen in such a way to satisfy the initial 
condition (24). Then we have 

c~(z) = - x co thz~ ,  fl(z) = 2x  s inh -  1 z z ,  ~(~) = - x c o t h z z ,  

b(7:) = - 1/2q,  e(z) = - 2 x z  s i nh -  1z'L -{- 1/2q, (27) 

7(z) = - l n ( r c  sinhz~/x) + f~2 z/4q , 
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where 

x = (1 - i ) ( c o / 1 6 q )  1/2 , z = (1 - i ) ( c o q )  '/2 . (28) 

Use of Equations (18), (21) and evaluation of Wk(O,  ~) from U(0o, 0, z) (in this case 
the action of the operator exp (s (9 ~) reduces to the replacement 0 --* 0 + [u, f~] z), we 
obtain the distribution function in the form 

Wk(0, z ) = v  -2 a ( v - V o ) e x p [ - i  CO Vc (1-09~/2co2) , ]  W(0o, 0, ~), 

where 

X 
w(00,  0, ~) - 

rt sinh z 
exp { - x2(02 + 002) co thz ,  + 2x000 sinh- lz r  - 

1 (0_0o) [n ,~ ]_  1 } - 2 q  ~qq f~L z �9 (29) 

In particular, this distribution function describes the particle motion in a uniform 
magnetic field. To analyse such a case one should switch off the effect of magnetic 
inhomogeneities ( q ~ 0 ) .  For this to be done one should expand coth(zz) and 
sinh - 1 (zr) in Equation (29) into the Taylor series, keeping terms ~ (z~). 

4. The Spectrum of Intrinsic Radiation of Ultrarelativistic Particles 

Since we are interested in statistically uniform and stationary fields, the radiation energy 
(which may generally be calculated from Equation (3)) appears to be proportional to 
time. To find an energy radiated per unit time (i.e., the radiation intensity 1,. o,) one must 
divide (3) by the total radiation time 2 T. This is equivalent to omitting the integration 
over dt. Let us integrate the radiation intensity over directions %. Finally, making use 
of (29), we come to the expression 

Io, = Re d ~ exp 1 + d 2 0 d z 0' (00') w (0, 0', ~) 
2rcec L ~  co = . / J  ' 

o (30) 

where the dependence on an angle between n and the magnetic field is still remained. 
Note that S F(r, v, t)d3r dv d20o = 1 due to the normalization of the distribution 
function. 

While we integrate the right-hand side of Equation (30), w may be conveniently 
replaced by w(0, 0', ~) - w~ 0', ~), where 

w ~  0 ' ,  "c) = b(O - 0 ' )  e x p ( i o o O 2 z / 2 ) .  (31) 

is the free-particle distribution function which does not contribute into the radiation. 
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After this replacement the result of integration can be represented in the form 

f d20'(O0 ') [w(O, 0', z) - w~ 0', z)] 

2i de[exp{_O2xtanhze 1 
(0 2q 

O[n, f~] (1 - cosh-  azz) - 

f l~_( tanhzz]~ exp(i(002z/2)] V0[n,_~] sinhze e -- -- + 
4q 4qx }J k 4qx cosh2zz 

i f ~  zl { O[n, f~] 
+ - -  tanh2z exp -02xtanhze ( 1 - c o s h - l z r ) -  

2q(0 2q 

t a n h z z ~  
(e . (32) 

4q ~qx -}) 

Integration of the first term over �9 by parts, with omitting rapidly oscillating exponents, 
and subsequent integration over 0 in accordance with (30) enable us to represent I~o as 
the integral over single variable e, 

e2(02 ( 09272~ ~ 
I~o- 1+  P I R e  dzexp 

2 roe y2 (02 j 
o 

272 0 2 , ] J  

x [cothzex f 
- -  exp { (coth z z - 

(8q2x 
shah-1 ze)  -- ~q ) -[- 

+ - -  e2co 2 iO~_ f Re - -  de 
4 rcc q (0x 

0 

1 - coshzz 

sinh z z ( 2 7 2  0) 2 ,] 

e lze)], 
- - -  + ( c o t h  z z - s i n h  - . (33) 

4q 8q2x J 
To separate real and imaginary parts of(33) one should take into account that x and 

z are expressed through the complex parameter 

q((0) = q'((0) + iq"((0) : [q((0)l ei~ (34) 

Let us perform integration over the complex variable t = zz. The integration contour in 
the t-plane represents a ray inclined at an angle (0/2) - (re/4) to the axis t' = Ret. The 
integrand has no peculiarities in the sector between this ray and the t'-axis. Hence, we 
may turn the integration contour to the f-axis. As a result, we obtain the spectral 
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radiation power in the form 

lo s 8ee q ' ( 0)~ ) ~z(1 + c'~ -1 
- 3~rc 0)2 / ~l(sl ,s2,  r )+  

+ - -  1 + qb2(sl, s2, r) 
47ZC72 0) 2 ] ' 

where ~ and qb 2 are given by the integrals 

(35) 

6.4f { ~1-  Im d t e x p ( - 2 s t )  cotht 
$1S 2 

O 

• 

ex.E sin  1' 1 

q52 : 2r Isl 2 Re S dt 

o 

cosht - 1 

sinh t 

(36) 

x e x p l - 2 s t - 2 r s 3 ( c o t h t - s i n h - l t - ~ ) - i O l ,  

depending on dimensionless parameters sl, s2, r, 

- 

s = s, - isz = exp( i7~/4 - i~/2) ( ~  y /Z  ( l + 
4 w/~ 7z \ lq(0))[ /  k, co 2 / '  

r = 3 2 7 6  1+ 0)2 / 

The functions qb 1 and (1) 2 generalize the function 
(37) 

�9 (s) = 24s 2 ~ exp( - 2st) sin(2st) (cotht - t -  1) d t ,  

o 

introduced by Migdal (1954) when analysing the bremsstrahlung in a medium, to the 
case of regular magnetic field and random turbulent fields. On the other hand, these 
functions generalize the function 

y g5/3(r / )  dr/ , 
0)c 

co/c% 
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which describes the radiation in a uniform magnetic field to the case when small-scale 
electric and magnetic fluctuations are present. 

The parameter s depends on the particle scattering rate q(co). Let us calculate q(co) 
for the correlator of  the form 

2(3- v)/2 
O(w) - (co.  z)(~- I)/2 K(~_ 1)/2(co* "C). (38) 

r ( v / 2  - �89 

This choice of  the correlator corresponds to a power-law dependence of  the energy- 
density of  the small-scale fields on wave-number,  P(k)ock -~ at k>>k. = co./c 
(Toptygin, 1985). According (15) and (16), 

7 
q(co) = ~ (BE) (ec/g) 2 | O(vz)e i~'~ dz = 

fll 
0 

x/~ r (q2)  : v-1 --  COSt CO* Jr" 

. 2 ~v/2 3r'(v/2 - �89 ~,2(~: + ~ , . )  

+ i  37zco~. F , ; .~- , 2 co.  
(39) 

where co2 = e 2 (BE) m - 2C -- 2 is the squared non-relativistic frequency of  the radiating 
particle in a random field; 0~ is given by (16), i.e., e = (co/2)(a7 - a  + co2/co 2) and 

F(a, b, c; z) is a hypergeometric function. Its value is very sensitive to the ratio 

+ 0)2 . , ]  ' 

which reaches minimum, flmi. = % a 1/2/o9.7, at co = cop 7a - 1/2. Ifflmin >> 1, which takes 
place at L .  >> 2rcRa- 1~:(con~cop) and is compatible with (9) in accordance with (2), the 
Fourier transform of  (38) is noticeably simplified at all frequencies, 

q(co) _ x / ~  2Vr(v/2) (,/)st(/).2 v--1 q- i 2CO~ 

3F(v/2 - 1) ( a 7 - 2  + c02/co2)vcovy: 3~2co(a7_2 + COp2/co2) 

(40) 
In this case 1 < v < 2. At v = 2 we have 

q(co) = 4coSt co* + i (41) 
372c02(a7 -2  + c02/co:) 2 3y2c0(a7 -2  + cop2/co 2) 

As seen from these expressions, an order-of-magnitude estimate is 

q( lvl 
- -  "~" - -  ( a ~ -  2 "t- ( J ) 2 / ( D 2 ) v -  l ,~  f l v - 1 )  l ; ( 4 2 )  

q' \ c o . /  



224 I.N. TOPTYGIN AND G. D. FLEISHMAN 

and q ' /q"  ~ 0 with the growth of  co. Nevertheless, the main contribution into the 
radiation intensity comes from q'(oo), which determines Io, at co >> copy and co r copy. 

The integrals (36) are simplified in the following limiting cases : 
(i) lsl ~ 1, 4rlsl  3 @ 1; 

(ii) 

6[sl 4 2 - r(3s  2 - s 2)  
0 1 , ~ - -  

S1 s 2 ( 2  - r se )  = + s ~ ( 2  + rs~)  ~ + 3 a e s 2 1 s l  2 r = ' 

02 ~ 2rs2 [2s 1 + r(3s l  s2 - s3)] cos0  + [2s 2 - r(3s2s2  - s 3)  sin0 

s~(2 - rs3) 2 + s~(2 + rs~) z + 3s21s~ Is[ 2 r 2 

Isl < 1, 4rlsl  3 >> 1; or Isl "> 1, r>> 1; 

(43) 

2Is] 4 s2(3s 2 - s 2  2) 3~ l s l  4 
t~ 1 ~ -- - -  arctg 

S1S 2 S1(3S2 2 -- S12) 2S1S 2 

24/3 F(2/3) r p s 12 
�9 2 ~ X 

31/3 [s2(3s22 - s12) 2 --I- s2 (3s  2 - s22)2] x/3 

(44) 

• cos arctg s l (  3s2 _ s2 j . 

(iii) Isl >> 1, 4r] s13> 1, but r 4 .  1((r/32)1/24. 1); 

�9 1 ..~ 1 - 2-5/4rc l /2(3r  1/4 Is l4 /s ls2)  e x p ( -  27/23 - t r - l / z ) ,  
(45) 

�9 2 ..~ 23/4 rcl/2r 1/4 exp( - 27/23 - x r -  1/2). 

Let us analyze the asymptotic dependences of the radiation intensity on frequency. 
First of  all, we show that in the absence of  random fields and plasma (cop = 0) the above 
equations yield the well-known expressions (Ginzburg and Syrovatskii, 1964) for the 
spectral density of  the synchrotron radiation in vacuum. The neglect of  random fields 

corresponds to IsF >> 1. At low frequencies, co ~ f~• 73 and co ~ co.  72, and at cop = 0, 
according to (37) and (39), we have r ,> 1 and q'(co) >> q"(co), i.e., s 1 ~ %. In this case, 
Equations (44) reduce to 

�9 1 ~ - 8rcs 2 ' �9 2 ~ 21/3 31/6F(2/3)r  V3 " 

Making use of  (46), (37), and (35), we find that 

31/6 F(2/3) e 2 
I o  ) ~ ( ~ •  ~)3)2/3 (,O1/3. (47) 

n c7 2 

At high frequencies, co > ~ •  73, we have r ~ 1, although, again, Is] > 1. From (45) we 
get 

e 2 
I~ ~ (~"~ • 73(_D) 1/2 exp( - 2 co/3f~ • 73). (48) 

2 v / n c 7  z 
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Equations (47) and (48) coincide with the familiar equation (Ginzburg and Syrovatskii, 
1964) of the synchrotron radiation in a uniform magnetic field in the absence of a 
plasma. 

Now let us consider a more general case when a particle is affected by both, regular 
(large-scale) and random (small-scale) fields. 

1. High frequencies co >> ~ •  ?,3. In this case we obtain 

2 ~+ 1F(V/2) e 2 
--  co;,~ ( c o . 7 )  co io , ~  2 2 2 ~-1 -~ (49) 

31tl/2(v + 2)F(v/2 - �89 c 

This expression is valid up to co = (/)max = Cy2/lrnin, l rn in  being the minimal turbulence 
scale, while at co > comax the spectrum has a cut-off. If  the turbulence spectrum is/not 
power-law, the radiation spectrum at co < co~ax follows the shape of the turbulence 
spectrum, 

8e2q'(co) 72 (50) lo,~ 
3 nc 

where q'(co) is the scattering rate proportional to the cosine-amplitude of the correlation 
function of random fields. In the absence of random inhomogeneities the radiation 
spectrum suffers an exponential fall in accordance with (48). 

2. Intermediate frequencies COpy ~ co ~ f~ .  73. If the transverse (with respect to the 
line-of-sight) component of the large-scale field is sufficiently small, so that c%~ >> f~• y 
and also co. > cos, then 

[ 4F(v/2) ]I/2e2co,,(__co_~ 1/2 
I c ~  3 r C 3 ~ - _  1)_] C \ C O . y 2 ]  " 

(51) 

If, however, the large-scale field is strong enough, and f~.  y >> c%, the random field plays 
little role. In this case for frequencies in question one can use Equation (47) which yields 
/co oc o91/3. 

3. Low frequencies 

% ~ co ~ co. y. (52) 

At these frequencies the radiation is strongly affected by the density effect (the term 
co2/co2). This effect is well-known in the theory of bremsstrahltmg (Ter Mikaeljan, 1954) 
and magnetic bremsstrahlung (Tsytovich, 1951) in a regular magnetic field. In the latter 
case (at f~• 7>> c%) one has 

e 2 
It, "~ 7 - - - F -  (f~ • C~ 1/2 e x p ( -  2co3/3~• 092). 

L N / ~ C  
(53) 

However, at lower frequencies random fields, again, become dominant. This leads to 
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a power-law (but not exponential) fall of the intensity with decreasing frequency, 

l ' ~  9 v/-~--F (-~- - 2 v+ 3 F(v/2) �89 c 72cop e2 ~ (C~ ~- 1 (--~ ~v+ 2 \ c o p , ,  " (54) 

The radiation spectra from a separate particle for various relations between regular and 
random fields are shown in Figure 1. 

r... 

/ 

/ 
/ 

/ 
/ 

wp 
i i! 

t ~  ~sL~z 

~JSt 7, toa t  

I 
Fig. 1. The spectrum of intrinsic radiation from one relativistic electron for different ratios of random and 

regular magnetic fields. The inner contour-synchrotron radiation in absence of  random magnetic field. 

However, one should bear in mind that Equations (51)-(54) describe only one 
fraction of the total radiation from an ultrarelativistic particles. The other fraction is 
produced by the transition radiation (the transition scattering of electromagnetic field 
of a moving particle on plasma inhomogeneities) and should be evaluated by different 
methods. 

5. Transition Radiation of Ultrarelativistie Particles in a Turbulent Plasma 

The transition radiation was predicted theoretically by Ginzburg and Frank (1946) who 
showed that a particle, which moves with constant velocity and crosses a boundary 
between media with different dielectric functions, radiates electromagnetic waves. An 
analogous effect takes place when the particle moves through a randomly inhomo- 
geneous medium (Ginzburg and Tsytovich, 1984), particularly, through a turbulent 
plasma. This phenomenon is of special interest for astrophysical applications, because 
the intensity of the transition radiation is independent of particle mass; hence, this 
radiation may be produced not only by electrons but also by nuclei. This gives a principal 
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possibility to obtain direct information on the nucleon component of cosmic rays in 
distant objects. 

The transition radiation should be taken into account also while investigating the 
radiation spectra from electrons in the low-frequency domain o)< copy, where the 
intrinsic radiation of particles is suppressed by the density effect. The transition 
radiation is influenced by the density effect, although in another way, and is not 
suppressed by this effect. 

First of all, let us determine the main factors which affect the transition radiation in 
a magneto-active turbulent plasma. It is well-known (see e.g., Bekefi, 1966) that the 
polarization properties of the magneto-active plasma are described by the dielectric 
tensor whose components are expressed through the quantities 

e+_ = 1 co(co_+coB)' Co= 1-co2coz, (55) 

where + correspond to two types of transverse electromagnetic waves which may 
propagate along the magnetic field. 

As follows from (55), fluctuations of e~a may arise either due to fluctuations of the 
electron number density fN or due to fluctuations fB of the magnetic field. In the first 
case at cob "~ cop < co we have 

= - - -  , (56) 
- N 

whereas in the second case 

re+ = _ + - - - -  . (57) 
- B co 

If fN/N ~ ~B/B, the fluctuations of N lead to much stronger variations fe~a than the 
fluctuations of B, owing to the presence of a small factor coB/co in Equation (57). The 
ratio of the radiation intensities produced by the fluctuations fB and din will be 
proportional to (coB/co) 2. Therefore, we may expect that in the presence of fiN and fB 
the dominant contribution into the radiation will come from inhomogeneities of the 
electron number density; only in the absence of fN the transition radiation will be 
determined by magnetic inhomogeneities. 

Now let calculate the intensity of the transition radiation of ultrarelativistic particles 
in a turbulent plasma. Owing to its nature, the transition radiation is the radiation of 
plasma electrons excited by a highly energetic particles. The effect is not concerned with 
the variation of the fast-particle velocity and, consequently, with the particle mass (at 
a given LorentzSfactor). The total radiation is equal to the sum of the intrinsic radiation 
of the ultrarelativistic particle and the radiation of plasma electrons (the transition 
radiation). This total radiation is determined by the current produced by the relativistic 
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particle itself 

jq(r, t) = qv(t) 8(r - r(t)) (58) 

plus the current 

= e ~ vf,,,(r, p, t) d3p/(27~) 3 , (59) jm(r, t) 

induced by the plasma electrons under the action of the relativistic particle. In 
Equation (59) fm denotes the component of the distribution fucntion of the plasma 
electrons which describes perturbations introduced by the fast particle (e is the electron 
charge, and q is the charge of the fast particle). 

Calculating the electromagnetic field created by the total current Jtot = Jq + jm, and 
finding then the energy radiated by the relativistic particle, instead of (3) we derive the 
more general expression 

C0 2 
~n,o~ = (27Z) 6 ~ -  {(l[n,J~,~]l  2) + ( l[n,  jkmo,]l 2) + 

(60) 
~  Q/,/,t + ([n, jq,,o] [n, Jk, o~] ) + ([n,  jg.*] [n, jk, oA> ) . 

The first term in curly brackets is expressed through the Fourier component of the 
current of the relativistic particle, 

+oO 

Jg.o~ = q _t v ( t )exp[ - ikr ( t )  + iogt] dt/(2n) 4, (61) 

--<3O 

and reduces easily to the form which corresponds to Equation (3). This term describes 
the radiation connected with velocity variations of the relativistic particle; it has been 
analysed in detail in preceding sections. The last two terms in (60) describe the 
interference of the intrinsic and transition radiations. One can easily see that for 
ultrarelativistic radiators moving in a magneto-active plasma the interference term is 
always small (here we omit a detailed proff of this statement). 

To calculate the intensity of the transition radiation, which is described by the second 
term in Equation (60), let us evaluate the correction to the distribution function of the 
plasma electrons, f(2), produced by the plasma turbulence and the electromagnetic field 
of the relativistic particle. The plasma will be treated as cold and magneto-active. It will 
be assumed that the plasma is turbulent, with Alfvtn and magneto-acoustic waves being 
present but high-frequency plasma waves being absent. 

Solving the collisionless Boltzmann equation by iterations, we obtain the Fourier 
transform of the distribution function under study in the form 

m(2) e 2 f ~ ~ Fk:-'~ d f(p)} dco' d3k' + 
,~o i(co - kv) F k - k " c ~ 1 7 6  0p(i(co' - k'v) Op 

+ i(c0 kv) Fk-k' ,  ~o-~o' ~ 8fk' ,o' doY d3k ' . (62) 
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Ih this case, 

Fk, go = Ek, gO + [V, Ilk, gO]/c ; (63) 

where Ek, of and Bk, co are, generally, sums of the fields of plasma mode (m) and 
relativistic particle (q), 

E k ,  co = E k  m, gO + Eg, n k ,  = B "  " c o ,  co k, gO + Bq, gO, (64) 

f (p )  is the distribution function of the unperturbed plasma (in the absence of MH D  
waves and the relativistic particle); 5fk, co describes variations of the plasma density in 
magneto-acoustic waves, so that 

~f(p)d3p/(2rO3=No; f~fk, go(p)d3p/(2n)3=bNk,~o. (65) 

Note that bfk" go = 0 for Alfv6n waves. 

Equation (62) does not include the large-scale field B 0, because B o enters the current 
density only through the combination go + co B ~ go (see Equations (55)) in which it may 
be neglected. Evaluating the Fourier transform of the current with the aid of (59), (62), 
and (65), we obtain 

jm(2)_ e3No f dgo' 
k, o~ d3k' - co' 

m 2 c g o  go 
E q B m - -  [ k - - k ' , g o - - c o ' ,  k ' ,  go' ] -1- 

ie2f 
+ - -  E ~ _ k , ,  go_ g o ,  b N k , ,  g o ,  d o ) '  d 3 k  ' , me) (66) 

where the fluctuations of the electron number density should be expressed through 
amplitudes of magneto-acoustic waves (Landau and Lifshitz, 1960). While deriving (66), 
we have made some natural simplifications; namely, we have neglected the terms 

vre/c and u/c, vr~ and u being the thermal and hydrodynamical velocities of the 
plasma, respectively. In addition, in (64) we have omitted the field E "  because in a k,  r 

cold plasma the electric field of MHD waves is of vortex character (is not associated 
with fluctuations of the electron number density) and is smaller than the magnetic field 
Bk ~, co. Under the conditions as formulated one may set Bk, gO = B~m gO. 

The first term in (66) describes the current associated with magnetic fluctuations in 
the absence of fluctuations of the electron number density. For MH D  turbulence, this 
happens if only Alfv6n waves are present. The transition radiation induced by this 
current was analysed by Bel'kov etal. (also see Ginzburg and Tsytovich, 1984). 
According to B el'kov et al. (1980), the radiation intensity which corresponds to the first 
term in (66) (labelled by a) is of the form 

2nq2e2rn4 f k'P(k')f}(kmin/k') dk' (67) 
I a _  m 2 c 4  (.0 4 

k ~  
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where 

co 
k' in - (~-2 + coJ/~o2), ep(z) = z - lnz - 1. (68) 

2c 

Let us assume that the spectrum of magnetic inhomogeneities is a power-law 

P(k) = {0,  k < k o , A~ = (v - 1)k; -1 (B2t) (69) 

Ark -~-2,  k>ko ,  4n 

Then from Equation (67) we obtain 

( / ( 7  2hA v e2q 2 --("0P 4 - - 2C  (7-2 + eo2/co2)-v. 
Ia-- V2(V+ 1) (mc2)2\co/ ,,co/ 

(70) 

However, in a plasma with developed MHD turbulence all modes are expected, 
including magneto-acoustic modes which lead to the radiation not described by 
Equation (70). According to the estimates provided by Equations (56), (57), the main 
contribution in this case comes from the radiation due to inhomogeneities of the electron 
number density. Keeping only the second term in (66), we present the radiation energy 

in the form 

e4 f m m q 
g~,, co m 2 c 3  [ n ,  E k_ k ' ,  . . . .  , ] X 

x [n, Eq*k- k,,, ~ -  o," ] (bN k,, ~, bN~,,,,~,,) do)' d3k ' d o "  d3k " . (71) 

In this expression it is sufficient to substitute the transverse field of the ultrarelativistic 
particle calculated in the constant-velocity approximation 

2iq(v - k(kv)/k 2) 6(o9 - kv) 
Eq, o~ ( 2 r c ) 2 ~ ( ~  1 _ c2k2/a~2e(co)) (72) 

because the transverse field component is larger than the longitudinal one. 
Further, let us express the fluctuations of N via amplitudes of magneto-acoustic waves 

(Landau and Lifshitz, 1960), 

• N k ,  co = No(BoBS, ~ , ) / B 2 o  �9 (73) 

For an isotropic distribution of wave-vectors of magneto-acoustic waves in the random 
phase approximation we have 

( 5Nk, co bN*,, oJ' ) ( 2 = IbN[o,,k) 5(09- d ) b ( k - k ' ) ,  
(74) 

15N [L, k = Ng(I B m t~, oJB2o) [k, bo ]2/k2, 

where b o = Bo/B o. Moreover, the frequencies of magneto-acoustic waves may be set 
zero because they are much smaller than the frequencies of electromagnetic waves 
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radiating by particles, i.e., 

IBIS,, o~ = e(k) b(co). 

Evaluating the radiation intensity, we have 

(75) 

_2 _2 .4  _ e q  wp 
IXm~ 2 rcm2 cS co2 

f [bo, k' ]2 [n, v .  ] 2 b(co - (k - k')v) 
d 3 k' P ( k ') ~ 7 ~ 2 ~ T c ~ - f ~ T ) 2 / ~ 5 ~ 5  ,(76) 

where 

v .  : v - co(k - k ' ) / (k  - k ' )  2. 

While integrating (76) over orientations of  k '  with the aid of  the delta-function, we shall 
assume that the angle between k '  and k is equal to the angle between k'  and v because 
the radiation is predominantly directed along v. In addition, in the expression for v .  we 
may replace (k - k ' )2  by k 2 since k'  2 ~ k 2 and k '  is almost perpendicular to k. Then, 

we obtain 

e2q2co4(1 + c~176 ; k' dk' 02p(k') (77) 
l~mo~ = 2m2c4co2c02 (02 + 7 -2  + o)2/o)2) 2 

kmi~ (o) 

Here we have expanded the integrand in terms of  small angle 0 between n and v; 0 o 
denotes an angle between v and Bo; and 

k~i,(O ) = (co/2c)(02 + 7 -2  + coff/co2). 

Let us integrate the radiation intensity (77) over all directions of k. By interchanging 
the order of  integration over dO and dk ' ,  we represent the spectral radiation density in 
the form 

0m2~• 

f f 026o2 ne2q2cop4(1 + c~176 P(k')k' dk' 7 -2 

Im = 2m2c4co2 o)2 (02 + + co~/co2)2 ' 
k~nin 0 

(78) 
where k~i n is given by Equation (68), and 

Om2ax = (2ck'/o.~) (1 - k '~ /k ' ) .  (79) 

Actually, for M H D  waves k' ,~ co~c, i.e., 2 0m~ax @ 1 which confirms the above assumption 
on the smallness of  0. 

Integrating o v e r  d 0  2 yields 

12  = rce2q2c~ 1 + cos 2 00) 

2m2c4co 2 o92 
f k'P(k')ag(k~iJk' ) dk ' ,  

k~in  

(80) 
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where (I)(z) is given by (68). Evaluating (80) with the same spectrum of magnetic 
inhomogeneities as has been used for obtaining (70) and averaging over directions of 
large-scale magnetic field B o, we get 

2 (v_-__l)e q cop (B~)  v 
12 = 3v2(v+ 1)rn%3co~co3 (7 -2 + 0~2/co2) - v .  (81) 

Comparing the contributions of Alfvrn and magneto-acoustic waves into the intensity 
of the transition radiation we have 

I 2 / I  ~ = ~(c%/cos) 2 (co~COp) 2 >> 1. (82) 

This ratio agrees with the semi-quantitative estimate performed above from comparison 
between (56) and (57). 

It should be noted that Equation (81) is valid for describing the transition radiation 
from a relativistic particle in the presence of an ensemble of weak shocks. In this case 
one should put v = 2. At co ,~ cop7 the spectral intensity is constant, while at co >> cop7 
it depends on frequency as co-4. 

Since for relativistic particles the interference between the intrinsic and transition 
radiations is small, the full radiation intensity equals the sum of the intensities calculated 
in Sections 4 and 5. 

6. The Effect of Plasma Turbulence on Spectra of Synchrotron Radiation from 
Cosmic Objects 

The presence of highly energetic radiating electrons in astrophysical objects is possible 
only in the case of persistent electron acceleration; otherwise the synchrotron losses will 
lead to a rapid electron deceleration. According to the current point of view, the most 
effective mechanisms of electron acceleration to ultrarelativistic energies are those 
associated with large-scale MHD turbulence (including shocks) and related small-scale 
turbulence which contains various MHD and plasma modes (Afford, 1981; Toptygin, 
1980; Galeev, 1984). Hence, the presence of strong enough fluctuations of electro- 
magnetic fields and plasma density is necessary for the existence of relativistic radiating 
particles in radiosources. An analysis of the synchrotron spectra should be carried out 
with account for the effects of turbulent plasma. 

A theoretical study of stochastic acceleration mechanisms (Berezinsky et aL, 1984; 
Toptygin, 1985) and observational data (Ginzburg and Syrovatskii, 1964; Berezinsky 
etal., 1984; Toptygin, 1985) reveals that in many astrophysical objects the energy 
spectrum of radiating particles is quite well fitted by power-law in a wide energy range. 
To evaluate the radiation from an ensemble of relativistic electrons one needs to 
integrate the above expressions (35), (81) for the spectra of separate particles with the 
distribution function which corresponds to an ensemble as a whole. 

Following Ginzburg and Syrovatskii (1964) let us take the electron spectrum in the 
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f o r m  

dNe = K e y - g d T ,  YI < 7 < 72. (83) 

Then, the radiation from the electron ensemble is expressed as 

Y2 / i  

P(co) = t Io,(Y) dNe(Y)" (84) 

~21 

For the intrinsic particle radiation, I~,(7) is determined by Equation (35). It is clear that 
at arbitrary values of the parameters corresponding double integrals may be evaluated 
only by numerical methods. However, it is possible to obtain asymptotic expressions 
for P(co) from the asymptotics of 1~, in certain frequency intervals. 

1. High frequencies at which the radiation of particles with ~1 ~ ~ -~ ~)2 is determined 
by stochastic fields (Equation (49)). These are the frequencies co >> co. = coB• ,/2A, 
where A is a logarithmic factor determined by the relative level of the turbulence and 
magnetic field, 

A = _3 l n [3  ~+ 3/2(~_v + 2)r(u/~_- 1/2)_o)~ 1] .  
2 22v+ 5/2F(v/2)co ~ co~,)-i ._] 

Integrating Equation (49) in accordance with (84), at 72 >> ~1 we obtain 

(85) 

2,'+ 1 F ( v / 2 ) K e T 2  2v+ I -  ~ e 2 
P1(~ 2 v-~ -v  (86) = - -  c o s t  (Ol5 CO 

3  /2(v + 2 ) ( 2 v  + 1 - - �89 c 

Thus, for a power-law energy spectrum of the electrons with a cut-off at certain energy 
g2 = mc272, the high-frequency 'tall' of the radiation spectrum is determined by random 
fields and the radiation spectrum repeats the turbulence spectrum; this takes place up 
to frequencies COma x = C 722/lmin, /min being the minimal turbulence scale (Toptygin and 
Fleishman, 1983, 1984). This result is valid even if the spectrum cut-off is not sharp (it 
is sufficient to have a power-law spectral fall with an index ~ > 2 v + 1). 

2. In the intermediate frequency range co** ~ co ~ co , ,  where co** 
cop(copY1/coB- )1/2, at cob • >> cost the main contribution into the radiation comes from 
the large-scale magnetic field; integration over energies of the radiating electrons yields 

~ )  ge  c t +  1 - ~ (87) P2(co) 3r _ 1)F(~/4  _ 1 9  e 2 
= _ _  c o ~ •  c o  , 

4 + 1  c 

where ~r = (4 - 1)/2. In this case there appears a power-law spectral part with an index 
~, typical for the synchrotron radiation (Ginzburg and Syrovatskii, 1964). If the 
small-scale field is dominant and cost >> cos- ,  the frequency-dependence of the spectral 
power is again a power-law, with the same index ~ = (4 - 1)/2. However, the numerical 
factor cannot be found analytically, and requires numerical calculations. 
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In a narrow vicinity of co. Equations (86) and (87) are invalid. In this vicinity the 
intensity falls down exponentially with the increase of  o). The fall leads to a smooth 

transition from (86) to (87). Quantitatively, this fall may be characterized by the ratio 
P1/P2 taken near co. ,  for instance, at co = a ~ •  7~. This gives 

PA = 2~+'(~ + 1)F(v/2) 

P2 31 +g/271:l/2(V + 2)(2V + 1 - - ~ ) r ( v / 2 -  1 /2)F(~/4-  1/12)F(~/4 + 19/12) 

2 v--I 

x (88/ 
c o B  v + 1 • 

Note that the product o) 2 cog- 1 (o92 being determined by the energy of random fields with 

scales ! < Lo) is independent of the choice of  the critical scale L o. 

~ (Ornax t0 

Fig. 2. The radiation spectrum produced by electron ensemble in a magnetic field with random inhomo- 
geneities. Electrons have power-law energy distribution with a cut-off at g = rnc272. The high-energy part 
of the radiation spectrum and the exponential intensity decrease (jump) near co. ~ c%• are 

shown. 

Figure 2 schematically displays the spectrum of the synchrotron radiation with 
account for small-scale turbulence. 

The spectrum becomes even more complicated, if Langmuir turbulence is excited in 
a wide interval of scales in addition to the large-scale field. Langmuir waves with 
k > COp/C behave as a small-scale turbulence. At co >> O)p72 they lead to the radiation 
spectrum e~t(co) of the form (86), where co~ is determined by the value of ( E  2 )  at 

k > cop/c. For toe• 7~ < co < cop 7~, the radiation spectrum is determined by large-scale 
Langmuir harmonics with k < cop/c. The phase velocity of these harmonics exceeds c. 
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Therefore, one needs to take account of the dependence of the correlator on the 
time-argument. Without writing down the spectrum of one particle (see, e.g., Kaplan and 
Tsytovich, 1972), let us present the spectral power of the radiation for an ensembe of 
electrons 

pl(co)=2~/2-3/2(~2+4~+ 11) e 2 co~(~e)  ~', ~ - 1  
(~ + 1) (~ + 3) (~  + 5) Ke - -  - -  c~ - ; (89)  c COp 2 

where CO~ = e 2 (E2)/rn2c2, (E 2) is the square electric field of large-scale plasmons. 
At CO ~< COb • 7~ the dominant contribution into the synchrotron radiation comes from 

the large-scale magnetic field and the spectrum is given by Equation (87). Hence, in this 
case the radiation spectrum contains three power-law parts with indices ~, ~, and v, 
respectively (Figure 3). The first two parts have equal indices but different levels. The 
corresponding jump near the frequency CO = COs • V~ can be easily shown to be equal to 

P I _  2~/2-3/2(~2 ..[_ 4~ + 11) CO2 { cop "~ 
(9O) 

/'2 3r162 + ~ ( ~  5-)F-(~{- ~ ) r ( ~ / 4  + ~ )  COp CO~ • /,, COB • // " 

I 

CO 

Fig. 3. The radiation spectrum from electron ensemble in a magnetic field superimposed by Langmuir 
turbulence with wide interval of wave numbers. The spectrum has two jumps in high-frequency range (if 

OB 3_ ~ (Op ~ C/lmin). 

The jump between the second and the third parts is also easily evaluated as 

P~t(2copT22 ) _ 4F(v/2) (~ + 1) (~ + 3) (~ + 5) co~ 
(91)  

PI(2CO;7 if) 3 7~1/2(Y -}- 2) (2v + 1 - ~) (~2 + 4 ~ +  l l )F(v/2 - 1/2) co2 
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This jump is determined by the ratio between the energies contained in Langmuir 
pulsations and large-scale plasmons. 

3. Now let us analyse the low-frequency range o) < e) , . .  The main contribution into 
this range may come either from the intrinsic radiation of the relativistic particle or from 
the transition radiation. After integration over the electron spectrum, the radiation 
spectrum of the relativistic particle can be written as 

c~176176 - ( ~  (92) 
P3(fo) = 2~,+5F(v/2)Ke e 2 2 v-a v+2 

97r'/2(r + 1 ) r ( v / 2  - �89 c c o / 7 ( - '  \ % /  " 

As shown in Section 5, the transition radiation for a developed MHD turbulence is 
determined by fluctuations of the electron number density in magneto-acoustic and 
shock waves. However, in contrast to the synchrotron radiation, the transition radiation 
may be produced not only by the relativistic electrons but also by the nucleon component 
of cosmic rays. The latter component is commonly dominant; for instance, at 
d o > 1 GeV the number of nuclei exceeds the number of electrons by about two orders 
of magnitude. That is why let us integrate the intensity of the transition radiation (81) 
over the spectrum of all cosmic rays, electrons and nuclei, 

dNcr= Kcr?- r d r ,  ? > 21 (93) 

(for low frequencies, the particle spectrum at 2 >> 21 plays little role). Performing 
integration, we obtain 

co 2] ?-  d? 

= ( c o )  2 : + ' - r  ( c o f f 2 ~ ' ~ -  : 1 

,,cop/ \ co 2 J ~ -  1 

{ - 1  4 + 1  a92 ) 
- -  - -  , ; - . ( 9 4 )  

F v, 2 2 e)ff7 ? 

At high frequencies, o9 >> m e 71 (actually, this means that co >> cop) one can use the 
expansion of the hypergeometric function at large values of the argument. This yields 

J ~-~ F(~/2 --~ l)F(v- ~/2 -.[- I)( o))2v-~+ 1 
(95) 

Making use of the latter equation and inserting A v, we get 

I e r a ( @  _- 2 ~ - z (  v - 1 ) r (~ / 2  + � 8 9  - ~/2 + 9 K .  • 

v(~ - 1 ) r ( v  + 2) 

X q2('O2(('o~ ~+l-v ( 9 6 )  

coop ,,cop/ \coB/ \co/ 

If fluctuations of the electron number density in the radiation region are absent 
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although static magnetic inhomogeneities and Alfv6n waves are available, the transition 

radiation from a fast particle is determined by Equation (70). Integrating this equation 

with the particle spectrum (93), we obtain 

pa(co) = (v - 1)r(~/2 + 1)F(v - ~/2 + g)Kc,, q2co~ 2COo 
v(~ 1)r (v  + 2) co)p \ ogp / 

(97) 

The spectrum (97) decreases with frequency quicker than in the case of magneto- 
acoustic waves; at co ~ O)p the intensity (96) appears to be a factor of (COp/COB) 2 >> 1 
larger than (97). 

The total radiation power in the low-frequency region is given by 
P ( f o )  = P3(~) + Pm((.O). Comparing (96)and (92), we see that the transition radiation 
dominates the synchrotron one at low enough frequencies, Figures 4 and 5 display 
different situations which may appear at various parameter values. The first situation 
occurs when the synchrotron radiation is suppressed by the density effect at those 
frequencies at which it becomes comparable with the transition radiation. This leads to 
the appearance of the minimum in the spectral curve. If the density effect is not still 
significant at the above frequencies, the radiation spectrum will show a kink at some 
frequency and a rise in the low-frequency range (Figure 5). For typical parameter values, 
the frequency which separates the spectral ranges of dominant synchrotron and 
transition radiations is about (20-200)cop. 

I 

I 

Fig. 4. The low-frequency range of the radiation spectrum. The increase of the spectrum due to the 
transition radiation appears at those frequencies at which the intrinsic radiation of particles is suppressed 

by the density effect. 
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Fig. 5. 

t f -4  g -  a 

The low-frequency range of radiation spectrum. The increase of the spectrum due to the transition 
radiation takes place whert the density effect is absent. 

The transition radiation may also be easily evaluated for an ensemble of weak shocks, 
by making use of the well-known expression for the radiation produced by a small 
density jump (Ginzburg and Tsytovich, 1984). Let the mean distance between fronts be 
L > Lf, Lf being a typical length along which the transition radiation is formed. The 
radiation intensity of one particle will be written as 

I ~ -  6 z t L \ N o /  [1 + (.DZ/((.Dp272)]2 ; (98) 

and integration over the electron spectrum yields 

P=(co) - qZKcr F(~/2 a s , (99) - 5)F(5 - {/2) co >> % .  
12rcL 

The spectrum of the transition radiation is steeper than the synchrotron spectrum and 
gives larger contribution into the low-frequency range. 

7. Numerical  Est imates  and Interpretation of  Observed Spectra of  Cosmic  Radio 

Sources  

Nowadays, radiospectra from many cosmic objects are measured in wide frequency 
bands. These spectra often possess kinks which are interpreted as the kinks in the energy 
spectra of radiating electrons (Kardashev, 1962) or are associated with the anisotropy 
of radiating particles (Galeev, 1984). 

In this work we have obtained jumps of the spectral radiation power at high 
frequencies, in addition to kinks at low frequencies. Such high-frequency jumps are, 
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indeed, observed in the radiation spectra of cosmic objects (Capps et al., 1982). In this 
section we shall perform numerical estimates and try to interpret the spectra from some 
radio sources on the ground of the proposed theory. 

To understand the nature of various spectral parts it is important to know the 
magnitude and frequency-dependence of the radiation polarization. For the synchrotron 
radiation in a quasi-uniform field, the polarization degree at high frequencies is larger 
than at low ones. However, when frequency increases, the polarization becomes lower, 
again, in the range, where the radiation is determined by a small-scale turbulence (and 
falls down to zero for an isotropic turbulence). Such an inverse behaviour of the 
frequency-dependence of the polarization may be regarded as a typical indication that 
the radiation is affected by small-scale turbulent fields. If the turbulence is quasi-one- 
dimensional (wave-vectors of MHD or Langmuir waves are aligned along the large-scale 
magnetic field), then, according to the calculation, the polarization becomes lower and 
the predominant direction of E-vector (the position angle) turns at an angle of 90 ~ . 

7 . 1 .  R A D I A T I O N  D U E  T O  S M A L L - S C A L E  T U R B U L E N C E  

Let us estimate a jump at a frequency ogs• ~2 in the radiation spectrum. At v = 1-2 we 
approximately have 

( i - -  ~ 0 . 1  ~ ~ 1 7 6  �9 (100) 
P2 \ ~ • / \ OOB • / 

For an order-of-magnitude estimate, let us make use of the parameters of the magnetic 
fields and turbulence known for the interplanetary space (see Toptygin, 1985, for 
review): 

Bo = 4.1 x 1 0 - S G ;  (B~)  = 3 . 6 x  1 0 - I ~  
(101) 

L o = 2 x  10 l I c m .  

There is clearly no ground to assume that the turbulence properties in radio sources such 
as supernova remnants, radiogalaxies and quasars are the same as in the interplanetary 
medium. However, at present one has no detailed data on the turbulence in the above 
objects. On the other hand, the circumsolar plasma provides an example of cosmic 
plasma with well-known parameters, and may be used to verify some hypotheses 
concerning distant objects. 

Substituting the above values, we obtain P1/P2 ~ 0.9 x 10-3. Under realistic con- 
ditions, such a jump may be really observed. Moreover, the local radiation intensity at 
high frequencies may be much larger, if the magnetic field component transverse to the 
line-of-sight is small. 

In cosmic objects the regular magnetic field is, actually, non-uniform and has different 
directions in different spatial regions. Hence, on the average, we have ~% • ~ ~o B. 
However, in high-resolution observations one often gets images of objects with dark 
lines or regions (Jura, 1982) created probably owing to local decreases of the component 
of the large-scale magnetic field transverse to the line-of-sight. High-resolution observa- 



240 I.N. TOPTYGIN AND G. D. FLEISHMAN 

tions of the radiation from these regions might give useful information on the properties 
of the small-scale turbulence (on its intensity and spectral index v). The main turbulence 
scale in these objects may be estimated from distance between neighbouring dark lines 
(regions). 

Note that if the radiation from dark regions is determined by small-scale turbulence, 
its polarization degree ought to be lower than for radiation from bright regions. 

To get a power-law tail (with index v) in the radiation spectra of electrons, one needs 
the minimum turbulence scale lmin to be much smaller than the scale mc2/eB along which 
the synchrotron radiation is formed. According to the data on interplanetary medium 
(Beinroth and Neubauer, 1981; Kennel etal., 1982), mc2/eB~4 x 107cm and 
lmi n ~ 105 cm. In this case the tails may occupy frequency intervals whose boundary 
frequencies differ by two or three orders of magnitude. 

As an example of objects where the radiation due to the small-scale turbulence is 
important let us consider the object OJ 287. The optical and radio spectra of this object 
were presented by Ennis etal. (1982) (Figure 6). Analyzing these spectra, one can 
assume that the radioemission is of the synchrotron nature (as was pointed out by Ennis 

@q 
mj y 

\ 

2 

i*.- 
O0 

I 
.q 

Fig. 6. The radiation spectrum for the object OJ 287 (Ennis et al., 1982). Circles - observational data; solid 
curve - theory of synchrotron radiation with energy cut-off, but without turbulence. One can see, that such 

theory explains the observations unsatisfaetorily. 
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et al., 1982), and the optical emission is formed due to the small-scale turbulence. 
According to Ennis etal. (1982) the polarization of the radio emission is 
P (3.7 cm) = 16.6~o. The polarization in optics shows temporal variations from 2.8 to 
13.5~o (Visvanathan, 1973), and from 1 to 32~o (Ennis etal., 1982), for larger 
observation period. The polarization grows simultaneously with the increase of the 
radiation intensity and with the rotation of position angle at about 90 ~ 
(Visvanathan, 1973). 

The above behaviour of the optical radiation may be explained by assuming that the 
quantity coc = cob • y2 suffers deviations from its mean value ~c. According to K0nig 
and Arnab (1985) this may be associated with a shock propagating in the object and 
illuminating successively regions with different strengths of the regular magnetic field. 
Then, with decreasing coc the optical synchrotron radiation fais down exponentially, so 
that all the optical radiation becomes determined by small-scale turbulence. This 
assumption explains the behaviour of the polarization described above. 

In the frame of this hypothesis, one may estimate some parameters of the turbulence. 
The spectral turbulence index coincides with the index v = 1.25 (Visvanathan, 1973) of 
the optical radiation, and the relative turbulence level is determined by Equation (88) 
which gives 2 2 ~ -- 3 (B~t) /Bo ~ 4 x 10 . Note that a close spectral index (v = 1.2) was 
reported to be realized in 1962 in the interplanetary space (Toptygin, 1985). 

7 . 2 .  R A D I A T I O N  D U E  TO L O N G - W A V E L E N G T H  P L A S M O N S  

Tsytovich and Chikhachev (1969) were first who considered this radiation. As follows 
from the results of Section 6, the radiation due to long-wavelength plasmons may be 
observed if cop >> cob • that is commonly the case in astrophysical objects. The spectral 
jump at 09 ~ co B • 72 is determined by the ratio of the plasmon energy to the energy of 
the quasi-uniform magnetic field, 

P1  (co) 0)2 e ( g 2 )  1/2 
0.1 - -  , ~ = 3, COE- - -  (102) 

P2(CO) 092• me 

At co ~ cop 72 the spectrum suffers the second jump accompanied by variation of the 
spectral index; the radiation at co>> cop722 is determined by small-scale pulsations of 
electric fields. The corresponding jump is equal to 

p1t( Z cop ~)22) ,,~ 602 (103) 

pl(Zcop 

From the positions of these two jumps one can find the ratio cop/coB• 
Let us consider the radiation spectrum obtained by Henry et al. (1984), and presented 

in Figure 7 from a jet of the quasar 3C 273. The radiation from this object is of the 
synchrotron nature which is confirmed by high polarization, P(2.7 GHz) = 8 ~o- The 
polarization of the optical radiation is lower, P < 4~o ; the spectral indices in radio and 
optics are equal, within the measurement errors. It is also important that the position 
angle in radio and optics differs by 90 ~ . These data better agree with the assumption 
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The emission spectrum from a jet of quasar 3C 273 (Henry et al., 1984). 

on the plasmon (due to long-wavelength plasmons) nature of the optical radiation than 
with the assumption on the synchrotron nature (Henry et aL, 1984). However, to get the 
observed intensity of the optical radiation one needs a high level of the Langmuir 
turbulence; from the observed jump P1/P2 ~ ~ we find (E~) /B~  ~ 0.3. But according 
to Bodo and Ferrari (1982) and Pelletier and Zaninetti (1984) the turbulence in jets may 
be, indeed, rather intensive. 

7.3. TRANSITION RADIATION DUE TO INHOMOGENEITIES OF MAGNETIC FIELD 

AND ELECTRON NUMBER DENSITY 

As has been shown in Section 5, in the presence of the developed MHD turbulence the 
main contribution into the emission of relativistic particles comes from fluctuations of 
electron number density in magneto-acoustic waves. This conclusion remains valid 
when Langmuir waves are present too (and their level does not exceed the level of MHD 
turbulence) because at comparable levels of turbulent pulsations the intensity of the 
transition radiation due to Langmuir waves is a factor of (cop/co~)2 > 1 lower than the 
intensity of the radiation due to magneto-acoustic waves. Let us discuss the possibility 
to observe the transition radiation in a turbulent plasma. For this purpose consider the 
ratio of the transition to synchrotron radiation intensities of electrons. With account for 
the values of numerical factors we obtain 

2(oo3 
P2(CO) Ke k~B) \COp/ 

X((-Dpl~/2+l/2(~)r 

\coB.a/ (104) 
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Adopting the parameter values (101), typical for interplanetary space and taking 
COp = 1.3 x 10- s s - l, v = 1.5, ~ = 3, we can rewrite (104) in the form 

"m(co) ~ 0.6 Z2Kcr ( ~ )  3/2 
- -  . ( l O 5 )  

/~  Ke 

In this case Z2KJKe > 1 because the numerator takes into account all relativistic 
particles, while the denominator takes into account only the electrons. Equations (104) 
and (105) neglect the suppression of the synchrotron radiation at low frequencies, 
co< c o . .  ~ cop(copT~/cos• 1/2 due to the density effect. That is why, actually, the 
estimation (105) should be larger and the transition radiation becomes dominant when 
the density effect takes place. 

If the magnetic fields are weak enough, the transition radiation may exceed the 
synchrotron one even at higher frequencies when the density effect does not still occur. 
This is because with the decrease of the quasi-uniform magnetic field the synchrotron 
radiation becomes less intensive whereas the transition radiation becomes more 
intensive, so that the ratio (104) increases rapidly (as B-r with decreasing 
magnetic field. 

The transition radiation may also be effectively generated by shocks. The intensity 
ratio of this and the synchrotron radiation is 

- - , . ~ 2  X P t r ( C O )  10 -2 Z2Kcr C (O,)p 12(.Op, (106) 

P2(CO) K e copL \cos • / co 

where L is a mean distance between shock fronts; for estimation, it has been assumed 
that AN ~ N and ~ = 3. Putting (cop~CO s • ) ,~ 3 • 10 4 (as for the interplanetary space), 
we obtain 

etr(o)) -z2gcr c (.op 
- -  ~ 6 x 102 
P2(CO) K,  copL o9 

At Z2Kcr/K e ~ 1 one has U~(co)/P2(co) > 1, if distance between fronts does not exceed 
Lma x = 108 cm. However, in other cases an estimate may be more optimistic. For 
instance, according to Fedorenko and Samsonov (1979), the typical parameters for 
radiogalaxies are N e ~ 10-3 -10-4cm -3, COp ~ 103 s -a, and Lma x ~ 101~ cm. The 
above estimates reveal that the transition radiation in a plasma with MHD turbulence 
may noticeably change the spectrum of the synchrotron radiation and should be taken 
into account while analysing observational data. 

Let us notice that the conclusions of Section 7.1 on favourable conditions for 
observation of the radiation due to the small-scale turbulence (from dark regions) are 
fully valid for observation of the transition radiation. Since we discuss radio spectral 
range, one can use VLBA data to study the turbulence from radiation spectra of cosmic 
objects. 

Simultaneous analysis of the low-frequency spectral range (form mainly by magneto- 
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acoustic and shock waves) and the high-frequency range (associated with small-scale 
fields of all turbulence modes) would allow one to estimate the relative contribution of 
different modes into the turbulence. 

In conclusion let us consider available observational data. According to Braude et al. 

(1971) the spectra of some radiosources (mainly, of radiogalaxies) at low frequencies, 
f g 10-5000 MHz, show a spectral rise as compared to the law appropriate to the 
synchrotron radiation. The authors explain this phenomenon by assuming that the 
energy spectra of electron differ from (83) and are given by 

dN(do) = Kodo-r do> d~ (107) 

Braude and Kaner (1972) made an attempt to derive the spectrum (107) from theoretical 
consideration. In this case the turbulence energy wr should be much larger than the 
magnetic field energy wB as well as the thermal energy NkT.  

Even without discussing extremely exotic character of these assumptions, let us notice 
that at WT >> WB the emission spectrum will be determined not by synchrotron but by 
plasma mechanisms considered above. We think that the spectral rises at low fre- 
quencies are more naturally explained by assuming that they are produced by the 
transition radiation of energetic particles in a turbulent plasma with magneto-acoustic 
and shock waves. 

This mechanism quite well explains an empirically discovered property of the 
observed spectra with rises: the higher the frequency at which a rise becomes 
pronounced, the steeper is the spectrum at f < fo. The frequency fo falls commonly in 
the interval 30 ~< fo  < 300 MHz. 

8. Conclusions 

The plasma turbulence leads to a wealth of features in the radiation spectra of relativistic 
particles. A discovery of these features in observed radio and optical spectra allows one 
to obtain valuable and unique information on physical properties of radiation sources. 
Below we outline briefly the possibilities investigated in this paper. 

(1) An intrin sic radiation of a single electron at low (co < COp 7) and high (co > co s • ? 2) 
frequencies is determined by small-scale fields in a plasma. 

(2) Inhomogeneities of a turbulent plasma lead to appearance of a new radiation 
mechanism, the transition radiation, which dominates at low frequencies, co < %7. 

(3) The related effects are shown to occur also in the radiation produced by an 
ensemble of particles with a power-law spectrum; to get a high-frequency power-law tail 
in the radiation spectrum with the spectral index equal to the index v of the turbulence, 
one needs to have a sharp enough cut-off of the energy spectrum of electrons at 
do = rncZv2. The transition radiation may lead to a spectral rise at low frequencies. 

(4) It is concluded that at co > coB• ~ the polarization becomes lower and the 
position angle turns at 90 ~ if an anisotropic (quasi-one-dimensional) turbulence is 
present. 

(5) It is shown that the above phenomena may be studied by analysing the emission 
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from dark regions (observed in some objects) because the synchrotron radiation from 
these regions is weak due to the smallness of the transverse (with respect to fine-of-sight) 
magnetic field B• ~ B. 

(6) It is pointed out that a non-thermal radiation from some objects may be explained 
on the ground of the developed scheme. In particular, a spectral rise at low frequencies 
observed in some objects may be explained by the transition radiation of relativistic 
particles due to the presence of shocks and magneto-acoustic waves. 

(7) The observations of the above features of radiation permit to find parameters of 
small-scale turbulence. The large-scale turbulence may be determined by means of 
observation of intensity fluctuations in radio emission from two near directions 
(Chibisov and Ptuskin, 1981). 

Appendix. Evaluation of Radiation Spectrum at High Frequencies by the Method of 
Equivalent Photons 

To simplify the kinetic equation we have made the approximation (see Equation (16)): 

0 2 _1_ )~--2 = a~ -2 , (A.1) 

where a is a constant. Below we will determine this constant from the requirement that 
the obtained result be coincident with the result of the perturbation theory (the method 
of equivalent photons) at high frequencies, co >> cob • 72. 

In the rest-frame of the relativistic particle random magnetic fields look as a set of 
almost transverse pseudo-photons which are scattered bY the particle, leading to the 
generation of electromagnetic wave. First of all let us find the electromagnetic field in 
this frame, assuming that in a laboratory reference frame only random magnetic fields 
are available. At 7 >> 1 we have 

B~L = y B •  E~_ = [v, B• ]7/c, Eli = 0,  BII = Bii . (A.2) 

In this case ]1 and _L label the field components with respect to the particle velocity v. 
The radiation intensity may be written as 

din. ~ = hco dN(n, co), (A.3) 

where dN is a number of pseudo-photons scattered per unit time. It is expressed through 
the number density n(co) of incident pseudo-photons. To find n(co) let us evaluate the 
Poynting vector in the primed reference frame, 

S' - 72v (B~(r ' ,  t ' ) )  . (A.4) 
4re 

Introducing Fourier-components of random fields and making use of Equation (10), we 
obtain 

/ *  

S' = 7v / ( B E (  k , co)) (1 - k~/kE)dakdco. 
8~ .) 

(A.5) 
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After integration over do) and insertion of the spectral function of random fields in the 
form (69) we get 

S'= 72AVV8n f d3k(1 - k~/k2)k-'-2 (A.6) 
k ~  

In this integral we introduce the new variables k•  co' ' = - 7ckll Writing down the 
energy current density in the form 

S' = f vhco'n(co')do)',  

0 

we find the spectral number density of the quanta, 

(A.7) 

n ( c o ' )  = 

(v + 1)Av 7 v+ icy 

v(v + 2)hc co' "+ 1 
, co'>7cko; 

_ _ , f  vco I co, Av7 1 + < 7ck o 
2 vkghc ( (v + 2~2c2kg.1 ~7 ' 

(A.S) 

The number of pseudo-photons scattered per unit time in the particle rest-frame into 
a solid angle dO;- at a frequency co; is given by 

dN'(nl ,  co;) = cn(co~) da(co'l, co;, 0 ') ,  (A.9) 

where 

dO;-( e2 ~2 (co~ ~2 (co~ + co~ sinZ O, ) 
de(co',, co;_, 0') = ~ -  \ ~ c 2  J \co'l/ \col co', (A. 10) 

is the cross-section of the Compton-scattering with frequency variation fro co' 1 to co;- ; 
0' is an angle between the particle velocity and propagation direction of the scattered 
quanta. In the laboratory reference frame the number of radiating quanta is expressed 
through (A.9) as 

dN' coa 
dN(n2, o92) - df~ 2 . (A. 1 1) 

df~;_ 7co;- 

The quantities co;- and 0' which enter this equation should be expressed through their 
values co2 and 0 in the laboratory frame, 

~176 cos0' = ( c o s 0 - ~ ) / ( 1 - - c V c o s 0 )  " (A.12) 

If the quantum recoil may be neglected, i.e., fi co ,~ mc 2,1, then co;~/a)~ ~ 1. With allowance 
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for (A. 12) we obta in  

co~/og; + o9;/~o i - s ing0 '  ~ 2 .  (A.13) 

Now, using (A.3), we find the angular and  spectral  dis tr ibut ion of  the radia t ion 

intensity 

(v_+_ 1)A~r2c~ ( 

I . , c o -  v(v+2)7 2 \ l -  

koc v 
- - < 1 - -  c o s 0 ,  

go r 

~-v-2 
COS o9 - v  

C 
(A. 14) 

where r o = e 2 / m c  2 is the classical  electron radius.  Integrat ion over angles leads to the 

spectral  distr ibution of  radia t ion  

2v+27zro 2 
I~, - Av72, ,cVog-  v, o ) >  2kocy 2 . (A.15) 

v(v + 2) 

The radia t ion  intensity calculated for these frequencies from the general  equation (35) 

is given by 

2v+47zr~ 
I~o - - -  Av72VcVo9 - Va-  v (A.16) 

3v 

Let  us find the cons tan t  a in question by requiring (A. 15) and (A. 16) to be equal. F r o m  

this we obtain 

a = [~(v + 2)] 1/v. (A.17) 

This quanti ty is seen to be close to 2 that  confirms the assumpt ion  0 2 ~ 7 -  z made  at 

the derivation. 
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