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Abstract, The nonlinear mode coupling equations for electrostatic and electromagnetic waves in 
strongly magnetized nonuniform electron-positron-ion plasmas are derived. It is found that a small 
fraction of stationary ions (or high-Z charged impurities) can be responsible for the formation of 
coherent vortices which are forbidden when the ions are absent. Such vortices might significantly 
affect the transport properties of electron-positron plasmas in external magnetic fields. 

It is well known (Rees, 1971, 1983; Michel, 1982; Begelman et al., 1984) that 
electron-positron plasmas appear in the polar cap regions of pulsar magnetospheres, 
in the early universe, and in the inner region of the accretion disks surrounding the 
central black holes in active galactic nuclei. Recently, several authors (Gedalin et 
al., 1985; Shukla et aL, 1986; Iwamoto, 1993; Zhao et al., 1994, 1996; Greaves 
and Surko, 1994, 1995; Verheest, 1996) have investigated collective effects in 
strongly magnetized electron-positron plasmas. Such studies generally focus on 
the linear properties of electrostatic and electromagnetic waves and their gener- 
ation mechanisms, and numerous nonlinear phenomena including the formation 
of coherent structures (Shukla et aL, 1986; Yu et al., 1986; Zhao et aL, 1996). 
The latter involve solitary wave patterns and vortical motions which are associated 
with microstructures in plasmas. Specifically, Yu et al. (1986) have presented an 
analytical description of double vortices in strongly magnetized, nonrelativistic, 
uniform electron-positron plasmas. 

However, Hoshino and Axons (1991) and Hoshino et al. (1992) have suggested 
that electron-positron plasmas also contain a small fraction of heavy ions. Recent 
investigations (Berezhiani et al., 1992a, 1992b; Berezhiani and Mahajan, 1995) 
have shown that a component of immobile ions can lead to new nonlinear effects 
in uniform unmagnetized electron-positron plasmas. In this paper, we shall incor- 
porate the effects of stationary ions in the study of the nonlinear coupling of 
low-frequency (in comparison with the electron gyrofrequency) electrostatic and 
electromagnetic waves in a strongly magnetized electron-positron plasma with an 
equilibrium density gradient. It will be found that in such a plasma there is a non- 
zero E • B0 particle current connected with a new type of wave spectrum and a 
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new class of localized vortex structures, which would not have appeared if the ions 
were not present. 

Let us consider an electron-positron-ion plasma with an equilibrium density 
gradient Onjo/Ox in the presence of a uniform magnetic field B0i, where njo is the 
unperturbed number density of the particle species j (2' equals e for electrons, p for 
positrons, and / for ions), B0 is the strength of the magnetic field, and ~ is the unit 
vector along the z axis. At equilibrium, we thus have neo(X) = Zinio(x) + npO(X), 
where Zie is the charge of the positive ions, and e is the magnitude of the electron 
charge. We assume that the ions are so heavy that they do not participate in the 
dynamics of the system as the frequencies involved are much larger than the ion 
plasma and ion gyrofrequencies. Furthermore, when Idtl is much smaller than 
the electron (or positron) gyrofrequency (wc = eBo/mc, where m is the electron 
mass, and c is the speed of light), then in the wave fields the perpendicular (to ~) 
component of the particle velocities in our cold plasma are 

c d Vex "~ VE + ~ tV  •162 + vezB• (1) 

and 
r 

vp• ~ VE -- Bow----cdtV •162 + vpzBx/Bo, (2) 

where VE = (c/Bo)~ x V r  is the E x B0 drift velocity, E = - V r  - ~(1/c)OtAz 
is the wave electric field, B• = VAz x ~ is the wave magnetic field, r is the 
scalar potential, and Az is the z component of the vector potential. Furthermore, 
dt = Ot +VE" V, with VE" V >> Vez,vzOz, where Vez(Vpz) is the electron (positron) 
velocity along the f~ direction. We have neglected the compressional magnetic field 
perturbations. 

Let us first derive the governing equations for electrostatic disturbances. Thus, 
we set B• = 0 in (1) and (2) and substitute them into the equation for the conser- 
vation of the charge density. The resulting equation can be written as 

@ ~ d t V ~ r 1 6 2  (3) l+ j 
where 2 2 2 v •  = >> = 4 n0e2/ ,no = n,0+npo,,  = 

and jz = -e(neoVez - npoVpz). The latter is given by (Shukla et al., 1986) 

dtjz = -(noe2 /m)Ozr �9 (4) 

Second, we focus on electromagnetic perturbations for which we have from 
Amp&e's  law 

jz = - ( c /  47r) VZ2 Az, (5) 

where the displacement current has been neglected as we are dealing with distur- 
bances with phase velocities much smaller than the speed of light. 
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Substituting for ve• from (1) and (2) into the equation for the charge con- 
servation equation, and making use of (5), we obtain the vorticity equation for 
electromagnetic disturbances. We have 

( 1 + wZ" to. 2zr + cdzV~Az = 0, (6) 

where dz = Oz + Bol(~TAz • ~). ~7. 
Furthermore, instead of (4), we here have (Yu et aL, 1986) 

(1 - )~2VZ)dtAz + COzq5 = 0, (7) 

where/~ = C/Wp is the collisionless skin depth of the electron-positron plasma. 
The )~2-term in (7) is the contributions of the parallel inertia of the electrons and 
the positrons. 

Equations (3) and (4) as well as (6) and (7) are, respectively, the coupled 
nonlinear equations which describe the dynamics of three-dimensional convective 
cells and shear Alfvdn waves in strongly magnetized, cold electron-positron-ion 
plasmas containing an equilibrium density gradient. In the absence of this density 
gradient, our system of equations are identical to those of Shukla et al. (1986) and 
Yu et al. (1986). 

In the linear limit, the local dispersion relations can be derived from (3), (4), 
(6), and (7) by assuming that r and Az are proportional to exp(ik �9 r - iwt), where 
w is the wave frequency and k is the wave vector. Accordingly, for convective cells 
and shear Alfv6n waves, we have, respectively, 

~ 2  __ OJO.), - -  W2c ~-- O, ( 8 )  

and 

09 2 - -  0202, - -  r = 0 ,  ( 9 )  

where w, = Z~(w2/ak~wc)tr �9 k, a = 1 + r 2 r = k2zW2/ak2, and W2a = 
k2c2/a(1 + k2),2). Here kz (k• is the component of the wave vector along (across) 
the z axis. We note that for k2A 2 >> 1, we have Wsa = wee, whereas the flute- 
mode is characterized by w = w. which is a new eigenmode of a nonuniform 
electron-positron-ion plasma in an external magnetic field. 

In the following, we shall present quasi-stationary nonlinear solutions of the 
pair of Equations (3) and (4) as well as (6) and (7). In the quasi-stationary frame, 
we let ~ = y + ~z - Vt,  where o~ and V are constants giving the angle and speed 
of the nonlinear structures. Thus, (3) and (4) can be cast in the form 

D~r162  - 5r = 0, (10) 

where D~r = O~ - (c/VBo)(Oxr - O~r 8 = P l a Y ,  P = -Zi(w2/now~) 
(Onio/Ox) - w z a 2 / V ,  and V 2 = 0x 2 + 0~. 

On the other hand, for the shear Alfv6n waves we have from (6) and (7) 
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D~r162  + #r  = -~D~AV~Az,  (11) 
a v  

and 

(1 - )~2V~_)A z = _~_r 

where # = Zi(w~/aYwc) (Onio/Ox)/no and D~A = 
O{AzOx). 

From (11) and (12) we readily obtain 

[ ( O~2c2 '~ _ aV)~ 2 a C A z ] = O .  (13) 

We now discuss the solutions of (10) and (13). We see from (10) that for 5 = 0, 
the resulting equation is satisfied by the ansatz 

V~_r = 4r  
a---~ exp [ - (2 / r162  - VBox/c)], (14) 

where Cs, K and as are arbitrary constants. The solution of (14) is given by (Shukla 
et al., 1995) 

r = VB---2x + Cs ln[2cosh(Kx) + 2(1 - as  -2) c o s ( K ~ ) ] ,  (15) 
c 

which exhibits chains of vortices for a 2 > 1. On the other hand, for a~ = 1 we 
have zonal flow. 

Furthermore, for 5 > 0 or Onio/Ox < 0 with ]Onio/Ox]V/no > a2Wc, (10) 
admits both monopolar and dipolar vortices. The structures of the latter are pre- 
sented in Shukla et al. (1995). On the other hand, we note that for 5 < 0 Equation 
(10) does not admit localized vortex solutions. Thus, the ion density gradient plays 
a key role for the formation of vortices. 

Finally, we discuss the properties of shear Alfv4n dipolar vortices which are 
governed by 

v4r + clv _r + c2r F3 VBo x = 0, (16) 
)~2 c 

where C1 = fll -- F3 - 1/,'~2, 62 ----- (F3 - fll)/X 2 + coq~2/V/~ 2, fll = # + 
oL2c2/aV 2~2, f12 =- c~c/aV~ 2, and F3 is an arbitrary constant of integration. We 
note that (16) has been derived from the solution of (13) by employing (12). 

The dipolar vortex solution of (16) is 

r = [Q1Kl(Slr) + QzKI(szr)] cos0, (17) 

in the outer region (r = (x 2 + ~2)1/2 > R), where F3 = 0, and 

dl ) ~- [Q3J l (83r )  q_ Q4Sl(84r ) _}_ -P3 V-~o ] X 2 cC2 rj cos0, (18) k 

(12) 

O~ - (1/aBo)(OxAzO~ - 
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in the inner region (r < R). Here, R is the vortex radius, cos 0 = z /r ,  Qj are 
arbitrary constants, and Kl and 1l are modified Bessel functions. Furthermore, 
we have defined s 2 = 1,2 [ - a l  + (o~ - 4c~2)1/2]/2 for o~ > 4o~2 > 0 and 33,4 = 

[C 2 - 4C2)1/2 4- C1]/2 for C2 < 0. Here, a l  =/31 - 1/)` 2 and o~2 = -(/31/),  2) + 
co~/32/V), 2. The constant Qj can be determined by matching the inner and outer 
solutions of qS, Az, OreS, -OrAz, V~(o, and jz at the vortex interface r = R. We 
note that the dipolar vortex profiles, as given by (17) and (18), are significantly 
different from those presented by Yu et al. (1986), as the ion density gradient is the 
reason why we can have a bounded outer solution. 

In summary, we have derived the nonlinear equations for low-frequency elec- 
trostatic and electromagnetic disturbances in a nonuniform electron-positron-ion 
plasma in an external magnetic field. It is found that the presence of a stationary ion 
component in strongly magnetized electron-positron plasmas gives rise to a novel 
flute-like mode the frequency of which is proportional to the gradient of the ion 
number density. Physically, the mode arises because the divergence of the particle 
E x B0 currents in an equilibrium ion density gradient is exactly balanced by the 
currents arising from the particle polarization drifts and the deviation from the 
quasi-neutrality condition. Furthermore, we have found that the inhomogeneous 
(the t~-) term in (3) and (6) is responsible for the formation of vortex streets and well 
behaved double vortices, which would have been otherwise absent if the ions were 
not taken into consideration. The coherent vortex structures might be responsible 
for the convective transport of particles across the external magnetic field lines 
(Shukla et al., 1986). 
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