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Abstract. We present a new class of spherically symmetric exact solutions of the general relativistic 
field equations. These solutions describe perfect fluid balls with infinite central pressure and central 
density though their ratio is finite. A member of the class has been studied in detail from which we 
have constructed a model of causal fluid ball with constant sound speed. 

1. Introduction 

On account of the non linearity of the field equations of general relativity, not many 
realistic, analytic solutions are known for the description of relativistic perfect fluid 
bails. For a meaningful model of relativistic star, a solution must correspond to 
monotonically decreasing positive expressions for pressure and density and must 
obey the principle of causality everywhere right from the centre region upto the 
boundary. If one discovers a new exact solution which corresponds to monotonically 
decreasing positive expressions for pressure and density but principle of causality is 
not obeyed in some region within the ball, the effort is wasted. On the other hand, if 
one succeeds in obtaining a parametric class of solutions with physical meaningful 
expressions for pressure and density then in all probability for some values of 
the parameter there may result models obeying the principle of causality and also 
satisfying some reasonable equations of state. It is in this context that attempts to 
obtain new classes of exact solutions have assumed significance (Wyman, 1949; 
Kuchowicz, 1968; Pant and Sah, 1982, 1985; Pant and Pant, 1993, 1995). In this 
paper we present a new parametric class of exact solutions giving rise to physically 
reasonable models of perfect fluid bails for certain range of values of the parameter. 

2. Field Equation and Method of Obtaining Analytic Solutions 

We consider the static, spherically symmetric metric in the standard form 

ds  2 = - e A d r  2 - r2(dO 2 + sin 20d~ 2) + eUdt 2 (1) 

where A and u are functions of the radical coordinate r. Accordingly, the field 
equations of general relativity for a perfect fluid ball of pressure p ( r )  and density 
p ( r )  are (Tolman, 1939). 
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c4 e + 7g r2 (2) 

( ) (  1 ) 1 8 ~ G p  _ e -  ~ _ (3) 

d (e-~-l) d (u'e-~) _A_ud fu'e-L') (4) 

where a prime denotes differentiation with respect to r. The problem consists of 
solving (4) for )~ and u by assuming an adhoc relationship between )~ and u which 
would correspond to the equation of state of the fluid. 

Using the substitution (Pant and Pant, 1993) 

r2e u = U, e - ~  = V (5) 

the equation (4) reduces to the following linear differential equation in V. 

V t - 2  log U' ] - -  

On integration, we get 

4r6U A -  exp 
~-~ : v -  (u,)~ 7 

4U } 4U 
r2UI V = - r 2 U i .  

(6) 

where A is an arbitrary constant. Thus by assuming U suitably one can make right 
hand side of the last equation integrable. In the present paper, we assume 

) 7~,dT/  = ~%U'p (8) 

where 'a' and 'rP are arbitrary constants. It result into a second order homogeneous 
differential equation in U: 

n r 2 U  '' + a r U '  - 8U = 0. (9) 

Its solution is 

U = c l r  2(c-b§ + c2 r2(c§ (lo) 

where 

b =  r  2 + 3 2 n  a + 3 n  
, c - ( 1  i )  

4n - 4 n  

provided n ~ 0. Also (7) is simplified into 
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r6-(a+n+2(c-b)(n+l))[Cl § C2~,,4b] ( A  _ 2I)  
V = (12) 

[(c - b + 1)cl § (c + b + 1)c2r4b] n+2 

where 

i =_ f r a-8+[2(c-b)+l](n+l) [(c -- b + 1)Cl § (c + b + 1)c2r'4b]n+2dr'. (13) 

The solution is complete if (13) is solved. In the foregoing sections we shall discuss 
a method of solving (13) and present a detailed study of the resulting solution. It 
may be mentioned here that for n = 0, we rediscover the class of solutions due 
to Tolman, usually referred as Tolman's V solution. Tolman's V solution is also 
obtainable if either of the constants cl and c2 vanishes. 

3. New Class of Solutions 

The equation (13) can be integrated by the method of substitution, if we assume 

4b - 1 = a - 8 + (2c - 2b + 1)(n + 1). (14) 

In view of (11), the equation (14) yields a quadratic equation in a: 

(n + 1)a 2 + 2 n ( n -  3)a + n 3 - 3n 2 + 36n = 0 (15) 

which solves into 

- n ( n  - 3) + 2(n + 3)x/-Z-n 
a = (n + 1) (16) 

Here we have considered only the positive radical sign; for, corresponding to 
negative radical sign, e ~ becomes singular at the origin. 

We thus obtain a new class of solutions of the equation (4) as follows: 

e u = c l r  2(c-b) -~- c2 r2(c+b) 

e"X  = ( C l r - 4 b  § C2) (el  § ~ 4 b ) n + 2  -- "/~ 

where 

r A 
2 ~ 

2 b ( c + b + l ) ( n + 2 ) C 2  

(17) 

(18) 

(19) 

(20) = 

cl = ( c - b + l ) c l  (21) 
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C2 = (e -t- b -t- 1)c2. (22) 

We observe that (d') r = 0 becomes singular for all values of 'n '  save - 1 _< n < 0. 
For n = - 1  the solution reduces to Tolman's IV solution. It may be pointed out 
here that the class of solutions obtained by Pant and Sah (Pant and Sah, 1982) 
has an expression for e v similar to (17), however, the two classes of solutions are 
disjoint. 

4. Properties of the New Class of Solutions 

In view of (17) and (18), we obtain from (2) and (3) the pressure and the density 
distributions: 

8rrGp 
e 4 

[ { }] l r  2 { 2 ( c - b ) +  1C, r -4b + ( 2 ( c + b ) +  1)c2} (cl q _ ~ 4 b ) n + 2  - ] )  -- l (23) 

8rrGp 
C 2 

1 [{(4b - 1)c la ir  -4b + [(n + 3)4b - 1 ] c 2 c  1 - C 2 C l  -}- [(Tg -~- 2)4b - 1]c2c22~'4b}A 
Z ''~ [ ( E1 -{- ~2T4b)n+ 3 

+ / ) { ( 1  - 4b)cl  ~'-4b + c2} + 1] .  (24) 

By using (23) and (24) we can easily derive 

1 dp _ 91 + 92 (25) 
c2 dp fl + f2 

where 

-2_A 
-~ (g'l q- C2r4b) n+3 [{2(e -- b) -I- 1}(1 + 2b)e~glr -4b + [2b(n + 3) 91 

-~-1][2(C -- b) -q- l i c i t2  -[- [2(c q- b) q- 1]c2~1 + [2b(n + 2) 

+1][2(c + b) + 1]c2~2r 4hI (26) 

92=2[{( l+2b)[2(c -b)+l]c l r -4b+[2(c+b)+l lc2}B+l]  (27) 
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A 
f l  ~ (El q- ~ 4 b ) n + 4  [(1 -- 4b)(2 + 4b)~2c,r -4b + [(1 - 4b)(2 

+4b(n + 4 ) } ) -  2{(n + 3 ) 4 b -  1}]Cl61C2 + 2~c2 

+[2 -  (n + 3)4b{1 + (n + 3)4b}]c1~Zr 4b + [4b{ (n + 2)4b 

--(rZ + 1)} + 4]ele2C2 r4b + [ ( 4 b -  2){(n + 2 ) 4 b -  1} 

I2--  

- ( n  + 3)4b{(n + 3)4b{(n + 2 ) 4 b -  l}]e2c22rSb}] 

/){--(1 -- 4b)(2 + 4b)el r-4b - 2c2} - 2. 

(28) 

(29) 

In addition to the parameter n, the solution (17), (18) contains three arbitrary 
constants cl, e2 and fi~. These are to be determined by the boundary conditions. 

e(~b) = o (3o) 

e A(rb) = (1 - 2u) - I  (31) 

e u(rb) = 1 - 2u (32) 

where 

G M  
C2rb �9 

Consequently, 

c +  b -  u(2c + 2b+ 1) 
el = 2br2(C_b ) 

b -  c +  u ( 2 c -  2b+ 1) 
c2 = 2br2b( C +b ) 

[ 
= '(2@ -- b) -t- 1)Clrb 4b -~ (2(c q- b) + 1)c2 

(33) 

(34) 

(35) 

1 ] 
+ ( 2 b ( c + b + l ) ( n + 2 ) c 2  (E l+  (36) 

For e" to be definitely positive in the region 0 < r < rb we must have cl, c2 > 0. 
That is 

c + b  c - b  
< u < - -  (37) 

2 c +  2b + 1 2 c -  2b + 1" 
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Table I 
March of pressure, density, pressure-density ratio and square 
of the ratio of sound speed to light speed within the fluid ball 
corresponding to n = -0.38198 and u = 0.3333278 

r 87rG 2 87rG 2 P ( ~ )  1 
x =--rb c 4 p% - '~  --orb p-~ -J 

0 cc cc 0.99989 0.99989 

0.1 49.4951 50.49989 0.9801 0.9999 

0.2 11.99884 12.99993 0.92299 0.9999 

0.3 5.05508 6.0555 0.83479 0.9999 

0.4 2.62476 3.62495 0.72408 0.9999 

0.5 1.49986 2.49957 0.60004 0.99991 
0.6 0.88812 1.88885 0.47055 0.99992 

0.7 0.52636 1 .52037 0.34226 0.99992 

0.8 0.28122 1.28121 0.21949 0,99993 

0.9 0.11727 1.11725 0.10496 0.99994 
1.0 0 .99997 0 0.99994 

The central values of pressure and density are infinite, however, the limiting value 
of their ratio at the centre is finite and equals the limiting value of dp/dp: 

(38) 
\ 2b(e+b+l)(n+2) ~- 

It has been calculated that for values of n in the interval [-0.2, -0.147) the right hand 
side of (38) is negative thus making the adiabatic sound speed imaginary. Again we 
observe that the limiting central value of dp/dp violates the causality principle for 
n in the interval [-0.381966, -0.115]. Hence for physically meaningful solutions, 
n ranges in the intervals [-1, -0.381966) and (0.115, 0). It is to be noted that the 
only known solution which corresponds to constant sound speed within the ball 
(equal to c, the speed of light in vacuo) is due to Leibovitz (Leibovitz, 1969; Matese 
and Whitman, 1980). We further note that the new class of solutions gives rise to 

Leibovitz's solution for ~ ( ~ ) " 7  --+ 0 = 1  or n = -0.381966049, and u = �89 

It is therefore, interesting to study a member of the class which asymptotically 
approaches to Leibovitz's solution. 

We consider a particular member corresponding to n = -0.38198. In view of 
(37) we fine for this value of n, 

0.3333277 < u < 0.3819643. (39) 

It is found that not all fluid balls which satisfy (39) are causal, however, we have 
calculated that corresponding to values of u close to the lower limit in (39) one 
obtains perfectly causal fluid balls. One such ball corresponding to u = 0.3333278 
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has been found to be of particularly significant interest. It corresponds to monotoni- 
cally decreasing pressure, density and pressure density ratio from the central region 
to the boundary, dp/dp, the square of adiabatic sound speed, has almost a stationary 
value throughout within the ball (Table 1) as expected. The new class of solution is 
therefore useful in studying stellar models where the variation in the sound speed 
is insignificant. 

We now present here a model of neutron star based on the particular solution 
discussed above. The neutron star is supposed to have a surface density equivalent 
to the typical nuclear density: Pb = 2 x I014 gm cm -3. The resulting causal model 
has the mass. M = 3.7Mo and the linear dimension, 2r6 ~ 32.76 Kin. The surface 
red shift Zb = (1 - 2u) -1/2 - 1 has been calculated for this model and we obtain 
Zb .-~ 0.73202. 
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