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Abstract. A point explosion in a spheroid with axially symmetric exponential density distribution is 
investigated by generalizing the method of Laumbach and Probstein to include the effects of a 
magnetic field. It is shown that the shock velocity decreases and tends to zero. Also, the elongation 
of the shock envelope along the axis of symmetry is much reduced and the blowout of the shock 
wave is removed on account of the magnetic field. 

1. Introduct ion  

Axisymmetric disturbances are of  considerable physical interest - for example, the 

propagation of shocks in stellar atmospheres, supernova explosions, high-altitude 

nuclear detonation, and phenomena associated with laser production of plasmas. 

The problem of a strong shock wave propagating from a point energy source in an 

inhomogeneous atmosphere whose density varies exponentially, has been studied by 

several authors. Kompaneets (1960) and Andriankin et al. (1962) analysed the problem 

approximately by assuming uniform pressure behind the shock front, kaumbach and 
Probstein (1969) obtained an explicit analytical solution by taking the flow field as 

' locally radial '  and using an integral method with an ~nergy constraint. Although 

different approximations have been made to simplify this problem, all these methods 
lead to excellent agreement, even with exact numerical results (Sachdev, 1972). 

Sakashita (1971), Bhowmick (1976) and M611enhoff (1976) applied the method of 

Laumbach and Probstein to a point explosion in an axially symmetric spheroid with 

exponential or Gaussian density distribution. In magnetogasdynamics the propagation 

of a spherical shock wave in an inhomogeneous medium has been studied by Summers 
(1975), Verma and Vishwakarma (1978) and Verma and Singh (1979). In these 

problems, the magnetic field is assumed to be an idealized field such that the lines of  
force lie on hemispheres whose centre is the point of  explosion and directed tangen- 

tially to the advancing shock front. Rosenau and FrankenthaI (1976) and Rosenau 
(1977) considered the propagation of axisymmetric magnetohydrodynamic shocks 

using similarity methods. As far as we are aware, the gaumbach and Probstein method 
to obtain analytical solutions for strong shocks propagating in an inhomogeneous 
medium has not been developed in magnetogasdynamics. 

The aim of the present paper is to generalize the method of Laumbach and Probstein 
by taking into account the interaction with the azimuthal magnetic field and investigate 

Astrophysics and Space Science 69 (1980) 177-188. 0004-640X/80/0691-017750I .80 
Copyright �9 1980 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A. 



178 B. G. VERMA AND J. P. VISHWAKARMA 

the effects of a magnetic field on the axially symmetric explosion in a spheroid with 
exponential density distribution. In Section 2, the method of Laumbach and Probstein 
is generalized to include the magnetogasdynamic effects. In Section 3, as an example, 
the point explosion in a spheroid (Sakashita, 1971) is analysed and the effects of a 
magnetic field are discussed in Section 4. 

2. Generalization of  Laumbach and Probstein's Method in 
Magnetogasdynamies  

We consider a point explosion in a medium with general axially symmetric distribution 
of density. Thus the density 0o may be taken as 0o (ro, 0), where 0 is the angle between 
the axis of symmetry and the radius vector, and ro is the position of a fluid particle at 
t = 0, the time of explosion. Following Laumbach and Probstein, we assume the flow 
field to be locally radial - i.e., gradients in the 0 direction are neglected. If  r is the 

Eulerian coordinate of a fluid particle of thickness dr, the equation of continuity for 
any polar angle is of the form 

oor2o dro = or 2 dr, (1) 

where the Lagrangian formulation is adopted with ro and t as independent variables. 
The electrical conductivity of the gas is assumed to be infinite and permeated by an 
azimuthal magnetic field. Thus, the momentum equation and the equation for a 
magnetic field in Lagrangian coordinates are given (cf. Summers, 1975; Rosenau and 
Frankenthal, 1976; Rosenau, 1977), respectively, by 

02r r~ {aP h ah~ h a 
at ---~ + Qor'---~ \ ~  + ~77ro] + or = 0 (2) 

and 

ah h . = o ,  (3) 
a-7 +  ,Oor--2! aro + 7- 

where the symbols have their usual meanings. The flow is assumed to be adiabatic, 

and the energy equation accordingly reduces to 

p(ro, t) [O(~o, t)]~ 
p,(ro) - [ o~(ro----3-] ' (4)  

where the subscript s refers to conditions when the particle is at the shock front. 
With the strong shock assumption we have 

O y +  1 y - 1 oo, (5) 

_ 2 0o/~2, (6) 
Ps Y +  1 
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and 

h~ = 7' + 1 ho, (7) 
y - 1  

where R is the location of shock front and the dot represents differentiation with respect 
to time. 

In the initial phase, the shock wave generated by the explosion propagates outwards 
isotropically with its spherical shape. Also, in the example analysed by us (Section 3), 
the shock envelope is nearly spherical throughout. Thus the equation of continuity in 
Lagrangian coordinates with spherical symmetry holds good approximately in the 
form 

~0 [ or2 ] au 2Ou O. ( 8 )  

The magnetic field equation (Equation (3)) with the continuity equation (8) give the 
'frozen-in field' condition 

h hs h0 
- -  = const . . . .  , (9) 
~r o~R Ooro 

as the shock location R(t) takes the same value in both Lagrangian or Eulerian co- 
ordinates (see Equaticm (19)). Using Equation (9) in Equation (1), we get the following 
equation for a magnetic field analogous to the continuity equation (1): 

horo dro = hr dr. (10) 

Integrating the momentum equation (2) and using Equation (10), we obtain 

with 

R 1 p*(ro, O, t) - p*(R, O) = a2r o ~ ?-~ O~176 dro + 

+ -/5 h~r~ dro, 
o 

h 2 
p* = p +  ~-. 

(11) 

~ro + ~,7-~u ~' b7 + 7~ horo = o, 

which on integration gives 

f R[ 1 l { a 2 r ~ ]  h(ro, O, t) -- h~(R, O) = o > + ~u2 @'~} horo dro. (12) 

Now, the magnetic field equation (3), with the aid of Equations (1) and (10), may be 
written in the form 
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For strong shocks, assuming that most of the mass is concentrated near the shock 
front, which is the idea used in Laumbach and Probstein's method, Equations (11) and 
(12) may be approximated as 

1 {~2r] (R 1 ( ~ r ] - ~ ( ~ h ~ r g d r  ~ (13) 

and 

[1  1 {02r] ] (Rhorodro. h - h s =  

Combining Equations (13) and (14), we obtain 

R 

1 [ 1  1 {02r]]2L2 1 ( ~ r )  -1 
2 ~+Ruu~\g t -~]sJ  + ~  7 ros  K, 

with 

(14) 

(15) 

fr = horo dro J = Oor~ dro, K 2 2 
o o 

and 

f; L = horo dro. 
o 

As the flow field is locally radial, the mass contained within a differential solid angle 
is constant; therefore, the integral energy conservation equation assumes the form 

E r e dr + dr 4- 4--'g = -~r 2 ~ t~}Ooro dro, (16) 

where E is the total energy of the flow field and is equal to the explosion energy. The 
first integral on the right-hand side is the internal energy per unit solid angle; the 
second term is the magnetic energy per unit splid angle; and the third term is the kinetic 
energy per unit solid angle. 

On the basis of the assumption that most of the mass is concentrated near the shock 
front, the dependent Eulerian variable r is expanded in a Taylor series about the 
location of the shock front as 

(~r)~ 21 [02r , .  r(ro, t) = R + (ro - R) + ~ro~js(,ro - R) 2 + . . . ,  (17) 

Where we retain terms only up to the order of (ro - R) 2. From the continuity equa- 
tion (1) and strong shock condition (5) we have 

( Sr ) {~or~ = 7 - 1 (18) 
s r + l "  
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Using the above relation and differentiating (17) with respect to t we obtain 

(19) 

and 

with 

Or) 2 = u ~ -  
y + l  

( 0 2 r ]  

x 

2 ( r -  1) 
• 

+ l ) ( r + l + 2 q  ~) 

[ 2(q2__+ 2y__-- 1)/~ + i/a In 0o] /~2 
( y - 1 )  \ O,'o I~ 

2 [O In 0o] ,~2 + q j 

(20) 

+ 

47, + (7' + 1)q2~ 2] (21) + 
(y + 1) ^ j  

q2 h~ (y + 1) 3 
= p~ -- 2(-y -- 1) 2 Ms 

where Mh = ~/-~ok2/h 2 is the Alfv6n Mach number of the shock. The solution of Equa- 
tion (21), which is performed by use of the conservation equations and boundary 
conditions, is somewhat lengthy and is given in the Appendix. 

Since the mass is highly concentrated near the shock front, for any r different from R 
the corresponding walue of  r0 may be taken as zero. Using this approximation, re- 
placing the term (&/at) 2 by (Or~at) 2 and using Equations (18)-(20), we finally obtain, 
from Equations (14)-(16), a second-order differential equation for the shock radius R 
in the form 

E _ 0o(R, 0)/~ 2 
X 

4w 3(V + 1) 

2(2 - r)q2RL(R, O) 2q~K(R, O) + 
(y + l)ho(R, 0) (y + 1)ho2(R, 0) 

(2 -- y)(y -- 1)q~L2(R, 0) ] 
G -7- F) ho TK, ] 

+ - -  2[~ 2 R 
(y + 02 J(R, 0) + -5 x 

[_~ RT, 0) (2 - y)q2ROo(R, O)L(R, O) 
• 1 2ho(R, O) 

- 1)q2oo(R, O)L2(R, 0)] [a2r] 
_ (2 Y)(~(7 + 1)Rh2( R, O) l, at2]~ - 

(17' + 1)(2 - y)(y - 1)q2Roo(R, O)L2(R, O) [aZr] 2 
(22) 
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with 

= horo dro, J(R,  O) Qorg dro, K(R,  O) = z 2 
0 

L(R; O) = horo dro (23) 

and Equation (21). In Equation (22) the angle 0 is contained as a parameter. If  
we integrate Equation (22) for any given initial density distribution and magnetic 
field distribution, we obtain the propagation of shock front and the resultant flow 
field. 

3. Point Explosion in a Spheroid 

For astrophysical interest, such as in rotating stars, we take the initial density distribu- 
tion as a spheroid in which the density decreases exponentially outwards from the 
centre. The stretching of the dipolar magnetic field by the radial flow of the plasma then 
produces an azimuthal magnetic field component and a relatively negligible radial 
component. For simplicity, we take the initial magnetic field distribution parallel to 
the initial density distribution. Thus, the initial density and magnetic field laws may 
be written as 

and 

with 

and 

~(ro, 0) = ~c exp (-~:) 

h(roO) = h~ exp ( -  ~:), 

(24) 

(25) 

~: = r0@ (26) 

e 2 cos 2 0 Ill2, (27) 
0 ( 0 ) =  1 + 1 -  e z 

where Qc, hc and e denote the central density, magnetic field intensity and the eccen- 
tricity of the spheroid, respectively. The eccentricity e is taken to be constant. To obtain 
the solution of the present model we use the generalized Laumbach and Probstein 
method developed in Section 2. 

For the density and magnetic field distributions given by Equations (24) and (25), 
the function J(R,  0), K(R,  O) and L(R, O) in Equation (22) can be evaluated; and 
therefore Equation (22), after a lengthy calculation, is reduced to 

#j2 E 
-gl@) ~ + g2('q)~ + g3(~))~) 2 = 4~re e | (28) 
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where 

and 

&(7) = (2 - 7')(7' - 1)q2(q 2 + 27' - 1)27 [1 - e -~ (1 + 7)] 2, 
3(7' + 1)(7' + 1 + 2q2) 2 e -~ 

4(q 2 + 27' - 1)7 (F~ - F2), 

1 
ga(~) = 3(7' + 1) x 

>., + q 2  e - ' 7  a + 2(7 '+ 1) e -~ 

>." {1 - (272 + 27 + 1) e -~} + 
12 

(7' + 1) 

• { 1 - ( ~ + 7 +  t ) e  -T} 2(2-7")q2~ 
�9 (7  + 1) x 

,,, {1 - (1 + 7)e-"~ - (2_(- +7)(7'1)=7- e-" t)q2 {1 - (1 + 7)e-"}~] 

2 ( 7 ' - 1 ) 7  [ 4 7 ' + ( 7 ' +  1 )q2_(1  +q~)]  x 
+ 3(7' + 1--~2q -2 + 7' + 1) (7' + 1)7 

>,' (F1  - � 89  

_ 2 [ 1 - ( ' ~ + 7 +  1)e -~] (2 -y )  
s 7 ' -  1 - 2 q2~ 7 x 

x [1 - (1 + ~7)e-~] - ( 2 -  7')(7' - 1)q 2 7 ] - ) ~ e -  ~ [1 - ( 1  + ~ ) e - " ]  2, 

( 2 -  7 ' ) ( y -  1)2q 2 [1 - (1 + 7) e-~'J 2 x 
F= = 4(7' u 1 + )-q~ ~z-~ 

• [ 4 7 ' + @ +  1 ) q ~ ( 7 +  1)7 - (1 +qS)]  

+ 

7 = se( R, 0) = R| (29) 

In the same way as in Sakashita (1971), we transform the time t to the reduced time t* 
by 

t E (30) 

With the aid of  the above transformation, Equation (28) becomes 

-g1(7) 7 + g2(7)7" + ga(7)7 '2 = 1, (31) 
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where the prime represents differentiation with respect to the reduced time t*. If we 
take ~ as the independent variable instead of t*, Equation (31) is reduced to 

- g l ( ~ ) \  + g2(~)~? ' + ga(r/)'q '2 = 1. (32) 

Numerical integration of this equation gives the reduced shock velocity ~7' as a function 
of the reduced shock location 7. The initial condition can be taken from the gas- 
dynamic solution (Sakashita, 1971), as the magnetic field does not affect the shock 
velocity in the vicinity of the explosion point (Verma and Vishwakarma, 1979). The 
time development of the shock front can be obtained from the integral 

f)d  
t* = --7' (33) 

4. Results and Discussion 

The solutions of Equations (32) and (33) are plotted with solid lines in Figures 1 and 2, 
where we have taken ~, = ~ and Mh -= 10. Dashed lines correspond to gasdynamic 
shock velocity. It is shown that in the beginning the velocity of magnetogasdynamic 
shock decreases rapidly, similar to gasdynamic shock. Afterwards, it decreases rather 
slowly and tends to zero, which is in contrast to ordinary gasdynamics where it starts 

to increase and tends to infinity. 
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Fig. 1. Variation of reduced shock velocity with reduced shock radius. - -  M a g n e t o g a s d y n a m i c  

shock velocity; - - -  gasdynamic shock velocity. 
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Fig. 4. Shock envelope at different times for e = 0.75. 

In order to obtain the time development of the shock envelope, the reduce time t* 

is deduced from Equation (30) for any given real time t and angle 0. The corresponding 

can be obtained from the integration results shown in Figures 1 and 2, and finally 
can be transformed to the real location R by Equation (29). Shock envelopes at various 

times in units of  (4~ro~c/E) 1/~ are shown in Figures 3 and 4 for the two cases of  eccen- 
tricity, e = 0.50 and e = 0.75. Solid and dashed lines represent the shock envelopes in 

magnetogasdynamics and ordinary gasdynamics, respectively. 
It can be seen from Figures 3 and 4 that the shock propagation is greatly inftuenced 

by a magnetic field along the symmetry axis. The elongation of the shock envelope 

along the axis of  symmetry is much less than in the gasdynamic case. On the other hand, 
along the equatorial plane (perpendicular to the axis of symmetry) the effects of  the 

magnetic field appear to be less and the differences from the gasdynamic case are small. 

In the gasdynamic model of Sakashita (1971), a blow-out of the shock wave occurs 
along the axis of symmetry if the eccentricity of spheroid exceeds a certain critical 

value. An interesting feature of the present magnetogasdynamic model is that blow-out 

of the shock wave does not occur. 

5. Summary and Conclusions 

The above anomalous features of the present model are perhaps due to the term h2/Qr 
in the momentum equation and the magnetic field distribution adopted. For the density 
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and magnetic field distributions (24) and (25), the totaI pressure (gasdynamic pressure 
+ magnetic pressure) inside the shock envelope decreases faster than the total external 
pressure, and the shock velocity decreases and tends to zero. Due to the decrease of 
shock velocity, elongation of the shock envelope along the axis of symmetry is small 
and blow-out of the shock wave does not occur. 

A model may be constructed with a steeper density gradient and more suitable 
magnetic field distribution in which the total pressure inside the shock envelope may 
decrease more slowly than the total external pressure. Thus, the shock velocity, after 
reaching a minimum due to spherical damping, may increase and tend to infinity as in 
the gasdynamic case (Sakashita, 1971 ; M611enhoff, 1976). Also, a blow-out of the shock 
wave may occur along the axis of symmetry. 

In conclusion, in the present model the magnetic field has a damping effect on the 
propagation of a shock wave and its velocity tends to zero. Also, breaking of the shock 
envelope is removed. 

A p p e n d i x  

Using Equation (18) in Equation (17), and differentiating twice with respect to t, we 
obtain 

02r 2 ]~ + t~7~)~ R _ t~-rro2} y ~  _ R)R. (A1) ~tz - Y +  1 

From the energy Equation (4) and the strong shock condition (5). 

= + - -  , ( A 2 )  
e Oro Oo aro] 

while 

1 = 

Ps Orols Oro/s + 2~-5 (A3) 

is obtained from (6). From the continuity equation (1) it follows that 

= - - 1  + - ~-;;~.2 ' ( A 4 )  tOo  of  \7---ilt ro/  
where (hrl&o)s has been replaced by (18). Finally, from Equation (9) we have 

1 ah'~ ~ho] ( 1  ~Qo] l 
h~ro]~ = ( ~  + (~#~oo)s - - ( y - - - ~ ) ~ ,  (as) -b-7oroi ~ \eo 0ro/~ 

in which Equations (5),  (7)  a n d  (18)  have been used. Eliminating 8%18t 2 between 
Equation (2) - the momentum equation evaluated at the shock - and Equation (A1), 
we have 

2 

- l,~-~r2o]s \~o Oro/s + \Oo-~ro/~ + -~ ~ + ~ j~" (a6) 
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U s i n g  (A2) - (A5)  a n d  cond i t i ons  (5)-(7) in  (A6), we de te rmine  the express ion for  

(~2r/~r~) Rz. F r o m  ( A I )  the resul t  g iven by  (21) follows.  
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