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Abstract. Vacuum Fr iedmann-Rober tson-Walker  cosmological models are derived in Lyra's manifold and 
some properties of the solutions are discussed. In addition to the usual de Sitter universe, several new 
solutions are obtained. 

I. Introduction 

In 1917 Einstein introduced the cosmological constant into his field equations in order 
to obtain a static cosmological model (Lorenz-Petzold, 1984 and references given 
therein) since his equations without the cosmological constant admitted only nonstatic 
solutions. After the discovery of the redshift of the galaxies and its explanation as being 
due to the expansion of the Universe, Einstein regretted his introduction of the 
cosmological constant. Recently, there has been much interest in the cosmological term 
within the context of quantum field theories, quantum gravity, supergravity theories, 
Kaluza-Klein theories, and the'inflationary-universe scenario (Banerjee and Banerjee, 
1985 and references given therein). However, as Sen (1957) has pointed out, there is 
no theoretical justification for the cosmological term in general relativity based on a 
Riemannian manifold. 

Lyra (1951) proposed a modification of Riemannian geometry by introducing a gauge 
function into the structureless manifold, as a result of which the cosmological constant 
arises naturally from the geometry. Sen (1957) studied a static cosmological model in 
Lyra's manifold, and others who have considered models based on this modified 
geometry are Halford (1970), Bhamra (1974), Kalyanshetti and Waghmode (1982), and 
most recently Reddy and Innaiah (1985). In this paper we study the vacuum Friedmann 
models based on Lyra's manifold and show that a wider class of solutions is obtained 
compared to models based on Riemannian geometry. 

2. Field Equations and Solutions 

The field equations in normal gauge in Lyra's manifold (cf. Sen, 1957) are 

4Rab -- 2Rgab + 6~Oa(Pb -- 3~Oc~OCgab = Tab , 
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where as in Riemannian geometry Rab is the Ricci tensor, R the Ricci scalar, gab the 

metric tensor, and Tao the energy-momentum tensor. % is a displacement vector. We 
use units in which c = 8rcG = 1 and Latin indices are assumed to take values 0 to 3. 

As usually considered by all the authors who have studied Lyra 's  manifold and its 

cosmologies,  we take % to be the constant  vector 

~o a = (fl = constant,  0, 0, 0) .  (2) 

We shall not restrict fi to be real since some authors consider ti to be real (for example, 
Halford,  1970) whilst others consider it to be purely imaginary (for example, Sen, 1957). 

The vacuum Fr iedmann-type equation is, f rom the Rober t son-Walke r  metric and (1), 

4 H  2 + 4k/R 2 - 3fl 2 = 0 ,  (3) 

where H = RiR  is the Hubble  parameter ,  the overhead dot denoting a derivative with 
respect  to time. 

The solutions to (3) are: 

(i) k = 0, f12 > 0, fl real: 

R = m exp(flt /2),  (4) 

where m = constant  of  integration. 

(ii) k = + 1, fi2 > 0, fl real: 

R = (2/fl) cosh(fl t /2),  (5) 

where we have chosen the constant  o f  integration to be zero so that  R(0) = 2/fl. 

(iii) k = - 1, fi2 > 0, fi real: 

R = (2/fi) sinh(flt/2),  (6) 

where we have chosen the constant  of  integratio to be zero so that  R(0) = 0. 

(iv) k = - 1, f12 < 0, fl pure imaginary: 

R = (2/a) sin (~t/2),  (7) 

where we have set fi2 = _ ~z and where, once again, we choose the constant  of  

integration to be zero so that R (0) = 0. 

( v )  k = - 1 , / ~ 2  = O: 

We obtain the usual Milne Universe.  

3. Discussion 

The solution (4) is identical to the usual de Sitter universe as we would expect. However ,  
in addition, we also have the solutions (5), (6), and (7). Both (5) and (6) tend 
asymptotically to (4) for large t but the solution (7) represents an oscillating-type 
universe. Thus we have a wider class of  solutions than in the corresponding general 
relativistic case with the cosmological constant.  It  is also interesting to note that  the 
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solutions (4) and (6) are formally identical to the corresponding Brans-Dicke  vacuum 

Friedmann models with constant  scalar field (Lorenz-Petzold,  1983). Our model (5) 

expands from a finite value of  R at t = 0. In conclusion, the advantage of  cosmological 

models based on Lyra 's  manifold rather than a Riemannian manifold is that the 

cosmological constant  arises naturally from the geometry rather than being introduced 

in an arbitrary ad hoc fashion. 
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