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Summary. The use of a function to fit blood concen- 
tration-time data points is equivalent, under certain 
assumptions, to specifying a model of the distribu- 
tion of residence times of the drug molecules in the 
body (stochastic pharmacokinetic model). 

An empirical density function of the Weibull 
type is offered to describe this distribution. The 
model gives the following disposition function de- 
sc~bing the time course of the drug concentrations 
in blood after an intravenous bolus input: 

Cr(t) = --D-sZt ~ -lexp ( -  Zts). 
CL 

It contains only three parameters: Z is like an 
'elimination rate constant' in the single-exponential 
model into which the Weibull function reduces 
when the shape parameters becomes equal to unity; 
CL is the conventional systemic drug clearance, 
and, D is the dose injected. 

The Weibull function gives an analytical solu- 
tion of the convolution integral for zero-order input, 
thereby permitting use of the model for intravenous 
infusion data and for extravascutar administration, 
when the absorption may be considered to be zero- 
order. 

Using examples from the literature it is shown 
that in some cases the Weibull function gives a bet- 
ter fit than may be obtained with two- and three- 
exponential or gamma functions. 

Key words: Weibull distribution; stochastic model, 
pharmacokinetic modelling, distribution of resi- 
dence times 
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The models most commonly used in pharmacoki- 
netics - compartmental and physiological (perfu- 
sion) - may be referred to as structural models, 
since they tend to describe more or less accurately 
the real processes of mass transfer of a drug in the 
body, namely distribution, metabolism and excre- 
tion. Alternatively, pharmacokinetic stochastic mod- 
els may be suggested, which ignore the mass trans- 
fer processes and specify a distribution function of 
residence times of the drug molecules in the body. 
The latter models are based on the concept that any 
disposition behaviour of a drug leads to a particular 
distribution of residence times which is the realiza- 
tion of the random variable, namely the time inter- 
val between entry of the molecule into the body and 
its elimination by metabolism and/or  excretion; for 
example, one-compartment disposition produces a 
simple exponential distribution of residence times 
and a two-compartment system gives a biexponen- 
tial distribution which is a mixture of two single ex- 
ponential distributions. Disposition models based 
on the conception of drculatory drug transport 
(Cutler 1979; Vaughan and Hope 1979; Weiss 1979; 
Van Possum 1983) in some cases lead to distribu- 
tions other than polyexponential, e.g., gamma or 
power distributions (Weiss 1983; Wise 1985). How- 
ever, the concept of the stochastic model permits 
use of any empirical distribution that can adequate- 
ly describe the observed blood concentration - time 
data. There may be no supporting structural model 
equivalent for some of these distributions. 

In the present account some general equations 
relating a probability density function of any distri- 
bution of residence times to the observable blood 
concentration - time profile are presented. A new 
empirical disposition stochastic model based on the 
Weibull distribution is also proposed. The disposi- 
tion function provided is compared with polyex- 
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ponential and gamma functions in fitting real kinet- 
ic data taken from literature, and some of its 
benefits are stressed. 

T h e o r e t i c a l  A n a l y s i s  

After an intravenous (i.v.) impulse input of a drug 
dose D, each molecule remains within the body for 
a certain time and is then eliminated. This time, 
called the residence time of the drug molecule in the 
body, can be regarded as a random variable, and 
since the number of molecules in the dose injected 
is enormous, the variable may be considered to be 
continuously distributed within an interval from 
zero to infinity. A stochastic pharmacokinetic model 
specifies the probability density function (p. d.f.) of 
the residence times distribution. By definition 

t2 

P(h < t ' <  t2)= f p(t')dt' (1) 
tl 

where P(h < t ' <  t2) is a probability that a molecule 
residence time t' has between h and t2. All mole- 
cules will be eliminated with time, so 

7 
P(0 < t' < ~,) = ~ p(t')dt' = 1 (2) 

o 

P(0 < t ' <  t) will define the part of the dose already 
eliminated up to time t, and P(t < t' < ~ )  will define 
the amount of drug in the body at that time, A(t): 

oo 

A ( t ) = D - P ( t < t ' <  oo)= i p(t')dt' (3) 
t 

Taking into account Eq (2) the last equation can be 
rewritten as: 

t 

A(t) = D-[1 - i p(t')dt'l (4) 
O 

Differentiating Eq. (4) by time gives the drug elimi- 
nation rate: 

dA 
- - -  = D.p(t)  (5) 

(It 

Assuming linear pharmacokinetics and elimination 
exclusively from well-perfused organs (i. e. no elimi- 
nation from peripheral tissues), the elimination rate 
will equal to the total drug clearance, CL, multi- 
plied by the drug concentration in blood following 
the i.v. impulse input, Ca(t): 

dA 
- - -  = CL. Ca ( t )  ( 6 )  

dt 

Combining Eqs. (5) and (6) and solving for Co(t) we 
obtain: 

C6 (t) = ~LL p(t) (7) 

Thus, under the above mentioned conditions the 
drug concentration - time profile in blood reflects 
the form of the p. d. f. of residence times distribution 
(Weiss 1983). 

One of the possible specific forms of the resi- 
dence time distribution is a (single) exponential dis- 
tribution with the following p. d. f.: 

p(t) =/ l .  e-At (8) 

which leads to exponential decay of the drug level 
in blood after an impulse input. A one-compart- 
ment model produces the same profile, so one can 
say that this model results in the single-exponential 
distribution of residence times. However, following 
i.v. bolus injection of the majority of drugs, the con- 
centration-time profiles are concave on a semilogar- 
ithmic plot. This may be described using a mixed 
distribution consisting of two single-exponential 
functions: 

p(t) = ka l e -  z,t + (1-k)A2e- A2t (9) 

where k represents the relative contribution of the 
first exponential term (0 < k < 1). Introducing Eq. 
(9) into (7) gives: 

Co(t) = Lie-cyst+ Lze -/~zt (10) 

where L1 = _DDcL k21 and L2 = ~LL(1-k)22. Such form 

of the disposition function is habitual to the two- 
compartment model. However, there is no rigorous 
conjunction between the two-exponential and two- 
compartment models since more complex compart- 
mental models may also give two-exponentiaMike 
dispositions curves with certain combinations of the 
microconstants. 

In the same way one can construct mixed distri- 
butions containing three: 

Ca(t) = Lle-&t + L2 e-&t + L3e -&t (11) 

or more exponential terms. However, the addition 
of each new term to the model adds two extra pa- 
rameters to be estimated (contribution coefficient 
and 'rate constant'). 

Concave disposition curves may be also approx- 
imated by a gamma distribution of residence times: 

p~., t ~exp(-  t/fl) 
W =  F~a-+ 1 ) ~  (12) 
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where a < 0. Introducing Eq. (12) into (7) and de- 
noting a = - a ,  A = D / [ C L . F ( a + 1 ) . f l a + t l ,  and 
b = 1 / f l  we have: 

C~(t) = At- ae- bt (13) 

Gamma-distributed residence times can be inter- 
preted in terms of a recirculatory model (Weiss 
1983). Eq. (13) contains only three parameters and 
seems to be applicable to many drugs (Wise 1985). 

Log-concave profiles can also be described by 
the Weibull distribution (Johnson and Leone 1977): 

p(t)= s ( t ) s_  texp[_ (t)s] (14) 

where 0 <s  <1. Denoting Z = 1 / r  s and introducing 
Eq. (14) into (7) gives a disposit!ion function of the 
Weibull type: 

C6(t) = Bt ~- lexp( - Zt ~) (15) 

where B = _D.  sZ. The mean residence time of drug 
CL 

molecules in the body can be calculated in this case 
as 

MRT= F(I + {).  r =  F'(I + ~)/Z I/~ (16) 

This may be viewed as a general~ization of an expo- 
nential distribution since at s=  1 Eq. (t5) becomes 
identical to Eq. (8). The lower the shape parameter s 
the more concave becomes the concentration-time 
curve. The forms of profiles simulated using Eq. 
(15) for s from 0.3 to 1 are plotted on a semilogarith- 
mic scale in Fig. 1. 

Like Eqs. (10), (11) and (13), Eq. (15) may be ap- 
plied directly to fit concentration-time data only fol- 
lowing i.v. impulse input. Some examples of the use 
of this equation are given below. It permits lineari- 
sation of data on a ln(C/t ~-1) vs t ~ scale, and this 
can serve as a visual check of the applicability of 
the Weibull function to specific data. 

In the case of noninstantaneous drug input, con- 
volution provides the best way to obtain the neces- 
sary model equations for the corresponding concen- 
tration-time profile, C(t): 

t 

C(t)= i i(t')Ca(t-t')dt' (17) 
o 

where i(t) is an input function representing the drug 
input rate into the circulation. Introducing specific 
forms of the disposition function C,s(t) and of i(t) 
and solving the integral (17) gives an equation that 
describes the theoretical concentration-time profile 
for the assumed disposition and input models. For 

.£ 
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Fig.1. Theoretical blood concentration - time profile for Wei- 
bull-distributed residence times of drug molecules in the body. 
Abscissa-time (conventional units); ordinate-concentration (log 
conventional units) 

example, taking zero-order input which describes an 
i.v. infusion: 

i(t)={ I0(O <t~<T) 
( T < t <  ~ )  

and assuming the disposition function of the Wei- 
bull type (15) gives: 

C(t)= l ~L[1-exp(-  Zff)] (0 < t ~< T) 

[ {exp[- Z(t-T)S]-exp( - ZP)}(T < t) (18) 

where T is the duration of the infusion. 
Polyexponential disposition functions also pro- 

vide an analytical solution of the convolution inte- 
gral with zero-order input (e. g., Wagner 1976 a), but 
this is not the case for the gamma function. In prin- 
ciple, this problem may be overcome by means of a 
suitable numerical algorithm evaluating the integral 
(17). Such an algorithm is also needed to describe 
data after drug input of an order higher than zero, 
because then neither Weibull nor gamma functions 
give an analytical solution of the convolution inte- 
gral. However, these problems, which arise mainly 
in case of extravascular administration, are beyond 
the scope of the present paper and will be discussed 
elsewhere. 

Practical Application 

The disposition function of the Weibull type was 
compared with the other functions discussed above 
by fitting real drug kinetic data after i.v. injection 
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Table 1. 
al. 1968) 

Parameters of  disposition functions for bishydroxycoumarin kinetics and 
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measures of  goodness of  fit (data from Nagashima et 

2-exponential 3-exponential G a m m a  Weibull 
function function function function 
(Eq. 10) (Eq. 11) (Eq. 13) (Eq. 15) 

SD 
AIC b 
SC c 

La =25.6 (8.3)" L1 =18.4 (17) 
,a,~ = 1.55 (I5.1) 21 = 1.20 (31) 
b2 = 16.9 (5.4) Le = 15.8 (8) 
Z2 = 0.0905 (6.6) ..-!v2 = 0.142 (33) 
a ,  = - 0 . 1 9  (65) 1-3 = 2.63 (123) 
a2 =1,2 (41) Z3 = 0.0157 (236) 

a l  = 0.0001 (67) 
0-2 = 4.8 (I0) 

0.990 0.977 
1.22 2.13 

45.0 32.6 
50.4 35.4 

A = 22.2 
a = 0.317 
b = 0.0539 
oq = 0.026 
o '2= 2.4 

0.988 
1,31 

32.2 
35.0 

(I .6) 
(5.0) 
(5.3) 

(66) 
(20) 

B =24.8 (1.8) 
Z = 0.148 (2.3) 
s = 0.748 (1.7) 
a l  = 0.015 (66) 
a 2 =  2.7 (18) 

0.989 
1.22 

29.5 
32.3 

a parameters CVs; b Akaike information criterion; c Schwarz criterion 
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Fig.2. a Bishydroxycoumarin plasma concentration - time pro- 
file (Nagashima et al. 1968) fitted to a Weibull function, b Same 
data linearized. Abscissa - (h)S; ordinate - log mg/1 (h) ~ 
e Weighted residuals vs calculated concentration plot 

and, in one case, following sublingual administra- 
tion. The best fits were obtained using an extended 
least-squares nonlinear regressional analysis pro- 
gram (ELSNLR; Nichols and Peck 1981) which has 
an important advantage over ordinary least-squares 
algorithms (Peck et al. 1984). In the program both 
pharmacokinetic and variance models are available 
specified. The two-parameter variance model was 

used, in which an error is assumed to be proportion- 
al to some power of the calculated concentration: 

VAR= a lC ~ 

Both al and a2 must be estimated together with the 
parameters of the pharmacokinetic model from the 
concentration-time data points. 

It should be stressed, however, that any nonlin- 
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Table  2. P a r a m e t e r s  o f  d i s p o s i t i o n  func t i ons  for  l i d o c a i n e  k ine t i cs  a n d  o f  v a r i a n c e  m o d e l  a n d  m e a s u r e s  o f  g o o d n e s s  o f  fit ( d a t a  f r o m  
S u p r a d i s t  et  al., 1984) 

D o s e  2 - e x p o n e n t i a l  G a m m a  Weibu l l  
(mg)  f u n c t i o n  func t ion  func t ion  

(Eq.  10) (Eq.  13) (Eq.  15) 

2.5 L1 = 2.48 (4.0) ~ A = 5.55 (3,7) B = 5.52 (3.3) 
Z1 = 0.108 (9.8) a = 0.32 (6.5) Z = 0.036 (4.2) 

L2 = 1.82 (6.5) b = 0.0083 (11.3) s = 0.73 (2.6) 
X2 = 0.012 (8.7) 

a l  = 0.034 (25) a l  = 0.041 (25) or1 = 0.040 (25) 
0"2 = -- 0.8 (69) a2  = --0.3 (190) cr2 = - 0.86 (73) 
r 2 = 0.999 r 2 = 0.998 r 2 = 0.998 

S D  = 0.0505 SD = 0.0525 SD = 0.057 
A I C  = - 19.4 b A I C  = - 18.4 A I C  = - 18.7 
SC = - 19.0 c SC = - 18.0 SC = - 18.3 

5.0 L~ = 5.48 (27) A = 10.1 (5.0) B = 9.87 (4.7) 

Z~ = 0.029 (29) a = 0.165 (15.8) Z = 0.025 (5,9) 
L2 = 2.34 (70) b = 0.0125 (7.9) s = 0.87 (2.2) 
Z2 = 0.0085 (42) 

or1 = 0.056 (36) o-1 = 0,098 (35) cYl = 0.084 (36) 
<72 = 1.8 (32) if2 = 0.29 (190) a2 = 0.53 (108) 
r 2 = 0.994 r 2 = 0.998 r 2 = 0.998 

S D  = 0.250 S D  = 0.143 SD = 0.140 
A I C =  1.6 A I C = -  2.4 A I C = -  3.1 
SC = 1.9 SC  = -  2.0 SC = -  2.7 

t0 .0  L~ = 8.33 (13) A = 21.2 (4.2) B = 20.2 (4,7) 
Z~ = 0.105 (22) a = 0.251 (8.1) Z = 0.03t  (5.9) 
L2 = 9.06 (5.4) b = 0.011 (5.8) s = 0.82 (2.3) 
Z2 = 0.0136 (3.8) 

a l  = 0.055 (47) a t  = 0.075 (47) a l  = 0,093 (48) 
cr2 = 1,51 (37) a2 = 0,88 (64) a2  = 0.81 (70) 
r 2 = 0.997 r 2 = 0.998 r a = 0.998 

S D  = 0.321 S D  = 0.210 S D  = 0.250 
A I C =  5.6 A I C =  2.8 A I C =  4.1 
SC = 6.0 SC = 3.2 SC = 4,5 

F o o t n o t e s  as in  Tab le  1 

ear regression analysis program could be used in 
principle to fit models to data. Goodness of fit was 
assessed by the coefficient of determination (r 2) and 
standard deviation (SD) calculated as: 

12 = 1 ~ d 2  

SD = ~/~,d2/(N-e) 

where 

~ d  2 = Z ( C m e a s . -  Ccalc.)  2 

Sc  2 2 (z~Cmeas.)  2 
~-- Cmeas" 

N 

N and P are points number and disposition model 
parameters number, respectively. Different models 
were compared using Akaike (Akaike 1976) and 
Schwarz (Schwarz 1978) criteria, by which the pre- 
ferred model can be chosen according the 'principle 
of parsimony' (Landaw and DiStefano 1984). Coef- 

ficients of variation (CV) of parameter estimates 
and point deviations over model curves computed 
by the program were also taken into account. 

Results 

Example 1 

The kinetic data on bishydroxycoumarin following 
an i.v. bolus dose (Nagashima et al. 1968) were fit- 
ted by Eqs. (10), (11), (13) and (15). The results are 
presented in Table 1 and Fig. 2. The concentration - 
time data and the best fit curve obtained with the 
Weibull function (semilogarithmic scale) are shown 
in Fig.2a and b. Figure 2b demonstrates lineariza- 
tion of the data in ln(C/ff -1) vs t S scale; a corre- 
sponding graph of weighted residuals is shown in 
Fig.2c. By providing the lowest values of the 
Akaike and Schwarz criteria and the lowest SD, as 
well as the highest 12, the Weibull function proved 
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Fig.3. Lidocaine plasma concentration - time profiles in rats 
following rapid i.v. injection of 2.5 mg (Curve A), 5.0 mg (B) and 
10.0 mg (C; Supradist et al. 1984) fitted to a Weibull function 
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Fig.4. kidocaine plasma concentration - time data in man (se- 
milogarithmic plot) during and after infusion for 3 rain ([3), 
19rain (~) and 31 rain (11) (Tucker and Boas 1971). Curves 
correspond to the best fits obtained with Weibull-distributed resi- 
dence times 

to be superior to all other functions tested. The pa- 
rameter CVs were also the lowest in the case of the 
Weibull function. 

Example 2 

The data on lidocaine kinetics by Supradist et al. 
(1984) obtained after the i.v. administration of three 
different doses to rats were fitted using Eqs. (10), 
(11), (13) and (15). Attempts to fit a three-exponen- 
tial equation failed because the errors in the model 
parameters were too large. The results obtained 
with biexponential, gamma and Weibull functions 
are listed in Table 2. A semilogarithmic plot of the 
data from all three sets and the Weibull model best 
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Nitroglycerin plasma concentration-time data (logarith- 
mic scale) after sublingual administration of 0.5 mg (Blagodat- 
skikh et al. 1987). The curve represents the best fit by Eq. (17) 

fit curves are shown in Fig. 3. From the comparison 
of criteria, in this case the Weibull function pro- 
vided a better fit than the others for one of the data 
sets (5.0 mg dose), and for the other sets the biex- 
ponential (2.5 mg dose) and gamma (10 mg dose) 
functions gave better results. 

Example 3 

This example demonstrates the potential of the Wei- 
bull function for describing infusion data. Three 
data sets (Tucker and Boas 1971) obtained during 
and after cessation of lidocaine infusion at different 
constant rates in man were used. The sets were fit- 
ted by Eq. (17; see Fig.4) and also corresponding 
equations for two- and three-exponential disposi- 
tions functions (Wagner 1976 a). It is apparent from 
the results obtained (Table 3), that the Weibull func- 
tion gave a better fit for the first data set, while the 
second set seemed to be better described by the two- 
exponential function according to both Akaike and 
Schwarz criteria. However, Z2 in the last case ap- 
peared negative, so this function is inappropriate, 
and the Weibull function can be chosen as the best. 
For the third set the Weibull and two-exponential 
functions gave results close to each other. Values of 
criteria were slightly lower for the two-exponential 
function while the parameters CVs were smaller for 
the Weibull function. 

Example 4 

All the above data sets contained sufficient points 
to be fitted to complex disposition functions. How- 
ever, in practice only a few data points may be 
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Table 3. Parameters of  disposition functions for tidocaine 
data from Tucker and Boas 1971) 
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kinetics and of  variance model and measures of  goodness of fit (infusion, 

Infusion 3-exponential 
duration function 
(rain) (Eq.  11) 

2-exponential Weibull 
function function 
(Eq.  10) (Eq.  15) 

3 

19 

31 

L1 -- 7,42 (29)" 
Z1 = 0.717 (64) 
L2 = 2.96 (27) 
/~2 = 0,0762 (19) 
[,3 = 0,865 (6,8) 
) ~ 3 - - -  0.00692 (6,0) 
o'i = 0.0075 (26) 
0-2 = 4.4 (10) 
r z = 0.802 

S D  = 1.707 
A I C =  24.0 b 
S D  = 30,2 c 

L1 = 2.43 (12900) 
Z~ = 0,342 (1470) 

L2 = 8.92 0 5 1 0 )  
,)~2 = 0.275 (381) 
L3 = 1,05 (231) 

")~3 = - "  0 . 0 1 5  ( 5 0 0 )  

0-~ = 0.49 (46) 
0-2 = - 4 . 8  (290) 
r 2 = 0,941 

S D  = 0,269 
A I C =  1.13 
SC  = 5.0 

L1 = 5.27 (583) 
,1,1 = 0.342 (397) 
L2 = 3,51 (822) 
Z2 ~ 0,123 (6t  5) 
L 3 = 0,95 (442) 
23 = 0.00968 (869) 
0-~ = 0.068 (24) 

o-2 = 0,65 (676) 
r 2 = 0.980 

S D  ~ 0.092 
A I C  = - 17.3 
SC  = - 12.8 

L1 = 61,9 (13) B = 72.3 (6.8) 
)ol = 0,106 (9.4) Z = 0.0544 ( t l )  
L? = 0.898 (5,0) s = 0.564 (5.8) 
A,2 = 0.00715 (4.4) 

crl = 0,084 (23) 0-~ = 0.11 (23) 

0-2 = 4,7 (8.8) 0-2 = 3.8 (11) 
r 2 = 0.744 r 2 = 0.800 

S D  = 1.77 S D  = 1,50 
A I C  = 26,4 A I C  = 26.1 
SC = 31.0 SC = 30.0 

L1 = 1 0 , 9  (9.6) B = 5.98 (51) 
A,~ = 0,268 (27) A, = 0.150 (40) 

L2 = 0,974 (65) s = 0.550 (23) 
22 = - 0 . 0 3 5  (710) 

0-4 = 0.50 (44) o-i = 0.35 (38) 
G2 = - 4 . 9  (24) 0-2 = - 2 . 8  (37) 
r 2 = 0,942 r 2 = 0.940 

S D  = 0.230 S D  = 0.222 
A I C =  - 2 . 6  A I C =  1.0 
SC = 0.30 S D  = 3.4 

L~ = 8.22 (11) B = 3.97 (6.0) 
Z1 = 0,264 (28) Z = 0.120 (3.6) 
14 = 1,70 (28) s = 0.57 (5.0) 
22 0.0233 (34) 

or1 = 0.060 (24) 0-1 = 0,040 (25) 
a2 = 0.44 (231) 0-2 = 4.0 (26) 
r a = 0.983 r ~ = 0.965 
S D  --- 0.075 S D  = 0.102 
A I C  = - 23.7 A I C  = - 22,0 
SC = - 20.3 SC  = - 19.2 

Footnotes as in Table 1 

available. The fourth example is taken from a study 
of nitroglycerin kinetics following an 0.5 mg sublin- 
gual dose (Blagodatskikh et at. 1987). The typical 
plasma concentration-time data set (Fig. 5) consisted 
of 6 points. They were fitted by Eq. (t7) assuming T 
to be a model parameter (not a fixed value). Thus, 
in this case zero-order absorption kinetics and the 
Weibull disposition model have been assumed. The 
line in Fig. 5 represents the best fit model curve, and 
the parameter estimates were (% CVs in paren- 
theses): I /CL=3.25 ng/ml (3.2); T=6.34 min (6.0); 
s=0.617 (5.8); Z = O . 6 3 7 m i n  -~/s (9.9). Parameters 
reflecting the goodness of fit were: r2=0.9999; 
SD=0.0154; AIC=-24A;  SC=-15.2. MRT of 
nitroglycerin calculated by Eq. (16) was 2.76 rain. 
Mean absorption time estimated as T/2 was 

3.17 rain. Since the fraction of dose absorbed was 
not known, the systemic clearance and the steady- 
state volume of distribution could not be found. 
(This fact does not prevent proper estimation of 
MRT and the mean absorption time, since those 
parameters are not affected by the above fraction.) 
Polyexponential functions could not be used in this 
instance due to the very small number of points 
available. 

Discussion 

Models specifying the tbrm of p.d.f, of residence 
times distributions represent a special class of phar- 
macokinetic models (stochastic models) which ac- 
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cording to the degree of detail provided of the drug 
disposition in the body, can be located between the 
classical structural (compartmental and physiologi- 
cal) models and the so-called model-independent 
approach (Piotrovskii 1985). The former are based 
on modelling mass transfer processes within the 
body, but the latter has a different basis and gives 
only an integral description of the disposition in 
terms of the mean residence time, its variance, clear- 
ance, volumes of distribution etc. These parameters 
may be computed directly from concentration-time 
data pairs by means of the trapezoidal rule, al- 
though, there is always the problem of extrapolation 
outside the sampling time interval, which requires a 
specific distribution, e. g. for residence times longer 
than the last measured time point. An exponential 
distribution is commonly assumed, and the corre- 
sponding 'rate constant' has to be estimated from 
the points referred to the terminal log-linear phase 
of the curve. The choice of this phase is always sub- 
jective. Furthermore, the accuracy of the drug con- 
centration measurement at those points is usually 
low. All these factors together may result in biased 
estimation of the slope of the terminal phase, so 
model-independent parameters may be determined 
with large errors. It seems preferable to use all avail- 
able data points for the extrapolation, but this 
forces choice of a specific function describing the 
data, i.e. selection of the form of the entire distribu- 
tion function for all the residence times. Under as- 
sumptions formulated above (linearity of kinetics 
and nonperipheral elimination), the blood concen- 
tration-time profile reflects the p. d. f. of the distribu- 
tion of residence times of drug molecules in the 
body. Those assumptions are common to linear 
compartmental modelling and to the model-inde- 
pendent approach, too. For example, if there is 
some elimination in peripheral tissues a reliable es- 
timate of the model-independent parameters cannot 
be obtained by the statistical moments method 
when only blood (or urine) concentration - time 
data are available (see, e.g., Collier •983). 

Polyexponential functions may be regarded as 
p. d.f.'s of mixed distributions consisting of several 
exponential terms (in the sense of Eq. 9). Many 
pharmacokineticists consider use of these functions 
as equivalent to multicompartmental modeling. An 
alternative point of view is that the polyexponential 
approximation gives model-independent descrip- 
tion of the drug kinetics (Wagner 1976a; Wagner 
1976b). However, it seems more appropriate to dis- 
tinguish these functions as a separate class of mod- 
els, stochastic models, which include also the gam- 
ma (Weiss 1983) and Weibull functions suggested 
here. 

The examples presented here show the potential 
of the Weibull function as a disposition model, 
which affords a good fit of data after an i.v. bolus 
dose, during and after zero-order infusion and even 
following extravascutar administration (Example 4). 
The main advantage of the Weibull function over 
polyexponentials lies in the relatively small number 
of parameters to be estimated, and this allows its 
use for data sets containing only a few points, as in 
Example 4. The gamma function also has three pa- 
rameters, but it can only be directly applied to bolus 
impulse injections. 

Certainly, the Weibull function, as well as other 
functions mentioned here, is no more than an ap- 
proximation to the true p. d. f. of the residence times 
distribution of drug molecules in the body. The for- 
mer may be applied with success to profiles of rela- 
tively low curvature (on a semilogarithmic scale), as 
in Example 2, and in some instances to highly cur- 
vilinear profiles that lack a clear log-linear terminal 
phase (apparently 'polyexponential' curve) as in Ex- 
ample 1. Of course, since the body comprises many 
organs and tissues, each of which has its own distri- 
bution of residence times of drug molecules, the 
overall distribution will be very complex. In our 
opinion among simple analytical functions there is 
none that can be regarded as the true p. d. t'. of the 
distribution of residence times in the body. 
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