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Abstract .  We use a composite galaxy model consisting of a disk-halo, bulge, nucleus and dark-halo 
components in order to investigate the motion of stars in the r - z plane. It is observed that high 
angular momentum stars move in regular orbits. The majority of orbits are box orbits. There are also 
banana-like orbits. For a given value of energy, only a fraction of the low angular momentum stars 
- those going near the nucleus - show chaotic motion while the rest move in regular orbits. Again 
one observes the above two kinds of orbits. In addition to the above one can also see orbits with 
the characteristics of the 2/3 and 3/4 resonance. It is also shown that, in the absence of the bulge 
component, the area of chaotic motion in the surface of section increases significantly. This suggests 
that a larger number of low angular momentum stars are in chaotic orbits in galaxies with massive 
nuclei and no bulge components. 

1. Introduction 

In an earlier paper (see Caranicolas and Innanen, 1991) we have studied the behav- 
iour of the low angular momentum stars in a galaxy with a disk-halo and a massive 
nucleus components. We found that there is a well-defined transition from regular 
motion to chaos, for a given mass of the disk-halo component. 

In the present paper we shall use a composite, axially symmetric galaxy model, 
in order to study the motion of stars in the meridional plane of the galaxy. The 
galaxy potential consists of four components. The first component is the disk-halo 
component represented by the potential 

m d h  
�9 d h ( r , z )  - -  R ' (1) 

with 

E R 2= c~+ /3i +b 2 + r  2. (2) 
i=1 

Here r, z are cylindrical coordinates, Mdh is the mass, a, h are the scale length 
and the scale height of the disk respectively while b is the core radius of the halo 
component./31,/32,/33 represent the fractional portions of old disk, dark matter 
and young disk respectively. The other three components are represented by the 
spherically symmetric potentials 
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Figure I. The rotation curve for the model gala• 
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(3) 

where Mn, Mb, Mh are the mass of the nucleus, bulge and dark halo, respectively, 
while cn, Cb, ch are the corresponding scale lengths. As in Caranicolas and Innanen 
(1991) we shall use a system of galactic units where the unit of length is 1 kpc, the 
unit of mass is 2.325 x 107 M o and the unit of time is 0.97748 x 108 yr. The velocity 
unit is 10 krn/s while G = 1. Using these units we take Mah = 9350, Mn = 400, 
Mb = 2000, Mh = 11500, c~ = 3.1 kpc, b = 10 kpc, (/31,/32,/33) = (0.4, 0.5, 0.1), 
(hi, h2, h3) = (0.325, 0.090, 0.125) kpc, cn = 0.25 kpc, Cb = 3 kpc, ch = 40 kpc. 
The rotation curve Vrot = Vrot(r) of our galactic model is shown in Figure 1. One 
can see that the rotational velocity at r = 8.5, z = 0 - which is considered as the 
position of the Sun in our Galaxy - is 230 krrds. It is found that the corresponding 
total mass density at the same point is 0.182 M| 3 while the total mass of the 
model is 5.4 x 1011 M o. Therefore one can say that the above galaxy model 
describes a galaxy similar to our Galaxy (see also Carlberg and Innanen, 1987 and 
references therein). 

The purpose of this work is to study the properties of motion in the above galaxy 
model. In particular we shall study: (i) The kind of motion (regular or chaotic) for 
different values of the angular momentum. (ii) The different kinds of orbits (box 
orbits, loop orbits etc.) that are met in the galaxy. (iii) How this picture of motion is 
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affected by the presence or absence of the various components, that is the particular 
structure of the galaxy. 

The present article is organized as follows: After presenting the galaxy model 
(Section 1) we use numerical integration in order to find the behaviour of the orbits 
(Section 2). In Section 3 we study the behaviour of the orbits using a galactic model 
without the halo or bulge components. Finally a discussion and the conclusions of 
this work are presented in Section 4. 

2. Orbital Characteristics when all Galactic Components are Present 

The Hamiltonian describing the motion in the r - z plane is 

1 
H = 5~Z}2r At p~] "[- (~eff(T', Z) = ~-% (4) 

where pr, Pz are the momenta per unit mass conjugate to r, z, E is the numerical 
value of H while 

~e f f -~  2 r  2 + (~tot, (5) 

~>tot = ~dh + q~n + ~>b + 4>h, and Lz  is the component of the angular momentum 
about the z-axis. The equations of motion read 

O~eff  O~eff  
- Or , 2 = -  Oz (6) 

In the following we shall make an extensive study of the motion in our model 
galaxy using the traditional method of the Poincare surface of section, i.e. the 
r - Pr (z -~ 0, Pz > 0) surface of section. Figure 2 shows the surface of section 
of the model when E =  -976 ,  Lz = 180. The value of the energy E was found 
as follows. First we compute the value ~ e f f  at the point (r, z) -- (8.5, 0) using 
the value of angular momentum Loz = Lze~ = 195.5 which is the value of the 
circular angular momentum at r = 8.5. Let this value be E e f f .  Then we choose 
as E = E ~ f f  dropping the decimal points. The value of Lz = 180 is about 8% 
smaller than Lzci. This smaller values was chosen in order to obtain the desirable 
area of motion in the r - z plane, 

As we can see, in Figure 2, the surface of section is covered by invariant curves, 
therefore the motion is regular. Two kinds of orbits are present, the banana-like 
orbits and the box-orbits. The first kind of orbits produce the islands on the surface 
of section while the second kind of orbits produce the rest of the invariant cuves. 
Figure 3 shows a banana-like orbit when E = -976 ,  Lz = 180. A box orbit, for 
the same values of E,  Lz  is shown in Figure 4. The outermost thick curve in all 
orbit Figures is the curve of zero velocity. This can be found solving numerically 
the equation 
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Figure 3. A banana- l ike  orbit. The  outermost  curve is the  curve of  zero velocity. The  values o f  B ,  
Lz are as in Figure  2. 
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Figure 4. A box orbit. The  ou te rmos t  curve  is the  curve o f  zero velocity. The  values o f  E ,  L~ are as 
in Figure  2. 

r  ~) - E = ~ + Cto~(?, ~) - E = 0. (7) 

Figure 5 shows the surface of section when Lz = 50, E = -1217. The value of 
energy was found as above using a value of angular momentum Lzo = 0.3Lzci = 
58.65. Here again the motion is regular except for the outer part of the surface 
of section where chaotic motion is observed. It is evident that the orbits forming 
the chaotic layer are those going near the nucleus as one can see in Figure 5. 
The minimum and maximum value of r can be found by solving numerically the 
equation 

r  0) - E = ~ + r 0) - E = 0. (8) 

For the case of Figure 5 we find rrnax = 8.6192, rmin= 1.1737 while for Figure 2 
we have rmax = 10.7211, rmin  -=-- 6.0819. 

Going to even smaller values of the angular momentum we get the surface of 
section shown in Figure 6. Here we have E = - 1238, Lz = 15. The value of energy 
is found as above with Lzo = O.ILzci = 19.5. It is evident that here we observe a 
larger chaotic layer. Again the chaotic orbits are the orbits going very close to the 
nucleus. In this case, from Equation (8) we find rmax = 8.5266, r m i  n = 0.2557. The 
majority of orbits are regular orbits. The regular orbits are three kinds. Box orbits, 
banana-like orbits and orbits characteristic of the 2/3 resonance. These orbits give 
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Figure 5. The r - p~ surface of  sect ion w h e n / ~  = - 1 2 1 7 ,  L~ = 50. 

the two sets of small islands in Figure 6 while the elongated islands are produced 
by the banana-like orbits. A quasi-periodic orbit characteristic of the 2/3 resonance 
is shown in Figure 7. The values of E, Lz are as in Figure 6. 

Figure 8 shows a chaotic orbits while Figure 9 shows the time evolution of the 
z-component of the same orbit for 100 time units. The values of/~,  Lz are as in 
Figure 6. Looking at those Figures one observes two interesting results: (i) the 
star goes to higher z only when the galactocentric distance r is more than about 
2 kpc and (ii) after its deflection to higher z, there are also time intervals where the 
star returns and stays near the disk. We shall come to that point again in the next 
section. 

3. Orbital Characteristics Without the Halo or Bulge Components 

In what follows we shall see the phase-space portrait of orbits when one or more 
components of our composite model are not present. Let us start when both halo 
and disk halo components are absent. The corresponding surface of section for our 
galaxy model with the nucleus, bulge and disk is given in Figure 10. The value of 
energy, which was found as in the case of Figure 6, is E = - 1290 while Lz = 15. 
Here we find rmax = 8.5248, rmi, = 0.1788. One observes that the picture is 
similar to that of Figure 6 with some minor changes. (i) There is a small increase 
in the chaotic area. (ii) So are the islands corresponding to banana-like orbits. (iii) 
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Figure 6. T h e  r - p.r surface of  section when E --- - 1 2 3 8 ,  L ~  = 1 5 .  
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Figure 7. A quasi-periodic orbit. The system is neat" 2/3 resonance. The values of E, L++ are as in 

Figure 6. 
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Figure 9. Evolut ion o f  the  star 's  z -he igh t  with the  t ime  for the  orbit of  F igure  8. 
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Figure 10. The r - p~ surface of section when E = -1290, L~ = 15. The system has no halo 
components. 

Instead of a set of 2 islands we have a set of 3 small islands corresponding to a 
quasi periodic orbit characteristic of the 4/3 resonance. Figure 11 shows the time 
evolution of the z-component of a chaotic orbit for 100 time units. As we can see 
the maximum z is about 1.5 kpc. This result suggests that, in the absence of the 
halo components, stars approaching the nucleus move in chaotic orbits practically 
staying near the galactic plane. 

The phase-space portrait of the system when all components, except the bulge 
component, are present is shown in Figure 12. The value of energy, computed as in 
the case of Figure 6, is /~ = -1016 while L~ = 15. Here we find rmax -- 8.5456, 
rmi n - - - -  0.3112. It is clear that less than 50% of the surface of section is covered 
by invariant curves while the rest form a large chaotic area. We see again the same 
three kinds of orbits as described in Figure 10. Figure 13 shows a chaotic orbit when 
/~ = -1016,  Lz = 15. The integration time was 100 time units. The difference 
with the orbit of Figure 8 is obvious. We observe that the orbit is deflected to 
the halo although it is started at r = 8.5, z = 0, with a vertical velocity less 
than 20 km/s. Another characteristic of this orbit is that it covers almost all the 
permissible area inside the zero velocity curve. Figure 14 shows the time evolution 
of the z component for t00 time units. It is easy to see that the star spends long 
time intervals in high values of z especially for t > 60 time units. 
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Figure i1. Evolution of the star's z-height with the time for an orbit in the case when the halo 
components are not present. The values of E ,  L~ are as in Figure 10. 
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Figure 12. The r - p~ surface of section when E = -1016,  L~ = 15. The system has no bulge 
component. 
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Figure 13. A chaotic orbit when the bulge component is not present. The values of E, L~ are as in 
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Figure 14. Evolution of the star's z-height with the time for the orbit of Figure 13. 
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Figure 15. The ratio of  the nuclear F~,~ to the total F~t z-force with (dashed line) and without (solid 
line) the bulge component. 

If one compares the case of Figure 12 with those of Figures 6 and 10 it is 
reasonable to ask: Why in the absence of the bulge component is there a large 
increase of the chaotic region? The answer comes from Figure 15. In this Figure 
we give the ratio of the nuclear z-force to the total z-force Fzn/Iezt as a function 
of z, for a fixed value of r near the nucleus (here r = 0.4). The solid line is for 
the model without the bulge while the dashed line is with the bulge component. It 
is evident that in the case where the bulge component is not present, the nuclear 
z-force, which is responsible for the scattering of the star and the chaotic motion 
(see Caranicolas and Innanen, 1991), is almost equal to the total force (even at 
z = 5 is about 95% of Fz~) and therefore produces a much larger chaotic region. 

4. Discussion 

In order to study the properties of motion in galaxies astronomers use a variety of 
models. Two of the basic kinds of models are mass models of the above kind and 
the perturbed harmonic oscillators model. As it is well known, the first category of 
models sescribes global motion while the second category describes local motion. 
Mass models were used by several investigators (see Clutton Brock et al., 1977; 
Carlberg and Innanen, 1987; Caranicolas and Innanen, 1991) while the perturbed 
harmonic oscillators have been extensively used during the last three decades (see 
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e.g. Caranicolas, 1990, 1993, 1994; Caranicolas and Innanen, 1992; Caranicolas 
and Barbanis, 1982; Innanen, 1985; Deprit, 1991). 

The numerical calculations suggest that for our composite galaxy model the 
motion is regular when Lz > 50. The first signs of chaotic motion appear at Lz = 
50. For this critical value of the angular momentum the consequents of the orbits 
going near the nucleus produce a thin stochastic layer instead of forming invariant 
curves. It is common in dynamical astronomy to call those orbits stochastic orbits 
or chaotic orbits. The author would like to note here that numerical calculations not 
given here show that for the same value of energy (E = -1217) and Lz = 55 the 
motion is regular. Therefore the first signs of chaos appear when 55 < Lz <_ 50. 
We did not feel it was necessary to find the value of Lz with more accuracy. 

As a general conclusion we can say that there are two main kinds of orbits in 
our model galaxy. (i) Box orbits which represent the majority of orbits and (ii) 
banana-like orbits. The above two kinds of orbits exist both for high and low values 
of Lz as well as when several galactic components are absent. In addition to the 
above orbits resonant orbits appear for low values of the angular momentum. The 
observed orbits have the characteristics of the 2/3 or the 4/3 resonances. 

In order to see the properties of the orbits of the low angular momentum stars 
we have chosen a value ofLz = 15, much smaller than the critical value, in order to 
have a large enough chaotic region. It is reasonable for this chaotic region to change 
when the structure of the model galaxy changes. The most interesting change is the 
extension of the chaotic region when the system has no bulge component. As was 
mentioned before, in the absence of bulge, the star, upon encountering the nuclear 
region, experiences a nuclear z-force which is nearly equal to the total z-force even 
at large z. Therefore our numerical work suggests that the presence of the bulge 
component reduces the degree of chaos in our model galaxy. 

At this point we must notice that there are cases where the bulge itself produces 
chaos. As it is indicated in Caranicolas and Innanen (1991) the bulge produces 
chaos only in the cases where cb < 1.3 kpc. This result is independent of the mass 
of the bulge. In other words chaos is produced by the bulge only with a relative 
high mass concentration. Here we have Cb = 3 kpc, and therefore we do not expect 
the bulge to produce chaos. On the contrary we observe that the bulge reduces the 
width of the chaotic layer (compare Figures 6 and 12). 

On the other hand, we observe that the absence of the halo components produces 
a small increase in the degree of chaos (compare Figures 6 and 10). Numerical 
results not given here suggest that there is a small increase in the ratio Fz~/Fzt 
caused by the absence of the halo components. This small increase together with 
the fact that the star goes closer to the nucleus, when the bulge component are not 
present, is responsible for the small increase of the chaotic area. An interesting 
result noticed here is that in the absence of the halo components, the star prefers to 
orbit near the plane of the galaxy while in the presence of the halo components the 
star goes to much higher values of z (compare Figures 9 and 11). 
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The numerical  calculations were made by means of  a Bulirsh-Stoer method 

in double precision. The t ime scale for the calculation of  each orbit in the r - z 

or z - t plane was 50 -100  t ime units while the t ime scale for each orbit in the 
surface of section was 500-1000  t ime units. The values of  the energy E and angular  

m o m e n t u m  were taken such as to cover  a representative part of  the r - z plane in 

our galaxy model.  Note  that in all cases the value of the angular momen tum,  used 

for the computat ion of  orbits, was smaller to that (Lzo)  used to compute  the value 
of  energy E .  This was done in order to increase the distance rmax - ~'rnin. 
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