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Abstract. The asymptotic theory valid for magnetospheric tail configurations that vary only weakly in 
the antisolar direction is used to derive a number of explicit properties. The conditions under which 
the rnagnetopause converges to form a closed magnetosphere or diverges (open magnetosphere) are 
identified and discussed. It is shown that the presence of the high latitude low pressure tail lobes 
guarantees the open solution. The large value of the Maeh-number of the unperturbed solar wind is 
the reason for the slow variation of the plasma and field quantities along the tail. Criteria for (two- 
dimensional) stability are discussed and it is shown that they can be expressed in terms of simple 
topological properties of the equilibria. Closed magnetospheres turn out to be stable, open magneto- 
spheres with sufficiently stretched field lines are subject to an instability which - as shown earlier - 
may be the cause of magnetospheric substorms. 

1. Introduction 

Although there is no doubt  that  the ultimate cause o f  the tail o f  the magnetosphere is 

the solar wind, the details o f  the interaction as well as the reasons even for the gross 
geometric properties o f  the tail are still not  clearly understood. 

As far as analytical theory is concerned the major  obstacles are the great difficulties 

involved in a satisfactory solution o f  Vlasov's equations. Until not  long ago, only 
one-dimensional equilibria were considered. 

In  recent years, techniques were developed that  make it possible to discuss several 
properties - including stability - o f  two-dimensional equilibria. 

In  applying the results to the tail of  the magnetosphere one still has to ignore the 

variation along one o f  the space coordinates. Since the zsM-dependence clearly 

dominates a choice has to be made between XsM and YSM. (For  the definition o f  the 

solar magnetospheric coordinate system (SM) see Ness, 1965.) A general statement 

about  which coordinate is preferable does not  seem to be possible. An  evaluation o f  

the steady-cross-tail electric field requires taking the YsM-dependence into account  

(Cowley, 1973; Bornatici and Schindler, 1974). On the other hand, for  a discussion of  

the balance o f  forces in the quiet tail, l imitation to the XsM-ZsM-plane seems to be a 
reasonable approximat ion (Cole and Schindler, 1972). 

In  several papers (Schindler, 1972; Soop and Schindler, 1973; and Schindler, 1974) 
the latter line was followed and a systematic theory o f  equilibrium and stability was 

developed in selfconsistent form. It  is the aim of  the present analysis to use that theory 
to derive properties that  are more  explicit than the earlier results. 

The pressure tensor that one uses in this kind of  approach  is static and isotropic in 
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the xsM-ZsM-plane. Although there is reasonable experimental justification for this 
choice (Hones et al., 1973) one is faced with the difficulty that the solutions obtained 
are not unique, in that the plasma distribution with respect to the field lines can be 
prescribed arbitrarily. Since the actual plasma profiles are not known in detail we have 
to make sure that the properties discussed are sufficiently general so that one can hope 
that they apply to the actual cases too. To a certain extent this demand is met by the 
use of an expansion technique assuming that the XsM-dependence of the magnetic field 
and of the plasma distribution functions is small (Schindler, 1974). 

The theory is strictly selfconsistent in the sense that the momentum balance be- 
tween particles and fields is satisfied for any volume element in the framework of 
Vlasov's theory. Therefore our method differs from the guiding-center approach (e.g. 
Bird and Beard, 1972) in that highly inflated field configurations with non-gyroscopic 
ions as expected to prevail just before the onset of a magnetospheric substorm 
(Schindler, 1974) are also taken into account. The theory provides solutions that are 
open-ended and other solutions in which all field lines are closed. (The terms open and 
closed magnetosphere are exclusively used in this manner.) For simplicity, the normal 
magnetic field component at the magnetopause is neglected. It is possible in principle 
to include a finite normal component, however as long as it is small compared with the 
tangential component it is not likely to change the present results significantly. 

In the present picture the tail is kept in its stretched out form simply by the action 
of pressure gradients and magnetic field stresses. An appreciable amount of viscosity 
is not required. At least for quiet times this is consistent with the findings of Siscoe 
(1972) who concluded that the quiet tail may not be dominated by viscous forces. The 
concept of viscosity in the sense introduced by Axford and Hines (1961) may be 
applicable during substorms, if a considerable exchange of plasma between the plasma 
sheet and the magnetosheath takes place. 

It seems worthwhile noting that - although we ignore steady flow - our model is 
not in conflict with the theory of convection. Actually, a fully quantitative convection 
theory would require information about the magnetic field configuration (Vasyliunas, 
1970, 1972). As long as the convection speed is small compared with the characteristic 
magnetohydrodynamic velocity the first order convection theory involves the magnetic 
field only to zeroth order in the convection speed. 

The analysis of the following sections is aimed at the understanding of the major 
geometric properties of the tail and at the influence they have on its stability. 

2. The Unperturbed State 

It has been shown (Schindler, 1972) that the problem of finding two-dimensional (say 
x- and z-dependent) isotropic equilibrium configurations reduces to the solution of 
Maxwell's equations. Assuming quasi-neutrality one obtains the equation 

AA + ,uoj(A) = O, (1) 
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where A is the y-component of the vector potential which is constant on the magnetic 
field lines, a n d j  is the electric current density depending on A only; j is related to the 
isotropic pressure p(A) by 

j(A) = dp 
d---A" (2) 

Assuming that the solution of (1) varies with x only slowly, i.e. the ratio of characteris- 
tic lengths e=Lz/Lx~ 1, one may use an asymptotic expansion which gives after some 
integration 

A b 

f dA , 
a(x) - z = ~/2/to(Po - p(A)) (3) 

A(x,z) 

where 

A b 

f a(x) = ~/2/xo(p~-- p(A)) (4) 
Ao(x) 

is the position of the magnetopause assumed to be a field line (A = A~); Ao = A(x, O) 
is the vector potential on the x-axis and po =p(Ao) the total pressure. 

Equation (3) is valid to second order in e. 
Ifp(A) is given, one can find the solution A(x, z) by evaluating (3). We shall do that 

for an explicit case in Section 3. Here we shall discuss some general properties of the 
solution (3) with (4). 

Since the function a(x) depends on x only via Ao, one can write a = a(po). Assuming 
that p(A) is positive and monotonically decreasing with dp/dA # 0 everywhere we can 
rewrite (4) as 

Po 

i f (  , )  d, a po)- 
Pb 

where Pb is p(Ab). As follows from the subsequent discussion the function a(po) 
governs important topological features of the equilibria as well as their stability. 
Therefore we call a(po) the 'characteristic function'  associated with the pressure 
profile p(A). 

It is obvious that (5) has a reaI  solution only for Po I> Pb. 
In the limit Po--> Pb one finds that 

Po 

1 
_I dp = const ~/Po - p~. (6) 

a(po) ~ ~/-~P~ [ 5 dp ] -- ~/Po - 
P 

\ dA ] A= A~ P~ 
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Because of our assumptions the constant is positive and finite. Therefore a(po) starts 
out from 0 at Po =P~ and increases with growing P0. 

Now we shall study the other limit Po/Po --~ co. First, let us assume that p(A) varies 
proportional to A -~ with an exponent 7>0.  Then we find 

(dp -I 1 p_1,,_1. 

We introduce a new variable s: =P/Po and split (5) into two integrals, one from Pb/Po 
to sz and one from sz to 1 with sz being a constant small compared to 1. Then we find 

S 1 

1 ; (1 1 f s -  ds (l(po) _ _  _ - / ~  l / r - 1  
o c  

 /Fo 1 7  p~ J - 
Pb/P 0 

1 

1 -1/~ fS-1/~-I ds + }po 
$1 

The second integral gives a constant value. In the first integrand we approximate 

lx/]---s~ 1 because of s ~  1. Thus in the limit P~/Po -+ 0 we obtain 

a(po) oc - ~  ).co ~Po] + const Po 1[7) �9 

For large values of Po/Pb the second term becomes small compared to the first one; 
hence, 

1 
a(po) oc ~ for Po/Pb -+ ~ .  (7) 

From (6) and (7) we can derive the shape of the curve a(po); an example is given in 
Figure 1. We can distinguish two regions: 

(a) Po >~Pb, a(po) increasing with growing Po, 
(b) po>>pb, a(po) decreasing with growing Po. 

Regions (a) and (b) are separated by an intermediate region with a maximum value of 
a at some point. 

The variation of Po, the pressure on the x-axis, which for small e is practically 
equal to the total pressure, determines the shape of the magnetopause a(x). If  one 
assumes that Po decreases monotonically with increasing x two typical forms of the 
magnetopause can be distinguished: 

ifpo is not very different from po over the whole range of x, a(x) is determined by 
region (a), which leads to a converging magnetopause ('closed magnetosphere', 
Figure 2a) 

ifpo is much larger than Pb over the range of x, a is determined by region (b), which 
leads to a diverging magnetopause (' open magnetosphere', Figure 2b). 

The stability of the two cases will be discussed in Section 4. 
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In the derivation of (7) we have used that p varies with a negative power of A. I f  one 
assumes that for large values of p, p varies with some positive power ~ of - A ,  a 

similar consideration shows that a(po) always decreases monotonically for Po/Pb --> ov 
if ~ > 2. As another example, an exponential dependence o fp  on A is considered in the 
following section, where an asymptotic variation similar to (7) is derived (see (11)). 

3. An Explicit Example 

Now we shall apply the results of the preceding section to a specific case. To get 
quantitative results we must specify the function p(A) and the boundary condition at 
the magnetopause. Since p(A) is related to the plasma population on each field line, 
p(A) is determined by the entry and loss processes. To bypass these extremely difficult 
problems we simulate the actual plasma distribution by an ad hoc assumption about 
the shape ofp(A). Since observations suggest a monotonic decrease of plasma pressure 
away from the neutral sheet, a monotonic choice ofp(A) seems reasonable. We assume 

that 

p(A) = poe -2A/~c, (8) 

where Ac is some characteristic value for A. The value of A at the boundary is set to 
zero. Then we get 

dp 2 
dA = ~ P  

and can integrate (5), which leads to 

Ac Arch ~/Po/Po 
a(po) = ~/2-ppo ~/Po ' (9) 

which is the characteristic curve used in Figure 1. 

For Po/Pb-+ 1 we obtain 

a ( p o )  ~ 

which agrees with (6), and for Po/Pb --> Go 

Ac log 2~poPo/po 
a(po) ~ v/~-~ ~ V~po (10) 

Since for po>>p~ the logarithmic variation of the numerator may be ignored in a first 
approximation, we note that (10) is similar to (7), i.e. the corresponding relation for the 
power law case discussed in Section 2. So we can approximate (10) by 

AcK 
- - 7  

a(po) = ~/2/2oPo (11) 

with K being a characteristic value of log 2"V'po/pb. 
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Fig. 1. Characteristic function a(po). The position of the magnetopause a (divided by a characteristic 
length L=Ac'V'2poPo) is plotted against the pressure Po on the x-axis (normalized by the pressure at 

the magnetopause). 

F r o m  (3) we find 

Ac ArchV'po/p(A) 
z = - -  (12) 

I f  we solve (12) for p we get 

p(x, z) = Po c osh-2  2pX/2~~176 (13) 
Ac 

Using (8) we obtain A and B~ = - DA/ez as functions o f  x and z in the form 

A = Ac In cosh ~/2~-~oZ + Ao, (14) 
Ac 

with 

and 

Ao = Ac In ~/Pb/Po 

0A - ~/2/~oPo tanh ~/2-~opoz (15) 
Bx -- ~z = Ac 

I f  a and therefore Po are constant,  the solutions (12)-(15) represent the well-known 
Harris sheet (Harris, 1962). In  the general case, the magnetic field lines (A =cons t )  

follow f rom (12) explicitly ifpo(X) is given. The examples plotted in Figure 2 correspond 
to a specific choice ofpo(X) for each branch of  the characteristic curve. 
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Figs. 2a-b. Examples of a closed (a) and an open (b) magnetosphere. The magnetic field lines are 
determined by means of arbitrary functions p0(x); case (a):po/pb=exp {1.225(1- (x/100)2)} and case 

(b) : Po/P~ = 220(1+ 20/x) z with x in units of the Earth radius RE. 

An  alternative procedure is to prescribe a(x) and to determine po(X) f rom a given 

branch of  the characteristic curve. This method is particularly useful if one formulates 

a boundary  condit ion at the magnetopause.  To give an example we take the simplified 

boundary  condit ion used by Spreiter et al. (1966). It  is based on the assumption that the 

pressure o f  the solar wind exerted on the boundary  is given by the normal  component  

o f  the m o m e n t u m  flux o f  the undisturbed incident stream Pa sin 2 gt, where gt repre- 

sents the angle between the direction of  the incident stream and the tangent to the 



396 J. BIRN ET AL. 

boundary, plus an additional constant Ps denoting the pressure of the solar wind gas. 
Pa is given by 2OoVg, where Vo and ~o represent the velocity and density of the solar 
wind and L is a constant lying between 1 or 2 depending on whether 'inelastic' or 
'elastic' reflection of the solar particles at the boundary is assumed. Using the Mach 
number M =  vo/Vsouna of the unperturbed solar wind we can write the pressure balance 
in the form (y is the ratio of the specific heats) 

P o = P s + 2 Y M  2sinzTt, 7 t >  0. (16) 

Clearly (16) is reasonable for 7t> 0 only. Regions with 7t< 0 would require a more 
realistic evaluation of the flow field. Our assumption that e is small implies small 
values of ~such  that we may replace sin ~tby tan 7J which is equal to da/dx. We obtain 

Po = P s  1 + 27M z da ' ~xx  > 0 .  ( 1 7 )  

If  we use the observational fact that the local pressure just inside the boundary is 
nearly equal to the magnetic pressure so that po>>p~, we can express Po by means of 
(11) and write 

( da] z 1 (a~ z 1) (18) 
dx]  = 27M 2 \-~ - ' 

where ac is a characteristic value of a(x), assumed at, say, x = x o .  

The solution of (18) is an ellipse given by 

a 2 ( x  - -  Xo) 2 
- -  - 1 ( 1 9 )  
a~ + b~ 2 ' 

with b~ z -- 2~MZaZc . 

Because 2 and 7 are of order unity the ratio of the two semi-axes bc/ac is about M, 
which is large compared to unity. Thus, the reason for the observed weak x-dependence 
is the fact that the Mach number of the solar wind is large. The flare angle is by order 
of magnitude, equal to the Mach angle associated with the free solar wind. 

Since po>~pb, which leads to an open magnetosphere, we must take only that part 
of the ellipse which grows with increasing distance from the Earth (the closing part 
corresponds to da/dx  < 0, which had to be excluded). Of course we must also exclude 
the region where da/dx>> ~. That our solution is applicable only within a finite distance 
from the Earth is due to the fact that the approximation (16) becomes more and more 
invalid with increasing distance as it is shown by Spreiter et al. (1966). 

From (19) we can gainpo(x) by means of (11) and with that the magnetic field lines 
which are plotted in Figure 3. 

Figure 4 shows the variation of the magnetic field strength B ~_ [Bxl at the magneto- 
pause and of B~ along the x-axis, where B~ = ~A/~x is derived from (14) as 

( ~ / ~ Z ~  dpo Ac ~/2/~oPo z tanh 
1 1-3-2x' 

and dpo/dx is determined from (11) and (19). 
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Magnetic field lines for the example of a magnetosphere given in Section 3. po(x) is deter- 
mined from a(x) by means of (11) with ac = 25 RE and bc = 200 RE (i.e. M~/~--~y = 8). 
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Variation of the magnetic field B(x, a) at the boundary and the z-component B=(x, O) on the 

x-axis, normalized by ~/2/~opb, for the example of Section 3. 

4. Stability 

Several properties concerning the stability o f  two-dimensional equilibria have already 

been discussed. Schindler (1972, 1974) showed that  in the f ramework of  two-dimen- 

sional stability theory (~/6y = O) the following criterion holds. Consider the function 

w(x) defined by 



398 s. BIRN ET AL, 

a(x) 

f dz da(x) 
-B~(x, O)B'(x, O) Bx(x, z) 2 - d----x-" 

w(x) 

(20) 

where the prime denotes differentiation with respect to z. 
An equilibrium for which w(x)> a(x) holds for all x is stable; w(x)< a(x) for all x 

with e sufficiently small implies instability. The function w(x) has a simple physical 
interpretation, as being the local magnetopause position that would marginally 
stabilize the plasma sheet, if we treated the plasma sheet cross section for any value of 
x as a one-dimensional sheet. The purpose of this section is to discuss the stability of 
the equilibria (2), (3) in the framework of that theory and to relate the stability 
properties to the characteristic function a(po). 

First we show that the function w(x) that governs stability can be related to the 
characteristic function in a simple manner. We write 

da(x____.)= da dpo d A o =  d___aa [1B,(x,O)]Bz(x,O), (21) 
dx dpo dAo dx dp o [Vo J 

so that (20) takes the form 

a fd da 
-po  dpo 

w 

(22) 

a - z ~  . - .  
X/ Po - Pb 

p 

Po 

(23) 

where j is understood to be a function of p, as obtained by eliminating A from j(A) 
and p(A). Differentiating (23) with respect to x at constant z and integrating by parts 
we find that 

It follows immediately that magnetosphere solutions that lie entirely on the closed 
branch (da/dpo > 0) are stable, because in that case (22) implies w(x)> a(x) for all x. 
Purely open magnetospheres on the other hand have da/dpo < 0 and therefore can be 
unstable for sufficiently small e in accordance with the earlier result of Schindler (1974). 

This stability criterion may be understood also in terms of the variation of the Bz 
component across the plasma sheet. For simplicity we confine the discussion to the 
case where the current density is unidirectional ( j<  0) and to configurations that are 
symmetric with respect to the plane z = 0 with Bx vanishing at the plane of symmetry 
only. We can then confine the discussion to the region z>0  and assume Bx<0. 
Obviously, for the magnetosphere this assumption is not stringent. Starting from (3) 
one finds after partial integration 
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A b 

B~ da 1 ~ dA 

~x = dp---o + 2~/---~p o (p -p (A) )  a/2 J 
Bx A 

where we have used B~= -~/2r 
With the aid of (20) we finally obtain 

(24) 

1q 

d p o  = P o  

Bx dx 

(25) 

This equation immediately yields the following properties: 
(a) If there is a point (x, z) where B= = 0 its z-coordinate coincides with w(x). 
(b) A configuration with B~ > 0 and dpo/dx < 0 is stable. 
Property (b) tells us that the occurrence of a point where B~ vanishes is necessary 

for an instability to develop. 
The latter criterion is a special case of a more general sufficient stability criterion for 

two-dimensional equilibria, which are not restricted to small values of e. This criterion 
can be stated as follows*: 

If  there is a non-vanishing cartesian component of the equilibrium magnetic field 
Bo, say B=o, the configuration is stable. To prove that statement we note that stability 
is guaranteed if the functional (Schindler et al., 1973) 

f [  djo A~] dx dz Z = ( V A , )  2 - Zo (26) 

is positive for all functions A1 for which the operations involved are defined, and which 
vanish at the boundaries. We express djo/dAo in terms of B=o by differentiating (1) with 
respect to x, 

~io ABzo. 
r dAo B~o (27) 

which allows writing (26) in the form 

f [  ABzo A2 ] dx dz. Z = (VA1) z + (28) 

Substituting A1-- 7~Bzo one finds 

t" 
Z = J[T2(VBzo) z + 2 TB~oV Yr. VBzo 

+ B~o(VT) 2 + AB~oBzo T2] dx dz. 

* A preliminary account of this criterion has already been given by Schindler (1970). 
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Since Bzo r 0, ~ is continuous and the last term can be integrated by parts. Several 
terms cancel out and one finds that 

Z = f g~2(VBz0)2 dx dz > 0, (29) 

which proves our claim. 
Thus, the closed magnetosphere solutions (Figure 2a) corresponding to positive 

slope of the characteristic function are stable. Bz does not change its sign. The open 
magnetospheres violate that criterion and may therefore be subject to an instability. 
The conditions for which the stability actually occurs are such that the instability can 
explain the onset of magnetospheric substorms (Schindler, 1974). 

5. Summary and Discussion 

We have discussed topological properties and stability of equilibria that may represent 
instantaneous states of the tail of the magnetosphere. 

The approach uses the asymptotic theory for slow variation along the tail and 
contains two functions of primary importance, the plasma pressure profile p(A) and 
the characteristic function a(po). The function p(A) specifies the way in which the 
plasma pressure is distributed on the field lines. A theory ofp(A) would imply a de- 
tailed discussion of plasma gain and loss in the magnetosphere which is out of the 
reach of present magnetospheric theory. However, since p(A) can be chosen largely* 
arbitrarily it is easy to choose pressure profiles that are consistent with the observa- 
tions. The most important features to be built in are the monotonic decrease of plasma 
pressure away from the plane of symmetry (z=0) such that there are low pressure tail 
lobes and the fact that the total pressure (po=p+B2/2/~o) decreases away from the 
Earth. Once the function p(A) is fixed (e.g. using an exponential as in (8)) the charac- 
teristic function a(po) can be determined. Here a and P0 denote the magnetopause 
position and the pressure at z = 0 evaluated at the same value of x. 

Without having to specify the boundary condition of the magnetopause one can 
relate gross topological features of the solution to the shape of the characteristic curve. 
If  the solution is confined to the region of positive slope (da/dpo > 0) the magneto- 
sphere boundary converges away from the Earth (Figure 2a) while a ngeative slope 
region implies an open solution (Figure 2b). 

The presence of the low pressure tail lobes automatically guarantees the open case. 
A closed magnetosphere (Johnson, 1960) is selfconsistently possible, however it would 
require that the plasma pressure of the boundaryp~ is not too different from the plasma 
pressure on the axis (z = 0). A closed magnetosphere cannot be reconciled with the lack 
of plasma pressure on the high latitude field lines as actually observed. Thus, the model 
explains the gross shape of the magnetosphere in terms of the internal spatial plasma 

distribution. 
* The constraint that distribution functions must be positive (Schindler, 1972) is not stringent for 
most practical purposes. 
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So far, the boundary shape a(x) did not need specification. In fact, the selfconsistent 
theory for the domain inside the magnetopause contains a(x) as an arbitrary function. 
In an actual case, the boundary shape is of course determined by a boundary condition. 
A complete treatment would require a full gas dynamic solution of the solar wind in 
the magnetosheath, which exceeds our present (analytical) treatment. We expect that 
the dominant features would follow already from a simple Chapman-Ferraro type of 
boundary condition. In this case the magnetopause is represented by the (diverging 
part) of an ellipse (Figure 3). An important conclusion follows from the consideration 
of the ratio of the semi-axes, which is of the order of 1/M, where M is the Mach num- 
ber of the free solar wind. Since M>> 1, this is the physical explanation for the fact that 
the variation of the tail along the x-direction is small. Incidentally, this fact justifies - a 
posteriori - using the asymptotic theory for small values of the parameter e which we 
can now identify with 1/M. 

A stability analysis shows that purely closed cases are stable whereas the actual case 
(open, da/dpo < 0) may be subject to an instability if e is sufficiently small. One can 
understand that stability result in terms of the way in which B~ varies across the tail 
in the z-direct/on. An instability requires that B~ changes its sign. Obviously, that is the 
case in open magnetospheres, where B~ > 0 on the axis (z=0) and B~ < 0 at the boun- 
dary (Figure 3). The instability is of the spontaneous merging type; it may be the cause 
of magnetospheric substorms (Schindler, 1974). 

Some final remarks are directed at the various approximations made. The assump- 
tion that the particle distribution functions are assumed to be static and isotropic in 
the vx, v~-plane may not be too stringent for quiet times, as was already discussed in 
the introduction. The two-dimensionality may be a more severe limitation. Future 
work wilt show to what extent a variation along the y-direction changes the present 
conclusions. In any case, a quantitative modelling of  the taii will require a 3-dimensional 
model. For instance, it seems that a quantitative model has to take into account the 
tail flaring in the y-direction and its influence on the radial dependence of the magnetic 
field. Therefore, the variation of [Bx] and B~ as plotted in Figure 4 can have only 
qualitative significance. 

The stability analysis treats the magnetopause as unperturbed. This is probably 
justified in view of the small growth time of the instability (Schindler, 1974); a final 
answer is, however, not yet available. 

These deficiencies seem to be the price present magnetospheric theory has to pay for 
a fully selfconsistent treatment. 
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