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Abstract. Using the kinetic theory and model collision integral of Bhatnagar-Gross-Krook we obtain the 
general dispersion relation for different regimes of the tearing-mode instability development in configuration 
with sheared magnetic field. Thus, we can construct the general picture of the applicability of different 
mechanisms of the tearing-mode dependent on collision frequency and value of the shear. 

1. Introduction 

The release of magnetic energy stored in a plasma configuration is usually associated 
with the magnetic field-line reconnection, and the rapid explosional start of this 
phenomenon with some spontaneous process. Then it is necessary to distinguish 
between the forced quasi-stationary reconnection, in the course of which the main 
magnetic energy dissipation and plasma heating occur, and the spontaneous recon- 
nection which characterizes the rapid magnetic topology reconstruction and provides 
conditions for following effective magnetic energy dissipation. 

In this paper we are treating the tearing instability as a mechanism of spontaneous 
reconnection process~ Such an instability is used by investigators to explain a wide range 
of physical phenomena (magnetospheric substorms, solar flares, disruptive instabilities 
in tokamaks, etc.). A great number of theoretical works has been published where 
different physical mechanisms of magnetic field reconnection were investigated. That 
means that a region must appear in plasma in which magnetic field frozen-in condition 
breaks and longitudinal (i.e., directed along the magnetic field B) electric field Eli differs 
from zero. It is known that this can be connected with the following mechanisms: 
(1) Coulomb collisions (2) finite electron inertia, (3)collisionless Landau damping, 
(4) collective collisions due to the development of anomalous resistivity. 

The last dissipation mechanism connected with plasma turbulence, concerns itself 
with several problems (particularly, for exciting of the instabilities in plasma, very 
narrow current layers are necessary) and that is why we confine ourselves by examining 
the first three ones. Accordingly, in theoretical works made in MHD as well as in kinetic 
approximations, different regimes of tearing instability development have been investi- 
gated: a resistive MHD regime of Furth-Killen-Rosenbluth (Furth et al., 1963), MHD 
inertial regime (Coppi, 1965), kinetic regimes (Coppi et al., 1966; Drake and Lee, 1977; 
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Galeev and Zeleny, 1977; Zeleny and Taktakishvili, 1981). But there still has not been 
the unified view on the development conditions of those different modes. In this paper, 
using the kinetic theory, we try to construct a general picture of the applicability of 
different mechanisms of the tearing instability. We believe this simple step to be 
necessary for the correct use of theoretical results in astrophysical and laboratory 
researches. 

2. Plasma Configuration and General Equations 

As the initial plasma and magnetic field configuration we take the so-called generalized 
self-consistent Harris distribution (Galeev, 1984): 

B = B z + By = Boz th (x/L)~= + byBozey , 

n(x) [ _  m: (Vy uj)2+ v~}] (1) 
fo: = (mfl2rcTj)-3/2 exp ~ {Vx 2 + - 

n(x) = n o ch-2(x/L)  ; 

where L is a current density width, by =- I By l/Boz and the main current is directed along 
the y-axis (magnetic field shear), m:, Tj, and u: are the mass, the temperature, and the 
current velocity of the particles of species j, respectively. The distribution function 
satisfies Vlasov equations for any By = const, and this proves possibility of applying an 
arbitrary magnetic field By on a self-consistent Harris distribution (Harris, 1962). It is 
more convenient to represent perturbations of electromagnetic values as Fourier 
components of vector and scalar potentials "411 (x) = ~Z~ll (x) exp( - icot + ikr) (sign 11 
means the direction along magnetic field), q; (x) = q~(x) exp ( - icot+ ikr). 

The plane model (Equation (1)), of course, has restricted applicability for coronal 
loops and tokamak plasma configurations where one must take into account cylindric 
and toroidal geometry, respectively. But, because in this case we are interested mainly 
in the physical mechanisms of magnetic energy dissipation and not in the particular 
reconnection geometry, the applicability of plane model (1) obviously has a sense. 
Taking into account the cylindricity gives appropriate numerical coefficients to the 
expression for instability growth rate (Furth et al., 1963) and gives the dependence of 
growth rate on the azimuthal wave number. In the case of solar coronal loops, field By 
in Equation (1) corresponds to the longitudinal magnetic field B II of the loop and to the 
toroidal field B r in tokamak. And the sign-reversing field B~ corresponds to the 
azimuthal field B o connected with the longitudinal current jBi along the loop, in the solar 
case, and to the poloidal field Bp, in the case of tokamak. 

If the condition by < ,~)12 ~ ( p j / Z ) l / 2  ~_ (vTjmic/ejBozL)l/2 is satisfied, then the particle 
rotation (Larmor) radius in the By field, is greater than the 'singular layer' (the region 
which gives the greatest contribution to the tearing instability (Dobrovolny, 1968)) width 
pyj > d: - e)/2L, for the neutral Harris sheet. Therefore, particles are not magnetized in 
the region Ix[ < d: (as in the case of neutral sheet), and we can neglect the influence 
of By field; thus, the expressions for growth rates obtained by Coppi et al. (1966) and 
Zeleny and Taktakishvili (1981) are correct. So in the further discussion we shall assume 
by >> e}/2. In addition, for validity of our assumption of magnetized particles, the 



MAGNETIC RECONNECTION MECHANISMS IN PLASMA 187 

condition v s < f~y~ has to be satisfied too (here vs. - Z l vs.1, vsj is the collision frequency 
between particles o f j  and t species, f~yj is the frequency in the By field). In other words 
we must have: by > esvflkVTj(kK < 1). This unequality gives the upper limit for collision 
frequency that is valid in the frame of our theory. 

The particles magnetized by By field move along the total magnetic field B = By + Bz, 
drifting simultaneous]y normally to B because of inhomogeneous B z = Boz th (x/L)~ z. 
As the detailed analysis of the equations of particles motion shows this magnetic drift 
is negligible in the singular layer and, therefore, does not play any role in the development 
of the instability. We can use the drift approximation in the layers magnetized by By field 
(Galeev, 1984). 

In the sheared current sheets, unlike 'pure neutral' sheets (see, e.g., Dobrovolny, 
1968), the electrostatic component of the perturbed field can be rather important, i.e., 
the scalar potential (p comes to the play (Coppi, 1965). Also, nonlocal effects connected 
with the finite ion-Larmor radius py, are essential under certain conditions (Drake and 
Lee, 1977; Galeev and Zeleny, 1977). 

Using the model collision operator of Bhatnagar-Gross-Krook (Bhatnagar et aL, 
1954) and integration over unperturbed trajectories we have tried to construct some 
general picture of the tearing instability regimes dependent on collision frequency v s and 
the value of magnetic shear by. We must mention that by Mahajan et aL (1979) authors 
using the so-called variational method got general dispersion relations for tearing modes 
in different regimes. Our method seems to us more simple and as one can see below 
gives the possibility to map all regimes on a 'collision frequency-shear value' diagram. 
The Maxwell-Vlasov system of equations for perturbed vector and scalar potentials 
takes the form 

[d2/dx 2 - (k 2 + Vo)]Aii (x) = - (4~/c) ~ e s f fsvfF d3v, (2) 

[d2/dx 2 -  (k= + Mo)]~o(x ) = -4~z ~. ej f f d3v, (3) 

V 0 = - 2 L -  2 ch - 2(x/L), M 0 = ch -  2(x/L) Z ~ 2, 
J 

= -  (4) 
o e  oJl- 

fj = cTs [. f i ( ~ v A -  cojccp)e.-i(~~ + 

0 

+~vs,fos f (n~ m s ) e  t(~_k~(~ ~ + -  v~ dz,  (5) 
, 

- o o  

- - • ] ( 6 )  

t 
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where o) is the frequency of perturbations (for one-dimensional perturbations 
k = k ~ - =  k ~  which we investigate here, Reco--- 0; and, therefore, the growth rate 
Y = Imo9 = - io ) .  

The total plasma volume can be dMded formally into two parts: (1)The singular 
region, where the longitudinal c o m p o n e n t  of the wave vector is small 
kll (x) -- kB/I B J -~ k x / L b y  ~_ O. In this case the electrostatic field - VII (p(x) = - ikl~ q)(x) 

does not cancel the inductive one, - c -  1 a,~ll(x)/& ' and the longitudinal electric field 
ff~ ll = - c -  ~ 8,ill (x) /  Ot - 7119(x) differs from zero. Thus, the frozen-in condition breaks 
near the region where kl~ --, 0, i.e., near the x = 0 plane. (2) The outer region, where 
/~ll ~ 0 and the ideal M H D  approximation is applicable. The dispersion relation for 
tearing instability can be obtained by matching the solutions &the  above equations for 
these two regions. At the vicinity of the singular surface x = 0, giving the greatest 
contribution in the perturbed current Jll, the Maxwell equations (2)-(3) take the form 

d2~(x) - G ( x ) ,  (7) 
d x  z 

d2Xl l (x )  _ p;L co 

d x  2 2d~ kllc 
G(x), (7') 

X i - [2ivjj, co/(kll v ~ ) 2 ] Z , j D f  1 , j # j '  ; 

f - 
--r 

j # j '  ; (8) 

~ -- ~o/k, v~ ; 

D; = 1 + i v jZo fk ! l  vT}. + 2fl}y mZli / (k l l  vO) 2 . 

We use the following assumptions in deriving (7)-~(8): (1) It is possible do not into 
account the difference of the distribution function (Equation (6)) from Maxwellian in 
the singular region, i.e., we can neglect u i there. (2) In the singular region d2/dx 2 >> ko 2, 
V o, (3)Ajj (x) is a slowly-varying function of x; and thus we assume "tl/(x)~ const. 
bringing it out of the integral over unperturbed trajectories in Equation (5), but the 
changing of d_411 ( x ) / d x  will be taken into account. (4) Unlike AI! (x) the scalar potential 
9 ( x )  is rapidly varying function of x and we expand it in a Taylor's series leaving the 
derivatives of the second order: 

\ dx' }~,=~ 2 \ dx Ix'=~ 
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(it is easy to show that the (dqo(x ' ) /dx ' )  term automatically comes to zero). (5)We 
assume that py, >> d e, d; limiting thus the By field: by < c(2Timi)l/2/(Te + Ti). 

When moving in the singular region a particle 'feels' the Doppler-shifted perturbed 
field: co' = co - COD" For collisionless limit (7 > re) we have particIes free motion along 
magnetic field and, the, refore, COD = kll (x)vrl ~- kIF (x)vre. And for rather strong collisions 
(7 < re), when instead of free motion we have the diffusion of electrons along B, the 
Doppler frequency o) D takes the form: co D = k~(x)D~ = k ~ ( x ) @  e v7 1 , where D e is the 
longitudinal diffusion coefficient (Drake and Lee, 1977). The condition for the effective 
acceleration of particles by the perturbed Eli field is that the particle must 'feel' a 
quasi-stationary rather than variable (due to coD-shift) electric field. That means that the 
particle will be accelerated effectively if the value of Doppler-shift is much smaller than 
the characteristic frequency of the field: IcoD(X)l <[CO[. This, condition defines the 
singular region width and finally we obtain: 

-- ~byL collisionless limit ; (9) 

A ~ = [ A f  (pu collisionallimit; (10) 

where p - 7/kvr, ,  ~e --:- v J k v r .  Naturally, in what follows we shall come to the same 
expressions just from the direct analysis of Equations (7)-(8). The dispersion relation 
for the tearing instability is obtained from the matching condition for the jump of the 
logarithmic derivative of~ll in adiabatic (where the frozen-in condition is satisfied and 
the ideal M H D  approximation is valid) and nonadiabatic (singular) regions. The 
solution of Equation (2) in adiabatic region is expressed in associated Legendre 
functions: A~a(x) = Pj-'~( + th (x/L)) ,  m - kL.  Thus, finally we come to the dispersion 
relation 

(1 - m2)/m = -41~- 1L _I (d2~ll (x ) /dx2)  d x ,  (11) 

- o o  

for As ~ L, where "41i must be taken from Equation (7'). 
The left-hand side of Equation (11) corresponds to the free-energy store of the 

instability, which is released during the attracting and merging of the parallel current 
filaments in the current layer. This merging is energetically favourable if the left-hand 
side of Equation (11) is positive - i.e., kL  < 1. That means that only rather large bundles 
of current filaments with 2 > 2rcL could be formed during the merger. The right-hand 
side of Equation (11) represents the particular mechanism of the dissipation, responsible 
for absorbtion of the releasing energy; therefore, it defines the growth rate of perturba- 
tions. 

3. Different Regimes of Tearing-Mode 

Qualitatively, one can say that the role played by the scalar potential is merely the 
following: at the distance x > ~5~o (where b<o is the characteristic spatial scale of r which 
is defined from Equation (7)), the perturbed electrostatic field - V  H <p(x) cancels the 
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perturbed inductive field - c -  1 ~z~ll (x)/Ot. Now it is clear that when ~e < A, the taking 
into account the scalar potential leads to the 'cutting off' of the region of the perturbed 
current localization: d2All/dx 2 ~ fll ~/~11 ~ 0 in the region x > b~o. When be> A,, the 
influence of (p is negligible because the Doppler effect lead to the rapid decrease of 
conductivity all = J ll/E II far earlier than the decrease of E II sets in. A detailed analysis 
of Equation (7) gives the natural result that the minimum spatial scale of (p is of the order 
of ion-Larmor radius py. This result is easy to understand; for the distribution of q~ is 
defined by ions and they 'feel' electric field that is averaged over the Larmor orbit of 
the 2py, diameter and all smaller scale variations of q~ are averaged in the course of this 
Larmor motion. In our case I kl = kz = k, b~omin'IS equal to Pyi ~ e '  Therefore, two 
different cases of the tearing-mode development are possible: (a) fie ~ Pyi < A~, when 
all characteristic scales in plasma configuration exceed py, and, consequently, the MHD 
approach (inertial or resistive) is acceptable; (b) A~ < b e ~ py,, when the region of the 
current localization is narrower than ion-Larmor radius and MHD approach becomes 
principally unacceptable and it is necessary a kinetic description. 

Let us now consider the different limits. 

3.1. COLLISIONLESS LIMIT 7 >~ Ve 

Assuming in (7) and (7'), vjj/kvrj, 7/kvrj ~ 1, we obtain 

pY2, cp" ( c o A I I I I z 1 T i  1(1 Z~i)- 
2 = q) - kll c / Tee "q- Z l i  - -  1 , 

(12) 

--n ~]IC ( ~ 1 (  1 Zli)- (13) A II = (P - kll c ./ k Tee -1- Z l i  - -  1 ; 

( )"  _ d2( )/dx ~. 

It is easy to see from Equation (12) that in our case of aperiodic perturbations 
Re co = 0 the behaviour of ~o is controlled by electron term and they play the determining 
role in the development of the modes which we investigate below. Thus we can rewrite 
Equation (12) in the form 

= ~ -  q?-- Zle. 
py, Te ~ kllC / 

(12') 

Equation (12') describes two regimes of the tearing-mode instability: 
(la) The kinetic regime, when b e > A ~ and, consequently, the influence of q~ can be 

neglected. We can get from (12') the solution of cp in the region x ,> A ~ (in this case 

Zle ~ 1): 

oo 
O)A[[__ X 2 ~ sill 0 

cp kilo (A~) 2 0 2 + x2/(A~) z dO, (14) 
0 
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where 

(AS) R=dff 1 + ~ j ~ p y 2  2T,. " 

It is clear that for spatial scale of the scalar potential we have 

The condition 6~ > A ~ defines the margin of kinetic regime 

b v • m~/~m- e (15) 

Matching condition Equations (11) and (13) (if we neglect (p) give the growth rate of 
collisionless kinetic tearing-mode (Drake and Lee, 1977) by 

7o= _l/2 I+T , .  1 m R R 
m by 

(ib) The MHD inertial regime, when 6~o < A ~ In this case the solution of (p in the 
region x < A~ ~ x2/2(mff)2), coming from (12') takes the form 

~/2 

kllc 2(Aft) 2 d0 s , , / ~ e x p  --Uff~2- ; o 2(a~o ) J 
(17) 

M -- ~ As defines the region of current localization. It is easy where the parameter A~o - x 0 
to obtain from Equation (11) the expression for the growth rate of the collisionless MHD 
mode: i.e., 

) (1-7) --," 3 n~[4 l + T i  Ti]  2 2 
70 = ~3e 

~1 mi L ~ Tel_] 
(18) 

The integral I appears from the integration in Equation (11) and is of the form 

r~/2 I tR t2 cos0]) 
I =  a t ( l -  2 f dOx/sinOexp ~ _]/. (19) 

--cO 0 

Changing the order of integration we come to the expression: I = 2zcF(3)/F(�88 The 
growth rates (16) and (18) match accurate to the factor of order of unity at the margin 
(15) b* = x/(mi/2me) e e 1 (Galeev and Zeleny, 1977). 
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3.2. COLLISIONAL LIMIT ~ < ];e 

Using the asymptotics vj/kll VTj >> 1 from Equations (7) and (7') we obtain 

( coA , )cp_  k"vr~ p2y_~ q~,,= Ti 2 2 

k2/92 2 kl lc /T~ 27Ve+ I1 T~ 
(20) 

- _ _  kllVz~ 09 (.oAIi "~ ~_ 2 2 2 
All = k q<: <,o- k tc ) e 2 'Ve + k 74., 

(21) 

Equation (20) describes now two collisional regimes: 
(2a) When ~o > A~, kinetic regime. It is seen that in the region x > A~ the soIution 

of Equation (20) is the same as in the collisionless case (la) (see Equation (14)) and, 
therefore (b,p~:)~on -"~ py, x /~ /2Tv  Neglecting cp in Equation (21) with the aid of 
Equation (11), we get the semi-collisional mode of Drake and Lee (1977) as 

~se = 1/e 1/3 8J/3 b y  2/3 7~ - 1/2 1 + ~ 

(2b) When ~o < A~, the MHD regime. Here we also obtain the same solution of(20) 
as in the collisionless case (lb) (see Equation (17)), but instead of collisionless singular 
layer width A ~ we must insert the collisional one into the parameter 
Aca: M = c (A~o)~on x / ~ A , .  By analogy to (lb) we can get now from Equations (11), (17), 
and (21) the resistive MHD mode of Furth-Killen-Rosenbluth (Furth et at., 1963) of 

the form 

-~VNR=~/5~ae/5#l/sEl--m2 2 ( T e +  T; ) ]  4/5 " 

r n  TeI 
(23) 

where we must keep in mind that, in Equations (22) and (23), we use the dimensionless 

parameters e~ = c/copoL, li = me/mi, 7 = 7/kvr~, u = vJkVT. 
The growth rates }~ and 7FKR match for A, ~ = 3~ ~ py. In addition, the semi- 

collisional growth rate 7,~ smoothly match the collisionless one ~; = ~/by when p~ = v,. 

4. The Development of the Instability for Large Shear 

As it is clear from analysis of the previous section, the collisionless growth rate 
~ ~-e2/by (see Equation (16)) match the collisionless growth rate for 'pure neutral' 
(by = 0) sheet 7o ~ ~3/2 (Coppi et al., 1966) at the point by = e~/2 < 1. This value of shear 
corresponds to the marginal condition for magnetized electrons py. < de = ~ L (see 
Section 2). This matching occurs till the value of coUision frequency ~, _< e3/2. However, 
for by > E l/z, when the growth rate of the instability p; ~ e2by- 1 becomes smaller than 
the collision frequency ~ > ) ;  = e2/b v (for by > el~/2 this inequality corresponds to 
~ > ~3/z) the semi-collisional regime of Drake and Lee (1977) applies ()~, N ~/3). 
While, for by < e~/2, the collisionless regime ofCoppi et aL (1966) is prolonged tilt ~e = 1 
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(see, e.g., Zeleny and Taktakishvili, 1981). Thus, at the first glance the matching for 
strong collisions does not take place. But here we should take into account that even 
for small longitudinal magnetic field by < ee ~/2 ~ 1 there do exist in distribution (1) a 
number of particles (electrons) with small velocities normal to magnetic field v• < Vre 
for which the Larmor radius in By field is smaller than de = g~/2L width: i.e., 

p2 = < 4/ L , (24) 

(fly, is gyrofrequency in By field), and we can get the estimate for the marginal normal 
velocity v* : v* = f2ye~e/2L = vrbye s ~/2. Consequently, this group of particles will be 
magnetized by By field and their weight in the whole distribution is equal to 

2 2 b~/~e G < -  - Jr v• exp ( -  2 2 . (25) Va/VTe) dr• = 1 - e 
/)2 /)2 

T~ T~ 
0 

Naturally, for by ~ eJ/2 the fraction of these particles is small G< ~ b~/ee. On the 
~,1/2 G< -~ 1. Accordingly, the fraction of unmagnetized particles other hand, for by >> ..~ , 

in the whole distribution is given by 

2 t = e - b ~ l ~  - v •  d v z  . (26) G> v 2 ,1 v• exp ( -  2 2 
T~ 

Therefore, calculting the.  contribution of particles in the dispersion relation 
(Equation (I 1)), we must take into account the contribution of both groups of particles 
with corresponding weights (formally, we should do so when matching in collisionless 
limit ~e < ee 3/2 tOO, but here the growth rates match automatically). 

Thus for these composite dispersion relation we get 

1 - m 2 

m 
- G>Jo + G<Jso = yee3 /2exp( -b2 /ge)  + 

-I- 73/2 V 1/2 8e-2 b y { 1  - exp( - b~/ee) } . ( 2 7 )  

Solving this cubic equation @ ~/2 ___ x) we obtain a generalized expression for the growth 
rate of the instability in the intermediate region by ~ ee 1/2 which gives Po and Y,c in the 
asymptotical cases by ~ eJ/2 and by >> e2/2, respectively (see Figure 1). 

5. General Picture of the Regimes 

Now we can sketch the general picture of the different regimes of the tearing instability 
dependent on collision frequency Ve and shear value by. On the diagram (re, by) shown 
on Figure 2 we plotted the regions which the parameters of laboratory (experimental 
devices: Altyntsev et al., 1977; Frank, 1974; tokamaks: Muchovatov, 1980) and space 



194 L. M. ZELENY AND A. L. TAKTAKISHVILI 

Fig. 1. 
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The dependence of growth rate on by near the marginal region of eollisionless and semi-collisional 
regimes. 
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Fig, 2. Regimes of tearing-mode development. MT: magnetospheric tail, MP: magnetopause. 
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(solar coronal loops and solar corona: Svestka, 1976; the Earth's magnetopanse: 
Berhem and Russell, 1982) current layers occupy. 

It is clear from Figure2 that solar flare (coronal) loops (particle density 
n ,~ 101~-1012 cm -3, temperature T ~ 106 K), occupy the marginal position between 
semi-collisional (Equation (22)) and resistive MHD (Equation (23)) regimes. The 
parameter by here is evaluated as the ratio of longitudinal magnetic field Bij to the 
azimuthal one Bo in a loop (magnetic tube). It characterizes the degree of warping of 
the flux tube: the greater B o, the more the magnetic field spirals, and more energy is 
stored in the loop. One can get the evaluation of by from the condition of stability of 
magnetic tube by the Kruskal-Shafranov criterium which gives the reasonable result 
consistent with experimental data by ~ 2-10. 

If we assume that coronal loops posess filamentary structure - i.e., consist of rather 
thin filaments with the characteristic scale of magnetic field variation L ~ 104-105 cm, 
then the evaluation of appropriate time-scale of the instability development in this region 
gives the reasonable value ~ ,,~ 103 s. One can see from Figure 2 that the collisionless 
MHD regime of Coppi (1965) can occur only for unrealistically large values of shear 
length b* -~/~- ~/~ e~- i > 2 x 103 and is not met in reality. 

In experimental devices (Altyntsev et aL, 1977; Frank, 1974) as well as in the Earth's 
magnetospheric tail the turning of field occurs at the angle that is close to 180 ~ and 
the value of by is small, by ~ e2/2. According to their collision frequencies ~e, experimental 
devices and the ma~aetospheric tail fall mainly into the collisionless regime of Coppi 
etal. (1966) p ~  ~3/2. In the magn~etospheric tail ~e varies within the limits 
0 < ~ < ~,~ > 1, where v~fr can be caused, e.g., by the development of low-hybrid 
turbulence in the inhomogeneous magnetospheric plasma. For the collisionless plasma 
of the magnetopanse ,by ~ 1 and the instability always occur in the kinetic inertial regime 
--! 2 ~o ~- e~/by which occupies very wide range of parameters ~ e  < by < # -  1/2 - ~e 1 

As for tokamak devices, they generally fall outside the range of the MHD approach 
(see Figure 2). The role of by here plays the ratio oftoroidal (Br) to azimuthal (B~o) fields, 
which is of the order of 12-20 (Muchovatov, 1980). The present tokamaks fall into the 
semi-collisional region, while the tokamaks of the next generation with higher tempera- 
tures will be approaching to the collisional inertial tearing-mode region P6 ~ eZ~/by �9 

5. Summary 

Summarizing our results we conclude that there exist following regimes of tearing 
instability: (1)the kinetic collisionless resonant (Coppi etal., 1966); (2)the kinetic 
collisionless inertial (Drake and Lee, i977); (3)the kinetic resistive (Zeleny and 
Taktakishvili, 1981); (4)the kinetic semi-collisional (Drake and Lee, 1977); (5) the 
MHD collisionless inertial (Coppi, 1965); and (6)the MHD resistive (Furth etal., 
1963), all shown on Figure 2. 

The general kinetic description &the tearing instability gives the possibility to obtain 
all the regimes &the instability and define the particular mechanism responsible for the 
development of the spontaneous reconnection in different cases. 
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As was mentioned above, we must be very careful when using the M H D  approach, 
for the very thin width of the singular layer can make the M H D  approximation 
inapplicable. Although, at a first glance, it looks a little strange, but this may remove 
many problems because - as we have shown above - the kinetic modes are in some sense 
simpler than the M H D  ones (for their description they need only one differential 
equation, instead of a system of  coupled equations in the M H D  case). 
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