
J O H A N  V A N  B E N T H E M  

P O L Y A D I C  Q U A N T I F I E R S *  

1. M O N A D I C  A N D  P O L Y A D I C  Q U A N T I F I C A T I O N  

Standard generalized quantifiers are of the unary form 

O x -  6 ( x ) ,  

with a set-theoretic interpretation of the type '[[~b]]~Q'. Polyadic 
quantifiers generalize this to higher arities: 

Q x ,  . . .  x . -  4 , ( x ,  . . . . .  x . ) .  

For instance, the following binary form defines the set of all transitive 
binary relations: 

Oxy-  ~b(x, y ) :=  VxVy(th(x, y)---~ Vz(~b(y, z)---~ ~b(x, z))). 

The linguistic uses of the unary notion (introduced in Mostowski (1957)) 
have been amply demonstrated in the well-known trilogy Barwise and 
Cooper (1981), Higginbotham and May (1981), Keenan and Stavi 
(1986). Recently, however, linguists have also turned toward the more 
general version (due to Lindstr6m (1966)), witness Keenan (1987b) and 
May (1987). (Compare also Bellert and Zawadowski (1987).) This paper 
addresses two issues concerning this new development: its empirical 
motivation, and especially, its theoretical properties. 

Genuinely polyadic quantifier patterns are not to be regarded as a 
mere source of epicycles for the standard semantic accounts of 
quantification. There is something more at stake, both linguistically and 
philosophically. What is being revived here is in fact the traditional topic 
of 'multiple quantification', which was already studied in the Middle Ages 
by scholastic logicians. Now, the standard historical verdict, put force- 
fully in Dummett (1973), is that this whole line of research was misguided 
from the start. And it was Gottiob Frege who finally solved the problem 
of multiple quantification, precisely by ignoring it: one explanation of 
single quantifiers suffices, when used iteratively in tandem with the 
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syntactic composition of more complex sentence patterns. Briefly, poly- 
adic quantification is iterated unary quantification. It is precisely this view 
which is being challenged by the recent linguistic developments recorded 
here. 

There is also something at stake for the current theory of Generalized 
Quantifiers in natural language (cf. van Benthem (1986), Part I), which 
has analyzed such special properties of unary quantifiers as Iogicality, 
conservativity or monotonicity. This theory too has a standard Fregean 
extension to iterated cases, by means of techniques from Categorial 
Grammar. In particular, one may derive generalized quantifier meanings 
for transitive sentences 

NP1 TV NP2, or Q1A R Q2B: 

yielding the well-known wide or narrow scope readings. [The 
qualification 'standard' refers to the fact that this extension is not ad-hoc, 
but rather justified as an instance of a very general procedure of type 
composition: see van Benthem (1986), Chapter 7.] Thus, as we shall see 
in more detail below, iterated unary quantifier patterns will automatically 
inherit various denotational properties from their unary components. For 
instance, conservativity for the separate Q1 and Q2 in the above schema 
will imply, by a simple calculation, conservativity for compound dyadic 
patterns Q(A, B, R), in a suitable sense to be defined in Section 3. And 
similarly, monotonicity features of component quantifiers can be related 
systematically to those of their compounds. By contrast, however, once 
genuinely polyadic patterns are to be admitted, there will be a need for 
novel, rather than automatic extensions of existing generalized quantifier 
theory. 

The main contribution of this paper is a modest one, namely to suggest 
a more systematic logical point of view on the phenomenon of polyadic 
quantification. Surveying proposed examples of polyadic quantifier pat- 
terns in natural language, we find several cases 'around' what might be 
called the 'Frege Boundary' of iterated unary definability, and a few 
beyond that. Thus, it becomes of interest to locate that border line more 
precisely in structural mathematical terms: something which is achieved 
in the main theorem of Section 4. As a consequence, we can analyze and 
classify the earlier empirical examples in a more systematic fashion. 

In addition, we show how even iterated unary quantifier patterns by 
themselves give rise to interesting new questions, often having to do with 
the phenomenon of 'scope'. Drawing upon the existing literature, we 
characterize various types of scope-free quantifiers, for which iteration is 
relatively 'loose'. [Another noteworthy topic in this area is the structural 
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definition of the notion of 'case' found in Keenan (1987a), which is based 
on the above-mentioned mechanism of type change in transitive con- 
texts.] 

Finally, we illustrate how the proper perspective on what is going on 
here should eventually be a more general type-theoretic one - so as to 
achieve maximal linguistic mileage out of the semantic lessons learnt in 
this particular instance of polyadicity in natural language. 

2. E M P I R I C A L  E V I D E N C E  F O R  P O L Y A D I C I T Y  

Leaving aside such technical examples as the initial one in Section 1, 
what is the evidence for genuine polyadic quantification in natural 
language? This is one central empirical question to be answered, and we 
shall review some proposed contenders. One caveat may be necessary 
here. The central issue is whether or not certain polyadic patterns have a 
natural decomposition into their unary components - and not so much 
whether they are first-order definable. Indeed, not all Fregean iterations 
are first-order, nor all genuine polyadics higher-order. 

A first, rather obvious example arises from the Fregean procedure 
itself: 

2.1. Unary Iteration 

Iteration creates complexes such as 

QlX" Q2y" th(x, y) (compare "every boy loves a girl"). 

But of course, as was observed already in Section 1, such complexity can 
be dealt with entirely by a compositional use of the meanings of unary 
quantifiers. 

These iterated cases gain interest, however, with certain additions; 
such as in the following example brought up by Keenan: 

every boy loves a different girl. 

Here, the meaning is no longer a simple decomposable V=l, as the 
dependency expressed should now be one-to-one. Keenan takes the latter 
to be a genuine binary generalized quantifier. 

Still, one might prefer to treat "different" here as a higher-order 
operator on an ordinary unary iteration - reflecting our intuitive ideas 
about the compositional structure of this sentence, as being a 'connected' 
(or 'frozen') iteration. 
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Further examples of this phenomenon arise through interaction with 
another ubiquitous linguistic process: 

2.2. Iteration with Anaphoric Links 

Unary iterations can be 'tied together' by anaphoric links. Again, one 
might prefer to analyze such cases as (higher-order results of trans- 
formations applied to) instances of the basic unary pattern. This will 
work, e.g., with 

every boy loves a girl-friend of his; 

using the unary predicates 'boy' and 'love a girl-friend of oneself'. But it 
will not work, apparently, with the Bach-Peters type sentences con- 
sidered in May (1987): 

a boy who loved her left the girl who despised him. 

As May argues, we seem to need quantification over couples of in- 
dividuals here to get the correct reading. 

A related perspective is found in Fenstad et al. (1987): 

2.3. Parametrization 

The following 'donkey sentence' 

every farmer who owns a donkey, beats it 

can be analyzed as a parametrized unary case 'every AB' with a 
parameter x: 

(every farmer who owns a donkey x)y- y beats(x). 

What should this 'parametrization' mean? One idea is to say that every 
actual value supplied for x turns this into an ordinary unary case; i.e., 

Vx: Vy((farmer(y) & owns(y, x) & donkey(x))---~ beats(y, x)). 

But, this fails with a sentence like 

most farmers who own a donkey, beat it: 

which does not mean 'for all donkeys: for most farmers. . . ' .  The better 
strategy seems to consist in using couples again, and hence polyadic 
quantifiers: 

'every xy - . . . ' ,  'most xy ". . . ' .  
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DIGRESSION. Of course, problems remain on the latter reading too - 
as the 'most'-sentences now need not imply (the unary reading of) 

most farmers who own a donkey, beat a donkey: 

which does seem to be a logical consequence of the former sentence, 
whatever its construal. But, this is not our main concern here. II 

The next example is another case studied by May (1987): 

2.4. Resumption 

The sentence "no one liked no one" has a reading of the form 

No xy" dp(x, y) 

expressing that no couple (x, y) belonged to [[~b]]. Now, since neither of 
the two iterated unary readings for the 'no'-quantifiers has this meaning, 
the binary approach again seems necessary. 

Note, however, that there are unary reductions here in a broader sense. 
Thus, 

No xy" ~b(x, y) ¢:> No x" 3y -  4,(x, y) 
One xy" 4~(x, y) ¢:> One x- 3 y -  ~b(x, y) 

& One y .  3x-  d~(x, y). 

A similar reduction is possible for "two", "three", etc.; be it with an 
ever-growing complexity. We shall return to this phenomenon in Section 
4. 

Finally, we consider the following: 

2.5. Cumulative Readings 

In addition to its two unary decompositions, a sentence like 

three girls ate five plums 

also has a so-called 'cumulative' reading, in which the total number of 
plums eaten by (three) girls equals five. The latter reading, noted e.g. in 
Scha (1984), reduces to neither of the two possible scope readings 
'three(five)' or 'five(three)'. 

Still, as in the preceding case, there exists a unary reduction in a more 
general sense, on the following simple pattern: 

Three girls x- 3y -  (plum(y) & eat(x, y)) & 
Five plums y- 3x • (girl(x) & eat(x, y)). 
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Summing up, the claim seems justified that 

• there is a good case to be made for the necessity of higher 
(non-unary) types of generalized quantifier in natural lan- 
guage; 

• but, many of these cases are still similar to the standard ones, 
in that they amount to treating tuples of individuals like 
individuals themselves. 

• and also, various more complex unary reductions occur, which 
deserve special attention. 

To get yet higher cases, one should look at genuine branching 
quantification (see Barwise (1979), Sher (1988)), or perhaps at the 
Keenan type of example and its ilk, which have no Fregean reduction in 
any obvious sense. 

3. D E N O T A T I O N A L  C O N S T R A I N T S  

The preceding discussion at least motivates taking a closer look at the 
general logical properties of polyadic quantifiers. For convenience, and 
practical importance, we restrict attention to the binary case. 

Already on a universe with n individuals, the class of potential binary 
generalized quantifiers is quite large. Categorially, the type of Q in the 
schema Qxy-  &(x, y) is 

((e, (e, t)), t): 

and the size of the corresponding denotational domain is 2 C2~n2~). But, 
there are some plausible denotational constraints here: as was already the 
raison d'6tre for the theory of the unary case (see the survey Westerst~hl 
(1986)). 

3. I. Logicality 

The general categorial concept of Iogicality applies here too (cf. van 
Benthem (1986), Chapter 3): as invariance of Q under permutations of 
binary relations induced by permutations o[ the individuals. For all such 
permutations ~-, one requires that a polyadic quantifier satisfy 

R ~ Q iff 7r[R] ~ Q, for all binary relations R. 

(Thus, one retains the 'arrow pattern' of the relation, while disregarding 
the specific individuals occurring at their ends.) To see the effect of this 
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requirement, one must determine the relation 

R ~ S ,  

defined as 'S = ~-[R] for some individual permutation It'. For unary 
relations R, S, this just amounts to equicardinality. For binary R, S, the 
behavior of ~ is more complex: 

EXAMPLE.  With n = 2, = has 10 equivalence classes. [ ]  

DIGRESSION.  There exists a logical characterization of ~:  

PROPOSITION.  The following are equivalent on a finite universe M: 

• R ~ S  
• M, R ~ or(X) iff M, S ~ or(X), for all first-order formulas or in 

one binary predicate letter X and identity 
• the preceding clause only for universal positive first-order o-. 

This result may be proved by elementary model theory. But, it still 
does not produce one single numerical invariant matching ~.  []  

To continue, a logical quantifier Q can now be fully specified as the set of 
~-equivalence classes accepted by it. Examples of such logical binary 
quantifiers are 

(I) all iterations of logical unary quantifiers, 
(2) all resumptive quantifiers reducing to logical unary quantifiers 

over couples, 

but also, e.g., the earlier-mentioned collection of all transitive binary 
relations. 

Behind all these cases lies a general result (see van Benthem (1986), 
Chapter  7.5): 

PROPOSITION.  Any predicate over binary relations which can be 
defined by means of some formula of Type Theory (that is, a full iambda 
language with identity) using logical parameters only, is itself logical. 

A converse holds too. Every logical polyadic quantifier on a fixed finite 
universe is definable in such a type-theoretical language over that 
universe, [See van Benthem (1987) for a general connection between 
logical invariance and type-theoretic definability.] 

Finally, it should be observed that the logicality of unary iterations 
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(case 1) is in fact derivable from Iogicality of their unary components in 
the ordinary sense. Thus, the art of generalization is to see which 
derivable properties of unary compounds are also plausible for polyadic 
quantifiers in general. 

3.2. Conservativity 

Eventually, our whole discussion will have to encompass settings where 
quantifiers may carry restricting predicates to subuniverses. The reasons 
for making this move here are largely analogous to those concerning 
unary quantifiers [where the general pattern is (QA)B or Q(A, B)]; but 
there are also some new ones, witness the examples in Section 2. 

For instance, resumptives such as 

no A likes no B 

call for a representation somewhat like this: 

NO A B . L ( x  ' y). 
x y  

And, the earlier-mentioned donkey sentences are even explicitly of the 
form 

All xSy • R(x, y). 

So, in general, the restriction itself can be a relation on the tuple of 
relevant variables (cf. Higginbotham and May (1981)). 

REMARK. Keenan (1987a) shows that the restriction in the first type of 
example (being technically of type (1, 1, 2)) cannot be naturally reduced 
to that in the second (which is of type (2,2)). The obvious move: 
replacing A, B by the binary relation A × B, has certain pitfalls. • 

There arises a need, then, for a generalization of such 'unary' topics as 
conservativity (see Keenan and Stavi (1986)), and the interplay of restric- 
ting and predicative argument positions generally. Van Eyck (1987) 
presents a first attempt. For instance, in the last-mentioned case of 
restricted binary forms Q(S, R), Conservativity becomes 

Q(S,R) itt (Q(S,R fqS); 

and Logicality likewise 

Q(S,R) iff O(Tr[S],Tr[R]), for all individual permuta- 
tions ~r. 
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Similar definitions are possible for the case with two unary restrictions; 
where, e.g., Conservativity assumes the form 

Q(A, B, R) iff Q(A, B, R fq (A × B)). 

Again, this requirement may be motivated by showing how, at least for 
the case of unary iterations, it falls out of ordinary conservativity for the 
unary quantifiers separately: 

Q A x .  Q a y .  Rxy iff O A x  " Q a y .  (Rxy & By) iff 
QA x . (Qay .  (Rxy & By) & Ax) iff 
QAx. (Qay.  (Rxy & By & Ax) & Ax) iff 
O A x  " Qay" (Rxy & By & Ax): i.e., 
QAx.Qay. (Rfq (A × B))xy. 

From now on, for reasons of technical convenience, we shall stay with 
the simpler unrestricted forms in what follows. 

4. L O C A T I N G  THE F R E G E  B O U N D A R Y  

In the light of the earlier introduction, there is an obvious interest to the 
exact location of the border-line between unary Fregean iterations and 
essentially polyadic quantifiers. [Compare also various reductions dis- 
cussed for linguistic reasons in May (1987), Sher (1988).] Thus, following 
the earlier approach to Iogicality, the following question arises: 

Is there also some kind of invariance characterizing the spe- 
cial class of Fregean binary quantifiers which are definable by 
unary compounds? 

And indeed, there is. 

4.1. Necessary Conditions 

We start with a 

DEFINITION. A quantifier Qxy • ~b(x, y) is a unary complex if it can be 
defined as a Boolean combination of forms 

OlX" Q2y" ~b(x, y), 

with Q~, Q2 logical unary quantifiers. 
First, we isolate an invariance property of such complexes. 

DEFINITION. Set R -  S if, for all individuals x, 
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IRxl=lsxl 
Here, R~ stands for {Yl(X, Y)~ R}. 

A quantifier Q is right-oriented if it is closed under the relation - .  

PROPOSITION. All unary complexes are right-oriented. 
Proof. For all individuals x, Q2Y" Rxy holds iff R~ e Q2, iff (by the 

definition of R - S ,  and permutation invariance for Q2) Sx E 02, i.e., 
QEy " Sxy. But then, Qlx • Q2y • Rxy if and only if Qlx • QEy • Sxy. • 

As an application, note that the earlier Transitivity is not unary definable 
-witness  the following counter-example (where R - S ) :  

o ( 

R S 
(transitive) (non-transitive) 

REMARK. This result can be extended to include converse forms of 
definition Q I x • Q2 y " R yx - by using an additional requirement concern- 
ing predecessors: 

6Rl=lxSI. 
E.g., Transitivity will still remain undefinable, as the above R, S also 
satisfy this additional requirement. • 

4.2. Sufficient Conditions 

Is the above semantic behaviour also sufficient for unary definability? 
One illustration is provided by the earlier resumptives. These are all 
right-oriented. [The reason is this. If IRx [ = ISx I for  all x, then IRI -- IsI.] 
And in fact, they are all definable by unary complexes: 

EXAMPLE. The statement 'Two x y - R x y '  is equivalent to the unary 
complex 

(Plx • 3 y . R x y  & =Ix • P2y" Rxy) v 
(P2x • Ely- Rxy & P2x " P l y -  Rxy) • 

This observation inspires the following general result. 

THEOREM.  On any finite universe, a binary quantifier Q is definable by 
some unary complex if and only if it satisfies the following two con- 
ditions: 
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(i) Q is logical (i.e., permutation-invariant), 
(ii) Q is right-oriented. 

Proof. 'Only if'. This follows from the preceding observations. 
'If'. Suppose that Q satisfies (i) and (ii). Let there be n individuals. The 

following unary complex defines the quantifier Q: 

W  Pn, x. Pjy. Rxy; 
R~O 

where the conjuncts enumerate all sizes tRx I occurring in R with their 
exact multiplicity. 

To show that this works, it suffices to check that, if a relation S satisfies 
this formula, then it must belong to Q. Now, S will satisfy some disjunct, 
and hence it has the same 'Rx-distribution' as some R ¢ Q. Let 7r be any 
permutation of the individuals sending the nix having exactly j S- 
successors to those having exactly j R-successors. Then we have 

S ~ o r [S]  - R .  

And so, by conditions (i) and (ii), S must be in Q too. tit 

In order to illustrate the situation, we consider two previous types of 
quantification. First, as was observed before, resumptive quantifiers are 
all right-oriented and logical: and indeed, they do possess unary reduc- 
tions of the above kind. 

Next, cumulative quantification is not right-oriented, as may be seen in 
the following picture of girls and plums 

• ) o  

The two relational patterns are - - connec ted .  And yet, to the left, two 
girls are eating one plum (cumulatively), whereas, to the right, two girls 
are eating two plums (again, cumulatively). Nevertheless, it can be shown 
that cumulative quantification does have the slightly weaker property of 
left&right orientation. That is, it is preserved under the transition from 
one relation to another having the same number of successors and 
predecessors at each point as the original one. Now, virtually the same 
proof as above will establish the equivalence of left&right orientation 
plus logicality with definability in terms of unary complexes admitting 
both the relation R and its converse. This then explains the unary 
reducibility of sorts encountered with cumulative quantification in Sec- 
tion 2. 
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The preceding definability result is only local, in some specific uni- 
verse. But it can probably be extended to provide a characterization of 
unary definability uniformly in all finite universes. 

On the other hand, refutations by this method are strong: in that they 
even refute unary definability within one specific model. Another illus- 
tration of this phenomenon is the Keenan quantifier, which we shall now 
read technically as 

'Vx::lyRxy & R contains a 1-1 function with the same 
domain'.  

The latter statement is true in the following situation (take the identity 
function): 

.c) 
C" b " O  

a c 

But it fails in the next situation; although the three corresponding points 
there have the same numbers of successors and predecessors (i.e., 
holds): 

a c 

No one-to-one function can be selected, however, as there would be a 
clash in the values for b, c. 

Incidentally, the Keenan quantifier is not first-order definable in 
general - and it is not even first-order definable on finite universes (as 
may be proved by a Fra'/ss6-type game argument). 

REMARK.  Keenan himself (personal communication) doubts the above 
higher-order reading for his 'different' sentence. But the pictorial 
argument presented here also seems to work for a whole range of other 
meanings for this quantifier combination. 

Keenan (1987b) also studies the question of unary reducibility. His 
notions and results seem somewhat different, however, from those 
presented here; involving various technicalities. • 

5. EXPLORING THE REALM OF POLYADICITY 

The above methods suggest a more systematic perspective upon polyadic 
quantifiers, as coming in various natural classes of semantic invariance 



P O L Y A D I C  O U A N T I F I E R S  449 

behaviour. The largest class is that of merely logical ones, being in- 
variam for individual permutations. At the other extreme lies the class of 
'resumptive' quantifiers over tuples, which are even invariant for per- 
mutations o[ pairs o[ individuals. Essentially, the latter can only express 
conditions on the cardinality of the denotation [[4']]. As every per- 
mutation of individuals induces a unique permutation of couples (though 
not conversely!), this indeed strengthens ordinary logicality. 

For a clear non-example of the latter kind, consider the earlier- 
mentioned Keenan quantifier 'every A R a different B'. It holds in the 
left-most situation depicted below, but not in its companion (arising from 
a permutation of couples): 

A B A B 
• ~ 0  • • 

Other, intermediate types of permutation on couples may be used as 
well to describe important special classes of polyadic quantifiers. Exam- 
ples can be found in Higginbotham and May (1981), and de Mey (1987) 
(e.g., in the analysis of reciprocals). 

EXAMPLE. Here is an illustration from the former paper. Permutations 
of couples may be induced by individual permutations, as in the 
definition of Logicality: 

~(a, b )=  (~(a), ~(b)). 

But also, independent permutations might be allowed for the two 
argument positions: 

~(a, b )=  (~l(a), ~2(b)). 

Invariance under such duplex permutations defines a new class of 
quantifiers, in between the logical ones and the resumptive cases. Here 
are some relevant observations: 

AR • 3xRxx is logical, but not duplex-invariant. 
AR • 3xVyRxy is duplex-invariant, but not resumptive. 

A more complex example of this kind would be AR. VxVy3z(Rxz  & 
Ryz): which is not a 'unary iteration' in the sense of the Section 4. II 

The example also suggests a more formal way of registering the effects of 
special invariance properties: namely, in terms of their behaviour on 
standard first-order statements about the relation R. As was noted above, 
all such statements are logical. But beyond that, restrictions appeared. 
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For instance, is there a perspicuous syntactic characterization of those 
first-order formulas which define duplex-invariant polyadic quantifiers? 

DIGRESSION. Sjaak de Mey has suggested that the analysis of Fregean 
quantification given in Section 4 is itself reminiscent of another type of 
permutation invariance found with Higginbotham and May. Call a per- 
mutation of couples dependent duplex if it can be written in the following 
form, allowing movement of the second argument in dependence on the 
first: 

7r(a, b) = (p(a), q~(b)), 
where p is a permutation of the individuals, 
and all q~ are injections defined on R~. 

The exact correspondence is as follows. 

PROPOSITION. A binary quantifier is definable by some unary complex 
if and only if it is invariant for dependent duplex permutations. 

Proof. It suffices to show that dependent duplex invariance is 
equivalent to logicality plus right-orientation. From left to right, logi- 
cality is the special case where all qa equal p. Also, right-orientation 
follows y letting p be the identity map. From right to left, note that 

R-{(a,p- loq~(b)) l (a ,b)cR} (=R*) 

and 

p(R*) = {(p(a), qa(b))[(a, b)c R} = -rr(R). 

Then apply right-orientation and locality. 

In general, one need not insist on automorphism invariance as the sole 
means of charting semantic territory. In fact, the earlier notion of 
right-orientation and its obvious dual of 'left-orientation' also define 
perfectly natural iterative classes, which are both contained in that of the 
already mentioned 'left&right-oriented' quantifiers. 

Going in the opposite direction, however, there is a collapse to one 
extreme case: 

PROPOSITION. Any logical binary quantifier which is both left-orien- 
ted and right-oriented is invariant for arbitrary permutations of ordered 
couples of individuals. 

Proof. Here is a sketch. The essential point is that any two binary 
relations having the same cardinality can be transformed into each other 



P O L Y A D I C  Q U A N T I F I E R S  451 

by means of successive steps changing only incoming or only outgoing 
arrows, which do not disturb numbers of successors or predecessors, 
respectively, anywhere, lit is instructive to try this with some pictures; 
e.g., the one used above for the Keenan quantifier.] [] 

EXAMPLE. The following strip illustrates the conversion method for 
relations with equal cardinalify. 

source: target: 0 

S'\ \ 
O< • O< . . . .  • 

intermediate diagrams: 

© O "\ 
o ~  • o (  • 0 

The first step respects in-degrees, and so does the second, while the final 
step to the target respects out-degrees [] 

Thus, the earlier resumptive quantifiers may be described as being those 
which are unary iterated themselves, which also having such an iteration 
for their converse. 

The resulting picture for polyadic quantifiers is as follows: 

logical 

left oriented - ~  

! 
J 

left&right oriented 

right oriented 

resumptive 

Another approach to charting this territory may be found in Sher 
(1988). There, the emphasis is placed on progressively more general 
schemes of definition for polyadic quantifiers in a logical representation 
language. For instance, in the simplest 'independent' case, one has 
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something like the earlier cumulative schema of Section 2: 

Q lx  • 3y"  Rxy & Q2y • ::Ix • Rxy. 

Next, one can formulate truly complex cases, such as the following 
schema inspired by 'positive branching': 

3A ~ Q I 3 B ~  Q2 .  A x B C R, 

which is then replaced by a 'maximizing' variant for inclusion, and 
eventually by a very broad schema replacing the double 3 with a more 
general logical quantification. 

In line with the main perspective of this paper, one can analyze these 
schemata by means of structural semantic conditions. Notably, all pro- 
posals satisfy the general constraints of Logicality and Conservativity (cf. 
Section 3). On top of these, e.g., the 'independence' schema cr imposes 

(1) Invariance under Passive Transformation: 

o-(Q1, R, 02)  iff ~r(O2, R U, Ol),  
where R U is the converse of R. 

For instance, observe that, in the cumulative reading, "Three girls ate 
five plums" is equivalent to its passive form "Five plums were eaten by 
three girls". 

(2) Invariance under Domain/Range Equality: 
o'(Ql, R, Q2) iff o'(Q1, S, Q2), 
if Do(R) = Do(S), Ra(R) = Ra(S). 

Such special constraints are of independent interest too, witness the 
discussion of passivization in Section 6. 

But also, the more general second schema mentioned above has 
obvious inferential properties, such as upward monotonicity in the three 
arguments " Q I A " ,  "R"  and "Q2B". Thus, on this reading, "At least 
three boys kissed at least four girls" implies that "At least two boys 
touched at least two girls". 

One interesting observation made by Sher is that surprising collapses 
may occur between the schemata. For instance, 'downward branching' as 
presented in Barwise (1979), being 

3 A 6  Q13B c Q2 . R C _ A × B ,  

turns out to be equivalent to the iterated 'independent' variant 

Q1Ax • 3y  • Rxy & Q2By • ::Ix • Rxy 
(i.e., 'Do(R) 6 Q 1A & Ra(R) ~ Q2B'). 
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As an application of the methods in Section 4, we show that, by contrast: 

PROPOSITION. The positive branching schema has no definition in the 
iterated independence format. 

Proo[. It suffices to exhibit two relations on some domain with the same 
left and right orientation, only one of which satisfies the positive branch- 
ing schema. By an earlier theorem, no iterated schema of the 'in- 
dependent' variety can then define the latter, as such iterated schemes 
are invariant for this difference. 

Let the quantifiers be Q I =Q2  = at least two. Here are the two 
relevam diagrams: 

• 

• ) • Q ~ O  

Note that in- and out-degrees are the same at corresponding points. Yet, 
only the left-hand diagram satisfies the positive branching schema. B 

Of course, there are many other types of semantic behaviour for polyadic 
quantifiers which may be studied. For the moment, we hope to have 
established at least the feasibility of such an investigation. 

6. Q U E S T I O N S  O F  I T E R A T I O N  

Although unary iterations are not intrinsically polyadic, they do raise 
some interesting questions of their own, beyond the standard unary 
framework. Admittedly, it has been emphasized in preceding sections 
that some of the semantic behaviour of Fregean polyadics is automatic- 
ally predictable from that of their components. Nevertheless, the 
phenomenon of iteration also raises several interesting new questions. 
For instance, several authors have studied scope and order of oper- 
ators in this setting. On the one hand, iteration is itself responsible 
for the emergence of different scope orderings: but on the other, many 
expressions involved in this process show a certain freedom of behaviour, 
which has intrigued quite a few linguists. [In fact, de Mey (1987) takes 
the absence of scope ambiguity to be a reliable test for genuinely 
polyadic constructions.] Here are some illustrations of this emerging 
trend. 
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6.1. Proper Names 

Zwarts 1986 contains a study of generalized quantifiers that lack scope 

with respect to Boolean connectives. Notably, proper names show a col- 
lapse of sentence negation and predicate negation: 

Mary (doesn't complain) ¢:> Not (Mary complains). 

This property is called 'self-duality' in L6bner (1987): Q=-7Q-7.  It 
seems already so strong that it might completely determine the proper 
names. But, this is not quite true. 

EXAMPLE. Consider a universe {1,2,3} with a quantifier Q =  
{{1}, {2}, {1,2}, {1,2, 3}}. Then Q is self-dual without even being a filter - 
and hence it cannot be the denotation of any proper name. II 

But then, proper names also satisfy distribution over conjunctions and 
disjunctions: 

Mary (complains or worries) ¢:> 
(Mary complains) or (Mary worries). 

Using the standard characterization of principal ultrafilters, Zwarts con- 
cludes that 

PROPOSITION. The proper names are precisely those generalized 
quantifiers which lack scope with respect to Boolean connectives. 

6.2. Scopeless Quantifiers 

Another notion of scopelessness arises with iterated unary quantifiers in 
Zimmermann (1987), who considers interchangeability of a quantifier Q 
with all generalized quantifiers Q', in the following schema (with either 
pure or restricted occurrences of Q, Q'): 

Ox . Q'y " Rxy  iff Q'y . Qx . Rxy .  

Again, proper names are the prime example here - and Zimmermann 
proves a converse too: 

PROPOSITION. The scopeless quantifiers are precisely the proper 
names. 

To illustrate the kind of reasoning involved, we give a simplified 
version of his proof. We derive scopelessness with respect to Boolean 
operations - which reduces the proposition to the preceding result. 
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Negation. The following semi-syntactic calculation suffices: 

- X 6 Q  iff Q y - - q X y  iff Q y - 3 z  ( z = z  & ~ X y )  iff 
Q y . 3 z - n . ( z ~ z v X y )  iff(!) 3 z ~ . Q y . ( z ~ z v X y )  iff 
3 z - ~ . X c Q [ a s A y . ( z ~ z v X y ) = A y . X y ]  iff X ¢ Q .  

Disjunction. Let {Xi l i~  I} be a family of subsets of the universe. 
Using the Axiom of Choice, select a subfamily {Xj I J ~ J}, together with a 
set Y of representatives yi (j ~ J) such that 

(i) the union of the Xi equals that of the Xj, and 
(ii) each yj- belongs to a unique Xj (for j c J). 

Then, define a binary relation R among individuals as follows: 

Ryx if y -- yj for some j c J such that x e Xj. 

Note that x ~ U{X~Ii~ I} iff x 6 U { X j l j 6  J} iff 3y  ~ Y- Ryx. 
Now calculate as follows: 

U { X i [ i 6 I } 6 Q  iff Q x - 3 y ~ Y . R y x  iff(!) 
3y  6 Y .  Q x -  Ryx 
iff 3 y j c  Y .  Xj 6 Q (as hx • Ryjx defines Xj) iff 
: I j ~ J . X i ~ Q  iff 3 i c I - X ~ Q .  

As to the latter equivalence, one half is obvious, since JC_I. Conversely, 
starting from any given i c I, the selected family {Xi [j c J} can be chosen 
so as to contain X~. II  

R E M A R K .  In a sense, proper names are not genuine generalized 
quantifiers, having been raised from type e to type ((e, t), t) (cf. van 
Benthem (1986), Chapter 7). Thus, their freedom of movement  in the 
latter category may be really a sign of 'low status'. It would be of interest 
to know if something similar holds in general. 

Type raising has other uses in this setting too. For instance, in Keenan 
(1987a), the question is studied which polyadic quantifiers can be viewed 
as natural lifted versions of monadic counterparts. III 

Finally, we can push the analysis a bit further by taking up a related 
question found in van der Does (1988), in the course of a discussion of 
valid ~exportation principles' for quantified expressions under perception 
verbs. In particular, the author notes that all (upward) monotone 
quantifiers admit of exportation with respect to the existential quantifier: 

3Ax.  OBy . R x y ~  QBy . 3 A x  . Rxy, 
for all monotone generalized quantifiers Q. 
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Using the earlier method of proof, we may even tighten this to the 
following 

PROPOSITION. The only quantifiers allowing exportation for all 
monotone quantifiers within their scope are those of the form some A for 
some restriction set A. 

Proof. Consider any non-trivial universe. Suppose that a quantifier Q* 
allows such exportation: that is, for all binary relations R, 

Q*x • Qy • R x y ~ Q y  • Q*x • Rxy, for all monotone Q. 

[Restricting predicates are omitted here, for convenience.] Then, we can 
draw the following conclusions: 

CLAIM. Q* is 'splitting': i.e., 

U {A~] i e I} e Q* only if Ai c Q* for some i e I. 

This may be seen from the left-to-right direction of the above Dis- 
junction argument, observing that the quantifier involved in the inter- 
change there is indeed monotone. 

CLAIM. Q* is upward monotone itself. 

For, suppose that A e Q*, A is properly contained in B, but B ~ Q*. 
Define a monotone quantifier Q and a binary relation R as follows: 

Q : = { X I X D B }  
R : =  (A xB)  U ( ( B - A )  x ( B - A ) ) .  

Then, for x e A, Rx = B: which is an element of Q. Next, for x ~{ A, Rx is 
either B -  A or the empty set 0. Now, 0 is not in Q, as B is non-empty. 
Moreover, if ( B -  A)¢  Q, then A must be empty (as ( B - A) _ ~  B). But, 
this can be ruled out as follows: 

If 0 e Q*, then choosing the (upward monotone!) empty quantifier Q, 
and the empty relation for R, refutes Exportation. 

Therefore, if x ~ A, then Rx is not an element of Q. In all, then, we 
have 

{x[Rx e 0 } =  A. 

As A was in Q*, this says that Q*x .  Q y - R x y .  By Exportation, it now 
follows that 

Qy • Q*x • Rxy 0 
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Now, for y ¢ B, yR =0:  which was outside of Q*. Next, for y6  B - A ,  
v R - - B :  which was outside of Q* ex hypothesi. Finally, for y e A ,  

r R = A. Together, this implies that 

{ y l y R E O * } :  A- 

From 0, it then follows that A ~ Q: i.e., A _D B: quod non. 

To complete the main proof now, it is easy to check the following 
identity: 

Q* =::t A, where A:={xl{x}cQ*}.  

[For instance, if B ~ Q*, then, as B = U {{x}[ x e B}, Disjunction implies 
that some {x} is in Q*, whence B f3 A is non-empty.] [] 

As a consequence, one may sharpen Zimmermann's result: 

COROLLARY. A quantifier admits exportation for arbitrary quantifiers 
(whether upward monotone or not) if and only if it is a proper name or 
the empty one. 

Proof. 'If'. This follows by direct inspection. 
'Only if'. By the preceding result, such a quantifier Q* must be of the 

form _::1 a for some A. If A is empty, then Q* is the empty quantifier. So, 
suppose otherwise. It suffices to show that A must be a singleton set. For 
the sake of contradiction, then, suppose that A = AI U A2, with disjoint 
non-empty parts AI, A2. By the definition of Q*, A1 ~ Q*, A2 ~ Q*. Now, 
using the relevant half of the Negation case in the earlier proof, we have 
that 

if A c Q*, then - A  ¢ Q*. 

But, if A2 c Q*, then -A~ 6 Q* (by the monotonicity of Q*): which is a 
contradiction. [] 

6.3. Self- Commuta t ion  

Finally, a special important case of scopelessness in the preceding sense 
is displayed by the se l f -commut ing  quantifiers of van Benthem (1984): 

Q x  • Q y  . R x y  ¢:~ Q y  . Q x  • Rxy. 

Prime examples are the existential and universal quantifiers. For instance, 
"everyone loves everyone" is equivalent to "everyone is loved by 
everyone". Thus, in familiar linguistic terms, for these quantifiers, Pas- 
sivization is a meaning-preserving transformation. [Another interesting 
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linguistic aspect of these quantifiers seems to be that they do not allow 
genuine branching with respect to themselves.] Non-examples are also 
first-order quantifiers such as exactly one, at least two. The matter is 
studied further in Westerst~hl (1986a), who proves the following 

PROPOSITION. The only (upward) monotone self-commuting quanti- 
tiers are all, some, true and false. 

i3roofs of such results have a more combinatorial flavour than those 
encountered in the standard theory of unary generalized quantifiers. This 
is already shown in the next 

EXAMPLE.  On a universe with 2 elements, exactly one is still a self- 
commuting quantifier. • 

By a somewhat laborious calculation, Westersthhl's result can be im- 
proved to the following 

PROPOSITION. All, some, true and false are the only self-commuting 
continuous quantifiers. 

Instead of a proof, here is an 

EXAMPLE.  The downward monotone ('persistent') quantifier Q = at 
most k is not self-commuting. To see this, consider the following picture 
of a universe with n individuals (n > k): 

1 k k + l  n 

1~  ~ k k + l  n 

Here, l . . . . .  k have no R-successors; while, for i > k, 
(i, i) . . . . .  (i, i -  k) e R (i.e., k +  1 R-successors each). It is easy to 
check that 

(i) O x ' O y ' R x y ,  while 
(ii) not Oy • Ox • Rxy. 

[Ad (ii): 1 . . . . .  k have at most k R-predecessors - e.g., k is preceded by 
k + 1 . . . . .  k + k - but so does n, which has only one predecessor.] • 

Finally, self-commuting quantifier pairs may also be redescribed as a 
special case of converting compound binary quantifiers Q, satisfying the 



P O L Y A D I C  O U A N T I F I E R S  459 

condition 

Q(R) iff Q(RU), (with R ° the converse relation of R). 

This notion has again interesting connections with earlier ones from 
Sections 4, 5 and 6. For instance, since R u satisfies the same numerical 
conditions on its set of pai~s as R, we have: 

If a binary quantifier is invariant for permutations of pairs, 
then it is converting. 

The converse does not hold in general; witness the case of 

Qxy • Rxy := VxVy(Rxy---> Ryx). 

But, for self-commuting iterations Qx • Qy, the two notions may actually 
be equivalent. 

DIGRESSION. Self-commutation provides one of the many examples 
where the linguistic study of quantification touches upon issues in other, 
more mathematical fields of enquiry. Notably, in the foundations of 
probability, there have been studies of so-called 'measure quantifiers', for 
which self-commutation expresses precisely the central Fubini Theorem 
of probability theory. A concrete example is the complete logic of 
measure quantifiers discovered by Harvey Friedman (cf. Steinhorn 
(1985)), whose principles for probabilistic almost all are essentially 

upward monotonicity, closure under conjunction, 
containment of all sets E - { x }  (where E is the total universe, 
and x any object in E), as well as self-commutation. 

Interestingly, continuing the above lines of reasoning, it may be shown 
that 

PROPOSITION. The only generalized quantifier satisfying all Fried- 
man Axioms is the trivial one true. 

Proof. A derivation will not be given here. See van Lambalgen (1988) 
for an exposition, as well as further probabilistic background. Ill 

What this impossibility result shows is, not that there is anything wrong 
with the above system, but rather that genuine probabilistic 
quantification cannot employ logicality and full power ~sets in the pre- 
vious carefree manner. Non-trivial measure quantifiers will only be 
invariant for those permutations of the universe E which preserve some 
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suitable measure on the latter. Thus, the Friedman Axioms capture 
something essential about probability. • 

7. A B R O A D E R  P E R S P E C T I V E  

7.1. Categorial Generalization 

Quantifiers form only one special type of expression. Nevertheless, their 
study often brings to light semantic phenomena of wider significance 
across natural language. One way of formulating these is in a Categorial 
Grammar, with an associated Type Theory (see van Benthem (1986), 
Chapters 3 and 7). 

EXAMPLE. Generalized quantifiers have a basic type ((e, t), t). But, as 
we have seen, in transitive contexts, they can also be raised to a type 
((e, (e, t)), (e, t)). Thus, we find 'generalized quantifiers' living among the 
latter 'relation reducers' too. These will be partly lifted versions of the 
old ones, recognizable by certain special denotational behaviour - partly 
also new items. For instance, there is exactly one logical relation reducer 
which behaves precisely like proper names in that it is a Boolean 
homomorphism (cf. Section 6.1): namely the reflexivizer self (cf. van 
Benthem (1988)). • 

But, we can also look for even more general analogies. Notably, does the 
iterative versus complex distinction drawn in the above also make sense 
with other categorial types of expression? The transitive verb schema 
studied earlier involves the following types: 

(u, v) (s, x) (y, z) 
NP1 TV NP2 

Here, the functors NP1, NP2 should be able to combine with the TV 
argument in any order, with the same type of outcome. Therefore, they 
must have identical types. Moreover, assuming that the final step will be 
an ordinary application, and the first step a composition ('parametrized 
application'), there can be only one general pattern which fits: 

((s, y), y) (s, (s, y)) ((s, y), y). 

Unfortunately, no other contexts of this kind seem to occur in natural 
language. 

But then, we may also consider more general contexts, where opera- 
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tors interact which are quantificational in some more remote sense. For 
instance, consider the two adverbial modifiers in the complex verb phrase 

often walk a mile 

((e, t), (e, t)) (e, t) ((e, t), (e, t)) 

There are two readings here which arise by iteration: 'often (walking a 
mile)' versus 'often walking' a certain mile. Is there also a truly complex 
one: say, like the cumulative reading of "many hands lifted eleven 
players", where all those hands together lifted the winning team of the 
Soccer League? The answer appears to be negative. And similar nega- 
tive, or at least inconclusive outcomes arise in combinations such as 

write five letters to-day 

(e, (e, t)) ((e, t), t) ((e, t), (e, t)) 

Here, the cumulative reading actually co-incides with one of the iterated 
ones. And, replacing " to-day"  by a more quantificational expression will 
actually force us to make any intended cumulation morphologically 
visible: 

write five letters in three hours. 

Thus, the question as to linguistic generalizations of our initial situation 
remains open. 

R E M A R K .  An alternative remains, of course, to study the more general 
role of compounding particles, such as "in". Indeed, this would already be 
relevant for quantifiers themselves - since there too, non-iterative read- 
ings often involve such particles: 

three boys together ate all plums [] 

7.2. Lambda Reduction to Lower Types 

There are also more general mathematical questions raised by the earlier 
account of polyadic quantifiers and their Fregean sub-family. Quite 
generally, 

Which items in some type of expression are already definable 
using only items from lower types? 

As it stands, this question is still rather vague. But, it can be made more 
precise using suitable notions of 'definable' and 'lower'. [See van Ben- 
them (1985), Chapter  XIX,  for one particular general version.] Notably, 



462 J O H A N  V A N  B E N T H E M  

it makes sense to think of definability in a Lambda Calculus, employing 
applications and lambdas. 

E X A M P L E .  Reducible Noun Phrases. Which items in type ((e, t), t) are 
definable using only items from the lower types (e, t), e and t? Consider 
any definition for such an item, possibly with parameters. Without loss of 
generality, the definition can be brought into a lambda normal form, 
leaving no more lambda-conversions to be performed. Moreover,  types 
of variables occurring in the normal form must all be subtypes of 
((e, t), t). Then, the following facts may be deduced: 

it starts with Axle,t), followed by an application with types (e, t) 
and e, or some constant of type t. 

Thus, the only genuinely different candidates turn out to be: 

) [X(e , t  ) " X(e ' o(ae) (the 'lifted individual' ae) 
A X ( e , t  ) " C t • 

In this general perspective, we can also return to the earlier issue of 
reducible polyadic quantifiers. By a simple calculation, the latter form a 
dwindling minority in the type ((e, (e, t)), t): 

22" × 22" (=22"+') versus 22"2 

But, what if we allow the two parameters in type ((e, t), t) (i.e., the unary 
quantifiers involved in the reduction) to combine, not just via application, 
but with full lambda abstraction, as above? Then, in principle, there are 
infinitely many possibilities for schemes of definition. Still, what happens 
is a collapse to a fixed finite number of combination modes: 

PROPOSITION.  Let a, b be two items in the type ((e, t), t) of some 
model. The items in the type ((e, (e, t)), t) which are lambda/applieation 
definable from these reduce to forms AR. followed by a matrix in the 
following list: 

(i) 
(ii) 
(iii) 

(7)A(Axe. (~)R(x)(x)) 
(-1)A(Axe. (-1)A((-1)R(x))) 
(~)A(Axe. ('~)A(Aye" (-l)R(y)(x))). 

Here, 'A'  indicates either a or b, and ' (7) '  denotes an optional negation. 
Proof. What is needed here is some general method of enumeration. 

We refer to van Benthem (1988), (1989) for a systematic approach, 
employing context-free grammars describing readings, which are then 
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regularized to obtain a finite state machine producing all relevant lambda 
forms. A supplementary special-purpose argument is needed to show 
how the latter reduce to the few cases listed above. [] 

Thus, even with full lambda definability, few polyadic quantifiers will be 
downward reducible to unary ones. 

There are obvious generalizations of this kind of analysis to other 
types. Even though these will not be undertaken here, the present Section 
may have shown the importance of a more general type-theoretical view 
of polyadic quantification, and the basic semantic issues raised by it. 
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