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0.  I N T R O D U C T O R Y  COMMENT 

In cons t ruc t ing  the semant ics  of a language  it has been cus tomary  ever  

since Tarski  for the interpreta t ive  clauses - those which ment ion the 

semant ic  terms truth and satisfaction - to be defined with respect  to the 

not ion sentence o f  the language.  Thus  part  and parcel  of  giving a 
semant ics  is to p rovide  an adequa te  definition of this notion,  and the 

provision of  such is a m o n g '  the responsibilities of  the syntax of  the 

language.  T h e  class of sentences  of  a language  can be roughly  identified 

as the set of  syntact ic  objec ts  - phrase markers  - rooted  by the ca tegory  

S, as this is de te rmined  by the best,  that  is, the most  empir ical ly  adequate ,  

theory  of syntax. In interpret ing these objects ,  the semant ic  clauses will 

specify the condi t ions  which must  hold for  truth to obtain,  where  in what  
this consists is de te rmined ,  in the context  of a sen tence ' s  syntact ic  

cons t ruc t ion ,  composi t ional ly  in terms of  the denota t ions  of the sen- 
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Ladusaw, Richard Larson, Howard Lasnik, Peter Ludlow, Barbara Partee, Barry Richards, 
Barry Schein and Gila Sher for considerable help in the thought processes that went into 
this paper. Thanks are also especially due to Johan van Benthem and Gennaro Chierchia 
for their extensive comments. Material from this paper has been presented to colloquia at 
MIT, Sophia University and The University of Connecticut, Storrs. 
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tences's parts. So, if we take the subject noun phrase of Philby was a spy 
to denote an individual and the predicate verb phrase to denote a 
collection of individuals, then its truth conditions are characterized 
metalinguistically as follows: 

"Philby was a spy" is true iff Philby e {x I x was a spy}. 

The traditional tasks of semantics, then, amount to a proper specification 
of the syntactic structure of a language, and a proper specification of the 
application of the semantic terms to the syntactic representations so 
specified. 

In this paper I will explore in this vein what I consider to be the most 
adequate theory of syntax and the properties of its semantic inter- 
pretation. On this theory, the syntax generates a level of syntactic 
representation, Logical Form, and it is to sentences at this level to which 
the semantic clauses are applicable. I have elsewhere extensively dis- 
cussed the syntactic motivation for this theory (May (1985)). My purpose 
here is to investigate more carefully certain aspects of its semantics, 
focusing on the interpretation of quantification, and in particular explor- 
ing certain issues pertaining to scope (or the lack thereof) and the 
first-orderizability of natural language quantification. Section 1 will be 
devoted to the issue of the symmetry of scope, as considered from the 
perspective of its syntactic representation, as opposed to the asymmetry 
of semantic interpretation. Section 2 elaborates a symmetrical theory of 
quantificational interpretation, initially broached by Higginbotham and 
May (1981), in which absorbed quantifiers are introduced. Section 3 
introduces the notion of resumptive quantifiers in the interpretation of 
certain multiple generalization and multiple numerical sentences. Section 
4 explores application of the semantics developed for resumptive 
quantification to certain subtleties of wh-questions, while Section 5 
extends the analysis from singular to plural expressions. Finally Section 6 
examines the relation of resumptive quantification to branching 
quantification. In each of these sections, my concern will be to make 
explicit both the syntactic and semantic structures involved in interpret- 
ing Logical Form. 

I .  T H E  S T R U C T U R E  O F  S C O P E  A N D  I T S  I N T E R P R E T A T I O N  

Consider the confguration (1). Does a symmetrically or asymmetrically 
c-command/3, where both a and/3 are syntactic adjuncts of B? 
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(1) A 

ol B I 

/3 B ° 

b c 

My interest in this configuration stems from the application to it of the 
definition in (2): 

(2) The scope of a =af the c-command domain of a. 

Clearly how we assess the c-command relations in (1) will fundamentally 
affect how we understand quantificational scope to be grammatically 
represented. 

Suppose that we take (1) as a configuration of asymmetric c-command. 
This will be so if we reason as follows. Since the first branching node 
dominating a ,  namely B 2 also dominates/3,  a c-commands/3.  But as the 
first branching node dominating /3, namely B 1, does not dominate a , /3  
does not c-command a. Structure like (1) are relevant to the assessment 
of quantificational scope if we assume that sentences of multiple general- 
ization, such as Everyone loves someone, have syntactic representations 
at Logical Form of the form (3): 

(3) 

COMP S 

NPj S 

NPi S 

someone everyone ei admires ej 
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In the theory of May (1977), and in much subsequent work, scope and 
binding are determined with respect to such syntactic configurations, 
derived by transformational mappings, dubbed QR, taking S-Structure as 
their input. Construing the empty categories as logical variables, relative 
to definition (2) the representation in (3) is univocal, with the universal 
phrase everyone having scope narrower than the existential someone. The 
prefixed phrases in (3), however, could have been attached in the 
opposite order. This derivation would represent a distinct univocal 
interpretation of Everyone loves someone, in which the universal phrase 
has broader scope. The roots of the classic ambiguity of multiple 
generalization are to be found, on this theory, in the syntactic description 
of such sentences, turning on a particular property of transformational 
adjunctions - namely that phrases may be adjoined to a given category in 
any (hierarchical) order. 

Recently I have come to doubt whether it is correct to view configura- 
tions such as (1) in the fashion just described. While I believe that the 
syntactic characterizations of scope and binding, as given by (2) and 
other ancillary definitions, are fundamentally correct, I now believe that 
it was improper to view the relation of a and /3 in (1) as asymmetric 
c-command. Rather I am now of the opinion that this configuration is to 
be properly seen as one of symmetric c-command. The difference in 
syntactic interpretation arises when we replace the "branching node" 
definition of c-command drawn from the work of Reinhart (1976, 1983) 
with a formulation of the definition supplied by Aoun and Sportiche 
(1983): 

(4) a c-commands /3 =dfevery maximal projection dominating c~ 
dominates/3,  and a does not dominate/3.  

I take the maximal categoriai projections to be the maximal X-levels of 
the phrasal and clausal categories - in traditional parlance NP, VP, AP, 
PP, S and S.~ In order to properly calculate the c-command relations in 
configurations of the form (1), such as (3), it is first necessary to clarify 
the status of the multiple occurrences of S that we find in such structures. 
S, as noted, is a maximal categorial projection (of INFL). As in May 
(1985), a projection is understood as a set of nodes, or category segments, 
occurring in a given phrase-marker. Thus in (3) the S-projection level is 
made up of three member nodes, and it is only categories which are 

t Here following Chomsky (1986), assuming the articulation of S and S as projections of 
INFL and COMP, respectively, found in that work. In taking S as maximal I differ from the 
assumptions of May (1985), but not critically so. 
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dominated by the entirety of this class which can be said to be dominated 
by the maximal projection. Since neither a nor/3 in (1) is dominated by 
the S-projection, but only by proper subparts, both categories will have 
thelir c-command domains demarcated by ,~, the sole maximal projection 
which dominates them. Consequently, (3), and more generally structures 
of the form (1), are configurations of symmetric c-command. 2 

The view just outlined of adjunction in the context of X-theory is 
presented in May (1985). The reader is referred to that citation, as well 
as to Chomsky (1986), for fuller discussion of its theoretical foundations 
and empirical extensions. For my purposes in this paper I will accept it as 
fundamentally correct, in order to observe its consequences for the 
treatment of natural language quantification. The most significant change 
wrought by this view is in the fashion by which grammatical structure 
determines evaluation, as we can no longer view the configuration (1) as 
representing relative scope. Since each of the adjoined phrases c-com- 
mands the other, neither can be said to have syntactically broader scope 
than the other, since the notion of relative scope itself is an asymmetric 
notion. What is represented by (3) are only the absolute scope domains of 
everyone and someone, which for both is ,~. But if (3) itself cannot be said 
to be disambiguated, so that relative scope is not situated in the syntax, 
from whence the ambiguities of quantification? The place to look for an 
initial answer, I believe, is to trace relative scope to the freedom inherent 
in variant courses of assignment of interpretations to configurations of 
the form in (1). 

To see this more explicitly, we begin by defining the following notions 
over LF-representations of bounded complexity. We let 17I = {$1 . . . . .  Sn}; 
that is II is an S-projection. Then: 3 

(5) Si ( l~<i~<n) is a sentential function=af3S~II (S-~SiAS 
dominates Si) 
Si is a sentence =drS~ is not a sentential function. 

These definitions, at first glance, may strike one as unusual, in that they 
do not mention that a sentential function must contain an occurrence of a 

2 Scope s t ructures  of the form (1) are also dist inguished in that they are non-bivalent, in 
the sense that they contain categories,  the adjuncts,  which are neither included in nor 
excluded from other categories  in the structure.  A category includes another  category iff it 
dominates  every node in the category;  it excludes it iff it dominates  none of its member  
nodes. (These definitions follow C homsky  (1986).) So in (3), the S-projection neither 
includes nor excludes its NP-adjuncts .  
3 These  definitions would have to made somewhat  more  precise to cover  wh-const ruct ions  
as well. 
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variable free. This is unnecessary, however. Consider the cases. If there 
has been no LF-movement we have the structure [ sNPVP] ;  this is a 
sentence, because of the distinctiveness clause. A structure in which there 
is a complex projection, such as [s, NPi [So.. .  e i . . . ] ] ,  must contain a 
trace which is bound. This simply follows from the characterization of the 
transformational operation by which such structures are derived; to wit, 
trace theory of movement rules. So, in which the trace is contained free, 
is a sentential function, as the other member of II, S~, dominates it. S~, in 
which the trace is bound, is a sentence, as it is not dominated by any 
other member of II. We thus see that the trace here has just the 
properties normally ascribed to variables in standard logical calculi. 

The application of these definitions to (6): 

(6) [g Is 2 NP, Is, NPj [s" • • • e j . . .  e , . . . ]  ] ] ] 

shows S O and S t to be a sentential functions, and S 2 to be a sentence, as 
no other nodes of II dominate it. Sentence, therefore, is defined with 
respect to the entire projection, sentential function with respect to the 
projection's subparts. We now define the following notion, where O 
stands for operators occurring in ,g,-positions. 

(7) o" is a ~-sequence =dfVOi, Oj ~ o-, Oi c-commands Oj and Oj 
c-commands Oi. 

In (6) (NPi, NPj) form a ~-sequence. 4 
With respect to a model M = (D, F),  D a domain of individuals and F 

an assignment to the nonlogical elements, we define g as a sequence of 
members of D. The following semantic clauses can be given for everyone 
and someone, where q~i designates a sentential function containing just xi 
free. 

(8) g satisfies everyonel ,pi iff every sequence g' satisfies ~0~, where 
g' differs from g in at most the value assigned the ith place. 

g satisfies someone~ q~ iff some sequence g' satisfies ~0~, where 
g' differs from g in at most the value assigned the ith place. 

Assumed, without statement here, is the usual truth clause in terms of 
satisfaction of a sentence by every sequence. 

Formally, suppose that the semantics of LF contains a schema of the 

4 If you like, mutual c-command can be equated, for our purposes, with government, 
although there may be reasons for taking this latter notion as stronger; May (1985), 
Chomsky (1986). 
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form (9), which generates, relative to hi, the satisfaction clauses of the 
quantifiers Q of the language: 

(9) I[Qi: q ~  ~ II~ll g', for Q-many g'. 

That is, a sequence g satisfies a quantified formula just in case for 
Q-many sequences g', which differ from g in at most the ith-place, g' 
satisfies ~ .  

Of course this schema as stated is much too narrow for any kind of 
general applicability to natural language. Although of value in charac- 
terizing general phrases such as everyone, someone and no one, it is a 
schema of unrestricted quantification. Natural language quantification, 
however, is typically restricted, so we replace (9) by (10): 

(10) ~Qi" ~t)i ~li~ g ~ ~i~ g', for Q-many ~ ~i~g'° 

We read (10) as stating that g satisfies a quantified formula iff q~ is 
satisfied by Q-many sequences g', which differ from g in at most the ith 
place, and which also satisfy ~b. 

As is well-known there is a perfectly general method for applying the 
satisfaction clauses for quantifiers to sententiai functions of many vari- 
ables. What makes this possible is that ~, as mentioned in the clauses, is 
required to contain just a single variable free; it may contain others 
which are bound. By each clause in turn satisfaction is determined for 
one further variable, relative to those sequences which satisfy the sen- 
tentiial function whose interpretation had just proceeded, until a sentence 
is composed, which contains no further variables free. While by this way 
of iterating the application of the quantifier clauses a dependency is 
induced for any particular interpretation, there are no inherent con- 
straints among the quantifier clauses themselves which limit how they 
may apply sequentially. For a sentential function ~.j we can, in principle, 
consider variation either with respect to the ith or jth places first, the 
difference in order leading (for appropriate choices of quantifiers) to 
distinct interpretations. Normally however the order of application of the 
clauses is constrained by the scope dependency relations encoded in the 
syntax of the structures to which they apply, so that there is a mirroring 
of syntactic ordering in the semantic ordering. Our current claim, 
however, is that the syntax no longer imposes such constraints; in a sense 
we are eliminating a redundancy in the semantics of multiple 
quantification by just letting the interpretations be those consistent with 
the possible permutations of the quantifier clauses. Thus the ambiguity 
we ascribe to Everyone loves someone, for instance, will be fully ac- 
counted for in terms of the relative orderings of the satisfaction clauses 
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for everyone and someone,  and will ultimately be semantically charac- 
terized in exactly the same way regardless of whether we take the relative 
scope relation to be syntactically represented or not. 

Summarizing to this point, the theory I will be considering is one in 
which the canonical scope configuration (1), and its extensions, is a 
syntactic configuration of symmetric c-command of the adjoined phrases. 
The E-sequence these quantificational expressions form is indeterminate 
with respect to order of interpretation, and thus is consistent with any 

interpretation which can arise relative to the possible orderings of the 
satisfaction clauses corresponding to the quantifier words of LF. 5 Hence 
what we think of as relative scope is no longer to be located in the 
syntactic description of quantification, and thus arising as a function of 
the freedom of transformational operations, but rather in the semantics, a 
result of the freedom inherent in the application of the semantic clauses. 
Bear in mind, however, that what is at stake here is not the represen- 
tation of absolute scope domains; there is a large body of evidence 
supporting the notion of LF-movement itself (see May 1985, Chapter 1). 
Indeed, it is only when sequences of quantifiers agree on their absolute 
scope domains - that is, form a ~-sequence - that the variation in scope 
resulting from different applications of the quantifier clauses can arise. 
What is at stake is the fundamental syntactic ambiguity of represen- 
tations having the configuration in (1), and one indeed may wish to 
contend with the notion that Logical Form, as the levei of grammatical 
representation subject to semantic interpretation, is no longer to be 
conceived of as disambiguated. This should disturb, however, only in- 
sofar as we take disambiguation as an a priori constraint on logical 
syntax. If we take it rather as an empirical claim, then the theory in 
question embeds the claim that the representation of scope and binding 
by the syntax is not one which represents relative-scope. Indeed I believe 
that disambiguation is too strong a constraint on the relation of syntax 
and semantics. I find more plausible a criterion suggested by Higgin- 
botham (1985): 

(11) There is an LF-representation F for S such that F means p. 

(11) holds on our current view of a multiple generalization structure like 
(3). That is, there is an LF-representation of the sentence Everyone loves 

someone which represents the 'V:I' reading, and one which represents the 
':IV' reading. They just happen to be, on this theory, the same  LF- 

5 See May (1985, 1988), where an extensive range of arguments for this view are 
presented. 
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representation. I take it that this is an empirical result within the 
constraints laid down by (11); it weighs on the issue of "how much" is 
represented at LF of the logical structure of a language. And it is towards 
resolving this issue which I take it that research on Logical Form within 
the context of the syntax and semantics of natural language is primarily 
devoted. 

2 .  A B S O R P T I O N  A N D  T H E  S E M A N T I C S  OF N - A R Y  Q U A N T I F I E R S  

The point I have been making regarding the symmetry and asymmetry of 
scope is a perfectly general one, in that it can be freely transposed into 
other perspectives on the semantics of quantification. For instance, it is 
naturally characterized within the theory of generalized quantifiers, in 
which quantifiers are interpreted as functions of a certain type, by the 
iterative application of those functions. On this way of looking at 
quantifiers, espoused in papers by Higginbotham and May (1981), Bar- 
wise and Cooper (1981), Van Benthem (1983a) and Keenan and Stavi 
(1986) among a considerable range of references in the recent linguistic 
literature, our semantic gaze is shifted from sequences of individuals, 
central to the satisfaction clauses, to sets of individuals which stand as the 
arguments of quantificational functions. Thus, in the simplest, un- 
restricted, case, generalized quantifiers are functions f: P(D)--~  2, which, 
following Mostowski (1955), respect just the size of sets, and not the 
identity of their members. Formally, these are functions f for which 

f ( x )  = f (m(X) ) ,  

for all automorphisms m of D, X c D, a condition which guarantees that 
the quantifiers defined in this manner are logical. Restricted generalized 
quantifiers, those which we need for the interpretation of natural lan- 
guage, are functions f: P ( D ) ×  P ( D ) ~ 2 ,  which, analogously, respect 
just the sizes of the sets they relate - formally functions for which 

f ( x ,  Y) = f (m(X) ,  m(Y)), 

for all automorphisms m of D, X, y c  D. These latter functions are 
sometimes called relational generalized quantifiers; the following are 
definitions of the classical quantifiers as such relations between sets: 

S o m e ( X ,  Y ) : X A  Y-~I~ No(X, Y):Xf ' I  Y = ~  
E v e r y ( X ,  Y )  : X - Y = I~ Not  e ve ry (X ,  Y )  : X - Y ~ fJ. 

The application of these conditions can be illustrated by interpreting 
Every  sJ!ar twinkles  at night, where we proceeds by setting X equal to 
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{x lx  is a star}, 

and setting Y equal to 

{ Y l Y twinkles at night}, 

and then requiring that (12) hold for truth to obtain: 

(12) {x I x is a star}-{ Y l Y twinkles at night} = 0, 

In correspondence to LF-representations, the value of X will always be 
determined by the contents of the phrase moved at LF, while the value of 
Y will always be determined by the sentential function which resides 
within the scope of that phrase. To iterate the application of f i (X,  Y) to 
f j (X' ,  Y'), we let the value of Y be X '  N Y', such that f j (X' ,  Y') = 1. 

With this much in mind, consider again an LF-representation of the 
form (13), 

(13) [g Is NP, Is NPj[s q~,,/]]]], 

which contains the E-sequence m.j = (NPi, NPi), and where fi and )~ are 
the interpretations of its members as restricted generalized quantifiers. 
Then ~o'~,j(q~)] = [i(fj(q~)) or [j(fi(q~)), that is, f~ can apply to the set for 
which fj(tp)= 1, or vice versa. The point, then, simply put, is that 
members of a ~-sequence can be interpreted in any order possible for 
their interpreting functions, where as before, this semantic ordering is 
determined by general rule. For an LF-structure containing an n-mem- 
bered E-sequence o'1 ..... ,, there will be n! possible permutations of the 
order of functional application. Taken this way, a ~-sequence determines 
the relevant interpreting functions, which may order themselves, in terms 
of their application, in any well-formed sequence whatsoever. 

Explicating the semantics of LF via generalized quantifiers, it turns out, 
makes apparent certain properties of quantification which allow us to 
take a somewhat different view of the interpretation of multiple general- 
ization than that just sketched. 6 It is a view which allows, in a certain 

6 Generalized quantifiers, note, explicate the semantics, not the syntax, of LF. Thus, their 
function may be understood as to characterize the metaquantifiers 'Q-many' which appear 
in the satisfaction clauses. The connection between them can be effected by noting that for 
f ( X )  = 1, where jr interprets some quantificational determiner, the members of X - the 
satisfiers of Q - will constitute just Q-many individuals which satisfy q~. By attaching the 
theory of generalized quantifiers to the semantics of quantification in this way we can take 
advantage of its generality to legitimize satisfaction clauses for other quantifiers, such as no 
and not every, or many and few, by requiring for no, not every, many or few sequence(s) g' 
that they differ from g, with respect to some restriction, in at most the ith-place. From this 
perspective our semantic competence of quantification would be adequately described via 
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sense, semantic scope to be as symmetrical as syntactic scope. The need 
for a general semantic theory of symmetrical scope finds its antecedents 
in the inquiries of Higginbotham and May (1981) into crossed binding 
'Bach-Peters'  sentences: 

(14) Every pilot who shot at it hit some Mig that chased him. 

The problem here is well-known. If scope is represented asymmetrically, 
then the narrower scope quantifier cannot bind, as a bound variable, the 
pronoun contained within the broader scope phrase, which, in virtue of 
having broader scope, is outside its c-command domain. Thus if the 
every-phrase has broader scope, it cannot be a variable bound by the 
narrower some-phrase. Of course this problem disappears if the proper 
structure associated with (14) at LF is one of symmetric c-command, 
since then it would reside within the c-command domain of some Mig 
that chased him simultaneously with him residing within the c-command 
domain of every pilot who shot at it. Higginbotham and I derived the 
relevant structures by Absorption, a structural readjustment of asym- 
metric structures into symmetric ones, although observe at once that any 
rule of this sort can be entirely dispensed with, as the structural 
configuration which properly represents bound variable anaphora is now 
directly generated at LF by the functioning of LF-movement itself, as 
described in Section 1. The importance of Bach-Peters sentences 
extends, however, beyond the syntax to the semantics, as Higginbotham 
and I noted. This is because, under the standard interpretation of 
multiple quantification, the asymmetry of scope will simply reassert itself 
in the semantics, because of the recursive, successive, application of 
either the satisfaction clauses or the corresponding generalized 
quantifiers. The semantics still requires that we interpret the quantified 
expre, ssions in some order; consequently the pronoun contained within 
the phrase with broadest (semantic) scope cannot be interpreted as a 
bound variable. Thus, if the every-phrase in sentence (14) is interpreted 
with broader scope, then the pronoun it contained within still cannot be a 
variable bound by the more narrowly interpreted some-phrase. Hence, 
while binding, to wit c-command, is necessary for bound variable 
anaphora, it is not sufficient. For sufficiency we must also require that the 

ascriptions of knowledge of the satisfaction clauses; the generalized quantiflers are im- 
plicated just as a tool to explicate the semantic import of such semantic clauses. (I take it 
that sentiments such as these is what lies behind Higginbotham (1988).) Other perspectives 
are possible, of course, but I leave these issues aside, as they will not affect the content of 
what comes below. 
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pronouns can be properly construed with respect to the semantic clauses. 
In Higginbotham and May a way is proposed to attain this sufficiency; to 
see it, we need consider the nature of generalized quantifiers a bit more 
deeply. 

Lindstr6m (1966) provides a classification of generalized quantifiers 
which allows them to be segregated along two axes - by the adicity of 
their arguments and by the kinds of sets those arguments denote. A 
quantifier type for Lindstr6m is a finite sequence of integers, where 
cardinality of the sequence indicates adicity and ordinality of its members 
types of sets. The simplest type is (1), a function of a single set of 
individuals; you will recall them as the unrestricted generalized 
quantifiers described above. Increasing cardinality, the next most com- 
plicated type is (1, 1), functions of two sets of individuals. These are the 
restricted generalized quantifiers, which also apply to sets of individuals, 
differing from their unrestricted counterparts only in their adicity. Vary- 
ing ordinality, we derive the corresponding unrestricted and restricted 
types (2) and (2,2), which apply to one and two sets of pairs of 
individuals, respectively; that is, to relations rather than predicates. 
Formally, the former are functions f: P(D × D ) ~  2, while the latter are 
functions f: P(D× D)×P(D× D)-+2,  which, in either case, respect 
automorphisms of their domains. 7 It should be apparent that this method 
of classification can be extended to n-ary cases along either dimension. 

It is clear and well-established that first-level quantifiers, those holding 
of sets of individuals, have broad application to natural language. What 
was shown initially in Higginbotham and May (1981) was that there is 
also significant applicability of second-level quantifiers, those holding of 
pairs of individuals, but, it turns out, only if they are of a special type. 
This special type are called absorbed quantifiers, because where they do 
exist in natural language they derive solely from the combination of a 
number of simple quantifiers into a single complex one. 8 More precisely, 
they derive from the combination of n-many unary quantifiers into a 
single n-ary quantifier. So, for instance, from a pair of unary functions fi 
and fj- of single variables, the binary absorbed quantifier f~fj of pairs of 
variables can be derived. 

Such absorbed quantifiers, it turns out, inherently incorporate certain 

7 Higginbotham and May (1981) point out there are a number of ways in which this 
condition can be satisfied for quantifiers of many places. See Van Benthem, (1988), De Mey 
(1987) and especially Sher (1989a) for insightful discussion of the Iogicality of these sorts of 
quantifiers. 
8 Also see Keenan (1987) who elaborates on this point. 
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properties of their unary counterparts. For instance they preserve the 
Iogicality of their constituent parts; thus a binary quantifier fifj is logical 
(i.e., respects automorphisms) iff its components fi and fi are. Absorbed 
quantifiers also incorporate certain properties which arise, for their unary 
components, only from their extrinsic relations; in particular, they 
encode their scope. It is this encoding which allows the desired 
sufficiency of the previous paragraph for bound variable anaphora to be 
attained in the proper way, since in Bach-Peters sentences the pronouns 
are both construed as bound variables relative to a fixed scope of the 
binding quantifiers. Thus, suppose that we have the absorption of fl and fj 
into fi[i, and that f~ and fj are unrestricted functions. Then we have, for 
all relations R c D x D, the type (2) binary absorbed quantification: 

f i f j (g)  = fi({a e D I f j (g '  a) = 1}), 

where R'a denotes the counter-domain of R: 

{be O I(a, b)6 R}. 

If fl =everyone  and fs =someone,  we would then obtain (15) as an 
interpretation of Everyone loves someone by the binary quantifier V::I: 

(15) everyone ({a ~ D [ someone (lore'a) = 1}). 

That is, every applies to that set of individuals who love some individual. 
Now suppose, to get closer to the heart of the matter, that f~ and fj are 
restriicted functions, then we have, for all relations R, S c D × D, the 
type (2, 2) binary absorbed quantification: 

f i f j (R,  S) = fi(dom R,  {a ~ D I f j (R 'a ,  S' a) = 1}), 

where dom R denotes the domain of R on D. Setting R as 

and S as 

{(a, b) I man(a) ^ woman(b)} 

{(a, b) I love(a, b)}, 

we obtain (16) as the interpretation of Every man loves some woman by 
application of the restricted binary quantifier V=I: 

(16) every (dom R, {a ~ D [ some (R'a,  S'a) = 1}), 

which is equivalent to 

(17') ( { a ~ D l ( a , b ) ~ R } , { a c D J R ' a N S ' a ~ O } ) ,  

which in turn is equivalent to 
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(18) { a e D l ( a , b ) e R } - { a ~ D l R ' a N S ' a ¢ l ~ } = ~ )  , 

which is just a way of expressing that the set of men is contained within 
the set of individuals who love a woman. 

Turning now to the Bach-Peters sentences, we just proceed in a 
manner parallel to that just described, by application of a binary restric- 
ted quantification, except that here its restriction is more complex. Thus 
for (19), 

(19) Every pilot who shot at it hit some Mig that chased him. 

we set R as 

{(a, b)[ a a pilot who shot at b ^ b a Mig that chased a} 

and S as 

{(a, b) l a hit b} 

and arrive at truth conditions via V3 which require that every pilot who 
shot at some Mig that chased him hit that Mig. The important point to 
note here is that in the abstract giving the value of R, all of the variables 
occur as bound occurrences, including those corresponding to the 
pronouns. Thus, as desired the occurrences of the pronouns in a Bach- 
Peters sentences are both syntactically and semantically bound. (See 
Higginbotham and May (1981) for the details of the treatment.) 

The success of the absorption approach to Bach-Peters sentences 
stems from the fact that such quantifications apply, so to speak, en bloc to 
all free positions within its scope. In this sense we have removed the 
offending asymmetry inherent in scope, although some care is needed 
here, since the postulated absorbed quantifiers still encode an inter- 
pretive dependency between their constituent parts. Put a little 
differently, for a restricted quantifier, while the restrictions are free of 
order - as they are conjoined - the quantifier (determiner) elements are 
not. They are ordered, so that in general f, fj ~ fjfi, as is apparent from 
inspection of the previous examples. The absorbed quantifiers, so to 
speak, build-in the essential notion captured by scope - the dependency 
between the actual quantifiers themselves - but exclude from this 
dependency what is inessential, the relation between the quantifier's 
restrictions. The problem with scope, of either the syntactic or semantic 
sort, is that, as standardly conceived, these aspects are conflated. Notice 
that once this is observed, there is hardly any reason to assume that scope 
is involved in the interpretation of multiple quantification, since 
whenever scope is apparent, we can effect an equivalent interpretation by 
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an absorbed quantification. That is, the semantics of absorption allows us 
to 'elevate' scopal interpretations into absorbed interpretations. Let us 
say, following Higginbotham and May (1981), that a binary 
quantification which is equivalent to a scopal counterpart is separable. 9 
V3, for instance, is separable, since the interpretation it imposes is 
equivalent to that arising from applying V to 3. The instance of this 
quantifier interpreting Bach-Peters sentences does not counterexemplify 
its separability, note, since in this case there is no scopal counterpart. The 
impe, rtance of the separability result is that it allows us to interpret all 
instances of the scope configuration above by binary, (more generally, 
n-ary) quantifiers, since by doing so we are guaranteed not to lose any 
interpretations that would otherwise be available via scope, (and in fact 
we will gain some not otherwise available via scope). The idea now is 
that LF-representations containing X-sequences of quantifiers are 
directly interpreted by absorbed quantifiers of a degree which matches 
the number of members of the sequence. This can be implemented 
formally as follows. 

We define ~r& as the permutation class of binary quantifiers generated 
from functions fi and ~, fj ~ ~ ;  more generally we define ~I1 ..... f- as the 
class of n-ary quantifiers generated by n-many unary quantifiers. For a 
sentence containing an n-membered . ~-sequence o 'n ,  we take 
I[trn(S)~¢ r, ..... fn to be the class of interpretations assigned to trn(S) with 
respect to ~f~ ..... fn, where Card(~ fl ..... f~)=n! That is, if an LF- 
representation contains an n-membered ~-sequence, it will be inter- 
preted by n-ary quantifications. Such quantifications will apply with 
respect to modified definitions of sentence and sentential function: 

(20) Si (l~<i~<n) is a sentential function=dfVS~II (S~Si---~S 
dominates Si) 
Si is a sentence =dfVS ~ II (S ~ S~---~ S~ dominates S). 

So, for example, Every man loves some woman, as represented in (21), 

(21) [~ Is some womani [s every man s Is ej loves ei]]]]. 

contains the E-sequence (some woman,, every manj), so that scr,'6 = 
{somei, everyi: woman(x/) ^ man(xj), everyi, somej: woman(xl) ̂  man(xs) }. 
That is, (21) is interpreted by the binary restricted quantifiers (every~, 

9 In Higginbotham and May (1981), separability is limited to intersective quantifiers, those 
for which f ( X ,  Y)  = f ( X ,  X N  Y). These quantifiers are the conseroaave functions of Van 
Benthem and Keenan and Stavi, and correspond, in the formally distinct system of Barwise 
and Cooper, to the property of living on a set. 
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somej) and (some~,everyj), which apply to the open sentence el loves 
ej. More formally, let f~ . . . . .  f ,  be an arbitrary sequence of deter- 
miner interpretations for a given structure ~r,(O), and let X , , . . . ,  X, be 
their corresponding set restrictions, so that, if NP~=[DET~lqi], 
then Xi =Klq]. Furthermore, let Q[fl . . . . .  f ,] be the corresponding 
n-ary quantifier. An interpretation for ~n(~k) is Q[f~ . . . . .  fn](R, S), 
where R = {(a~ . . . . .  an ) l  al ~ Xm ^ . . . . .  ^ an ~ Xn} and S = 
{(al . . . . .  an) [[[S] g' = 1}, where "g' assigns al . . . . .  an to xl . . . . .  x,. 1° Thus 
LF-representations containing single quantifier elements will be inter- 
preted by unary quantifications, those with two by binary quantifications, 
and so on for more complicated structures, provided that the structural 
constraints on E-sequence formation are obeyed. The relation of these 
latter type of construais to interpretations which would otherwise be 
effected by scopally ordered unary quantifications is, in turn, specified by 
the provisos of the separability condition.11 

We thus generalize the Higginbotham and May Absorption results to 
the scope configuration (1); that is to any configuration in which we have 
a E-sequence. Notice that because we directly associate l~-sequences 
with n-ary quantifiers, relative scope has been eliminated not only in the 
syntax (because of the symmetry of c-command), but also in the seman- 
tics, as we no longer have the successive application of the 
quantificational clauses (functions). Rather relative scope has, so to 
speak, been built into the very semantics of the quantifiers themselves. 
We cannot, however, eliminate the notion of relative scope altogether, 
although where it is observed, it is expressed both syntactically and 
semantically. Consider Everyone believes that someone is a spy, with 
someone understood as standing inside both everyone and the matrix 
predicate. At LF, this is represented by adjoining each of these NPs to 
the clauses of which they are immediate constituents: 

(22) [everyonei [el believes that [someonej [ej is a spy]]]]. 

to Thanks are due to G. Chierchia for showing me the exact wording for this formulation. 
tl Recent work by Clark and Keenan (1987) brings up certain problems, relative to 
separability, which arise under the Higginbotham and May semantics. They propose a 
reformulation of absorbed quantifiers as (1, 1, 2) functions; i.e. as holding among two 
properties and a relation. Intuitively, the difference in the Clark and Keenan semantics is 
that the restrictions on the quantifiers are not joined to form a relation, as thdy are in the 
Higginbotham and May formulation. While their approach applies correctly to the simple 
cases of multiple quantification, it clearly cannot be extended to Bach-Peters sentences, as 
Clark and Keenan recognize, as the restrictions on the quantifiers are relations, not 
predicates. The problem here is that the invariance condition governing the derivation of 
absorbed quantifiers has not been finely enough specified; see May (in preparation) for 
discussion of this issue. 
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Here everyone asymmetrically c-commands someone, which is reflected 
directly in the (univocal) interpretation which results from the scopally 
dependent application of the relevant unary quantifier clauses. For (22), 
~r. = ~1, as it is not associated with any E-sequence. 

3.  R E S U M P T I V E  Q U A N T I F I E R S  

While the generality of the treatment of quantification just proposed is 
attractive, it is not entirely correct, as there are interpretations of 
sentences whose logical forms exhibit the scope confguration, but which 
are not expressed by the semantics as given thus far. Exemplary of the 
problematic cases are the sentences in (23): 

(23)a. Nobody loves nobody. 
b. Exactly one person loves exactly one person. 

The interpretation of these sentences which interest me are where there 
are null and singleton extensions of the relation love, respectively. Thus 
(23a) is true, on this construal, just in case there are no individuals 
standing in the Iover-lovee relation, so its truth requires that there be an 
unloving world, while the truth of (23b) requires that there is exactly one 
such pair in this relation. This interpretation, bear in mind, is not that 
associated with the plausible first-order renderings in (24); for the 
moment I will constrain myself to discussion of (23a) by way of example: 

(24)a. ~ 3 x - 7 3 y  (x loves y) 
b. -13y-13x (x loves y). 

We immediately derive the equivalence of these formulae to those in 
(25): 

(25)a. Vx3y (x loves y) 
b. Vy3x (x loves y). 

Since both of these allow the love relation to be non-null, they cannot 
represent the interpretation we are seeking. These latter interpretations, 
it should be observed, are just those which arise from interpreting (23a) 
by the binary quantifications (noi, noj) and (noj, noi), interpretations 
which are logically distinct - hence the disequivalence of (25a) and (25b). 

While neither of these formulae properly characterizes the construal of 
interest, it can be expressed by the following first-order formula: 

(26) VxVy 7 (x loves y). 

It seems dubious, however, that (26) could be the logical representation of 
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Nobody loves nobody, as it fails to preserve compositionality. While the 
interpretation of the sentence under consideration involves two 
quantifiers and two negations, (26) contains two quantifiers but only one 
negation. Such a fundamental abrogation of compositionality is not 
evident, however, if we drop the assumption that the interpretation we 
want is one in which the logical elements display logical dependencies; 
that is, scope. What I will suggest is that the proper analysis of examples 
like (23) actually involves not two, but only one quantifier, albeit a 
quantifier of many variables. Moreover, the exact structure of this 
quantifier will be determinable in a fully compositional fashion on the 
basis of the syntactic structures at LF in which we find occurrences of 
E-sequences. 

The idea I will be exploring can be most readily perceived by way of 
illustration. Suppose that Nobody loves nobody is interpreted as in (27): 

(27) NOx, y(x loves y) 

That is, we form up, just in case all the quantifiers in a E-sequence 
match, a single quantifier of just the number of variables as there are 
quantifiers in the sequence. The one you see in (27) is a pair, (as opposed 
to binary) quantifier of type (2), (or (2, 2) if understood as restricted), as it 
applies to relations. Intuitively the truth conditions assigned to (27) by 
the semantics of this quantifier requires that there is no pair of individuals 
who satisfy the love relation. And this is just the interpretation we are 
looking for here. 

To state this more formally, suppose that f~ is the unary function 
corresponding to the ith member of o-, = (Qt . . . . .  Qn). Suppose further 
that for any i,j,  Q i=Qs .  Then fl . . . . . .  ~ t ,  ..... t,, which thus now in- 
cludes, in addition to the binary quantifiers generable from o-,, an 
additional single quantifier of n-many variables. More generally, we have 
the metalinguistic rule: 

f~ . . . . .  f ~'(qh ..... .) ~ f~ . . . . . .  (qh . . . . . .  ), 
where Vi,j (1 ~< i, j << - n) fi = fj. 

(Note that only the adicity of ,f is relevant to the identity condition, and 
not the position in the sequence it interprets.) On this way of looking at 
things, the interpretation-class of an n-member E-sequence will be 
restricted to the quantificational functions over n-many variables which 
can be constructed from the constituent members of the corresponding 
~-sequence. So, for instance, if the sequence consists of (no~, nos), then 
the class of interpreting quantifiers generated by the rule above contains 
two binary quantifiers - (no~, noj), and (noj, noi) - and the pair quantifier 
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noi.s, as the identity condition is satisfied. All of these quantifiers, note, 
take sets of pairs as their arguments. On the other hand, if the sequence 
contains {everyi, somej}, then only the two binary quantifiers 
(every~, somej) and (some s, everyi) are generated, as the identity con- 
dition is not satisfied in this case. 12 

We give the satisfaction clause for quantifiers of multiple variables in 
longhand as follows: 

(28) g satisfies Q1 . . . . . .  ~1 . . . . . .  iff Q-many sequences g' satisfy 
~pl . . . . . . .  where g' differs from g in at most the values assigned 
to the lst-nth places. 

For an n-tuple quantifier this clause requires that sequences vary not on 
a single individual variable, but simultaneously with respect to n-tuples 
of indfividual variables. Hence for a pair quantifier, by this definition 
variation will be with respect to pairs of variables. Truth, then, will 
require satisfaction of a relation by n-many pairs of individuals drawn 
from the Cartesian product of the domain and the counter-domain. The 
instances of the satisfaction schema relevant to the examples in (23) are 
given in (29): 

f / NO 
(29) g satisfies /EXACTLY ONE~X,y  (x loves y) iff 

no } satisfies loves where g' differs g' sequence x Y, exactly one 
from g in at most the values assigned to x and to y. 

By 1this semantics (23a) will be true just in case there is no pair of 
individuals who love one another, that is, only if the love-relation is null. 
Similarly the truth of (23b) requires that there be only a single pair of 
lovers. But suppose there happened to be a second individual who loves 
two people; (23b) is then false, under the intended interpretation, as 
there is more than one pair of individuals standing in the requisite 
relation. This contrasts with the interpretation under which the subject 
phrase is understood to have broader scope, which is true in this 
situation. It only requires that there be exactly one person who is, so to 
speak, an exactly-one-person-lover,, and hence is compatible with there 
being individuals who love more than one person. 

12 We can generalize this characterization in obvious ways to apply to sub-sequences. It 
would then apply to the interpretation of sentences such as A professor introduced nobody to 
nobody, giving the construal that there is no pair of individuals such that some professor 
introduced them. Thanks to G. Chierchia for bringing this to my attention. 



4 0 6  R O B E R T  M A Y  

To summarize, in terms of generalized relational quantifiers the class 
we are interested in is just that generated by taking X and Y in f (X,  Y) 
to be sets of n-tuples of individuals. The standard unary quantifiers will 
thus be where we have 1-tuples, while the pair quantifiers will be where 
we have 2-tuples, and so on. In any of these cases, however, the defined 
relation between the sets remains constant. For example, the pair 
quantifier NO is defined just as unary NO, except that rather than 
requiring a null relation between sets of individuals, it requires that there 
be a null intersect between sets of pairs of individuals. Pair quantifiers are 
just members, from the semantic point of view, of an inductive class of 
simple quantifiers, fn, for n-many variable places; that is, they are the 
case when n = 2 variable places, while unary quantifiers are where n = 1 
variable place. Formally, these quantifiers can be characterized in a 
manner parallel to that of binary quantifiers above, as functions f: P(D x 
D) x P(D x D)--~2, which respect automorphisms of D x D; that is, 
their interpretation is invariant with respect to permutations of pairs. 
Thus, the logicality of the pair cases is no different from that of the unary 
case, in that for these quantifiers, the pairs are treated essentially 
monadically, as individuals. Let fl . . . . .  fn be an arbitrary sequence of 
determiner interpretations for a given structure o'n(~b), and let 
X 1 , . . . ,  Xn be their corresponding set restrictions, whose values are 
determined as above. Then Q[fl . . . . . .  ] is the corresponding n-tuple 
quantifier. Q[ft ...... ](R, S) is an interpretation for trn(~b), where R = 
{(al . . . . .  an)[ al ~ X1 A . . . . .  A an ~ Xn} and S = {(al . . . . .  an) [[[S] g'= 1}, 
where g' assigns at . . . . .  an to Xl . . . . .  xn. 

While pair quantifiers and binary quantifiers share certain properties - 
for instance, as is apparent from the above characterization, both are 
type (2, 2) functions - they also differ in certain fundamental ways. In 
particular, these differences stem from only the binary quantifiers being 
complex - whereas the binaries are composite, the pairs are not. Since 
pair quantifiers are non-composite, it makes no more or less sense to 
speak of their decomposability, or of encoding interpretive dependencies 
than it would be for their unary counterparts~ But for binary quantifiers, 
as we have seen, these are relevant semantic distinctions. Pair quantifiers 
are distinguished in part by being, as a class, inseparable. While for 
certain pair quantifiers, for example every i,j, fi,j(S)- fi(fj(S)), SO that 

Vx, y (x loves y), 

is equivalent to 

VxVy (x loves y), 
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(and similarly for somei,j), other pair quantifiers are not decomposable in 
this sense. As we have seen already, no is an instance of a pair quantifier 
which has no (compositional) equivalent in terms of unary quantifiers, so 
that for it ]~.j(S):~fi(fj(S)). Pair quantifiers, as opposed to binary 
quantifiers, are also independent, so that for a pair quantifier formed from 
fi and ]:j, ]:i.j = ]:j.i. For binary quantifiers, on the other hand, in general 
fi, [.j ~ fj, fi. These differences follow just from binary quantifiers being 
composite quantifiers of many variables, as opposed to pair quantifiers, 
which are non-composite. Hence, while in virtue of their application to 
relations, we can classify the pair quantifiers as in the same genus as 
binary quantifiers, they remain of a different species. 

One way of classifying quantifiers is in terms of their inferential 
patterns; they may be increasing, decreasing or neither. Increasing 
quantifiers are those for which the set to which they apply can grow 
indefinitely without variation in truth value - they place no upper limit on 
the size of the domains to which they apply. Decreasing quantifiers are 
those which can shrink indefinitely and retain constancy of truth - they 
place no lower limit on the size of their domains. (See Barwise and 
Cooper (1981).) As developed, the assumption is that pair quantifier 
formation is universal, applying to quantifiers which partake of any of 
these types of inferential relations. Given this universality of pair 
quantifier formation, and its extension aeyond the classical quantifiers, 
we can consider a question which I have thus far left open - is the 
identity condition on the formation of n-tuple quantifiers a condition on 
syntactic or semantic identity? The litmus test for this are examples like 
(30), as Richard Larson points out to me: 

(30)a. Few detectives solved few crimes. 
b. Not many detectives solved few crimes. 

The question is whether (30b) shares the pair interpretation with (30a). 
To my ear it does not; hence we can conclude that the identity condition 
is syntactic. 

By taking the condition as syntactic, in a sense what we are saying is 
that one of the occurrences of the quantifier is resumptive. Normally the 
semantic role of resumptive pronouns is as occurrences of variables; we 
can think of the occurrence of resumptive quantifiers similarly as vari- 
ables, bound by the derived pair quantifier. Thinking of the formation of 
pair quantifiers in this way is highly reminiscent of ideas of Heim (1982), 
who argues that indefinites should be treated as variables. A primary 
application of Heim's analysis is to the semantics of donkey sentences, 
such as Every owner of a donkey beats it, which on this view are captured 
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by (31): 

(31) Yx, y (x is owner of y) x beats y. 

This will be true just in case for every pairing of a donkey and a 
donkey-owner, the former beats the latter. This analysis accords with our 
intuitions, since if there are donkey owners who beat some, but not all, of 
their donkeys, then Every owner of a donkey beats it will be false, as not 
every donkey is beaten by its owner. While the issue of "donkey 
anaphora" is one of vexing complexity, it may prove fruitful to explore 
incorporating this approach to donkey sentences within the semantics of 
n-tuple quantifiers by holding that indefinites can be resumptive to any 
other quantifier, as opposed to definites and other quantifiers, which can 
be resumptive only to identical determiners. Other applications of 
resumptive quantifiers can be observed in certain cases of Bach-Peters 
sentences, such as those with double definite determiners: 

(32) The pilot who shot at it hit the Mig that chased him. 

Among the interpretations of this sentence is one in which its truth 
requires that there is a unique pairing of a pilot and a Mig, such that the 
former shot at the latter and the latter chased the former, (and no other 
pilots or Migs were shooting or chasing). It is this construal which is 
given by the pair quantifier libel.j, which carries over the standard 
uniqueness presupposition associated with the unary definite deter- 
miner. 13 

In developing the semantics of resumptive quantifiers I will assume 
that they arise in the presence of sequences of identical quantifiers, and 
that the formation of such quantifiers is completely general across 
determiner types. The semantic effects will only be apparent, however, 
for those sequences of quantifiers for which this is the only way of 
expressing scopal independence. Thus the interpretation of the 
quantifiers in the binary quantification (every,  every/) are already in- 
dependent, in the sense that its interpretation does not depend on relative 
scope; to wit, its equivalence to (every/, every~). In turn these quantifiers 
are equivalent to pair quantification every~./. On the other hand, as 
noted, the two binary quantifiers (noi,noj) and (noj, noi) are not 
equivalent, hence the interpretation of each is dependent upon relative 
scope. And here the pair quantifier not.i, which does express an in- 

t3 The comments here are presaged by remarks in unpublished notes of Thomason (1977); 
also see Higginbotham and May (1981), Section 3. 
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dependent interpretation, is equivalent to neither of its binary counter- 
parts. 

Let us say, then, that associated with a X-sequence is a class of 
interpretations comprising those in which the quantifiers are dependent 
and those in which they are independent. These are the only possible 
types of quantifier interpretations. Dependent interpretations are charac- 
terized by the semantics of n-ary quantifiers, independent interpretations 
by the semantics of n-tuple quantifiers. For those X-sequences in which 
the quantifiers are identical, the class of interpretations I[o',(S)] ~ is now 
extended to n! + 1, as there can only be one independent interpretation 
associated with a given X-sequence. On the other hand, where there is 
non-identity, I[o-n(S)] ~ = n!, as before. 

The independence property of resumptive quantifiers brings up an 
issue of their relation to another class of quantifiers which are also 
independent, namely branching quantifiers. 14 This issue is of particular 
interest in the current context because in previous work I have sug- 
gested, as has van Benthem (1983b), that the 'unloving world' inter- 
pretation of Nobody loves nobody is an instance of branching 
quantification. (See May (1985), Chapter 4.) Using the illustrative 
branching notation, we would represent the intended construal as fol- 
lows: 

(33) 

3y/ 'X loves y 

In this formula, not only do the quantifiers not exhibit scope depen- 
dencies, neither do the negations, hence avoiding the interdefinability 
encountered when the quantifiers are linearly ordered. Intuitively then 
(33) expresses that there are not any x's, nor are there any y's, such that 
the tMrmer loves the latter - that is, that the relation love has a null 
extension. On the semantics of branching, as given by Barwise (1979), 

14 The most well-known discussions of branching quantification are to be found in Hintikka 
(1974) and Barwise (1979). I will rely primarily on the latter discussion, along with that of 
Sher ,(1989a, 1989b), because of its greater generality and because I find, along with 
Fauconnier (1975), that the branching status of Hintikka's examples is highly suspect. 
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decreasing quantifiers like no are interpreted by the second-order 
schema: 

(34) 3X3Y[Qx(x~X)AQy(y~  Y) 

A VxVy(q~(x, y)--~ x ~ X A y ~ Y)]. 

The independence of the quantifiers in this formula arises from the 
occurrence of Qx and Qy on either side of a conjunction; it is second- 
order in virtue of the presence of the initial existential quantifiers over 
sets. Applying this to the example at hand results in the following 
interpretation: 

(35) :fIX3 Y[NOx(x ~ X) A NOy(y e Y) 

A VxVy(x loves y--~ x ~ XA y~ Y)]. 

Formally, this indeed gives precisely the desired interpretation. In this 
case at least, the truth conditions provided by branching quantification 
are equivalent to those assigned under the semantics of resumptive 
quantification. 

The point of the preceding paragraph, it turns out, is rather more 
general, since as Sher (1989a, 1989b) points out, the interpretation of 
decreasing branching quantifiers is not irreducibly second-order, but in 
fact expresses a weaker first-order condition. The essential property of 
branching quantification is that the relation between the domain and the 
counter-domain be uniquely what Sher calls 'each/all'. That is branching 
strictly requires that for a given relation ~, that each member of the 
domain bears ~ to all members of the counter-domain. That there must 
be just this type of relation is what is specified by the semantics Barwise 
gives for increasing quantifiers: 

(36) 3 X 3  Y[Qx(x ~ X) A Qy(y ~ Y) 

A VxVy(x ~ X A y ~ Y---~ q~(x, y))]. 

This formula says that there are two Q-many membered sets, such that 
each member of the former set stands in the relation q~ to all members of 
the second; cf. the internal occurrence of the universal quantifiers. The 
schema for decreasing quantifiers, (34), however, says something weaker. 
It requires only that there are two Q-many sized sets, such that for any 
pair of individuals standing in the relation ~, that the former be a 
member of one of the sets and the latter a member of the other. While 
this is certainly true when there is an each/all relation between the 
domain and counter-domain, it is not uniquely true of such relations. In 
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fact, more generally this description is satisfied so long as there is any 
relation, including the null relation, between the two sets. Thus as Sher 
observes, Barwise's schema for decreasing quantifiers is equivalent to the 
following first-order condition, 

Qlx3yP(x, y) ^ Q2y3xP(x, y), 

and hence does not, in fact, express a second-order interpretation for 
decreasing quantifiers at all. 

Returning to multiple negative quantification, when no is plugged into 
Sher's condition we obtain 

NOx::ly(x loves y) ^ NOy3x(x loves y) 

which entails both 

and 

-n3x3y(x loves y) 

m3y3x(x  loves y), 

each of which is equivalent to 

VxVy 7 (x loves y), 

which is exactly what is expressed by the pair interpretation of no 
formulated above, and shows its equivalence to the branching inter- 
pretation. The point here of course extends beyond this particular 
demonstration, since in general whenever Q1= Q2, the interpretation 
assigned under the semantics of decreasing branching quantification will 
be equivalent to the interpretation by resumptive quantification. This is 
because both express Sher's first-order condition; for resumptive 
quantifiers which are distinct from their binary counterparts, this is 
plainly so, since if there are Ql-many individuals x for whom there is an 
individual y, such that q~(x, y), and vice versa for Q2-many individuals y, 
then there must be just Q-many pairs of individuals who stand in ~0. But 
despite their equivalence, the semantics of resumptive quantification cuts 
up the semantic pie rather differently than the semantics of branching. 
This is because the resumptive interpretation is applicable regardless of 
whether the quantifiers are inferentially decreasing, increasing or neither. 
Its occurrence is dependent only upon whether the identity condition on 
Y~-sequences is satisfied. In contrast, Barwise's (first-order equivalent) 
branching semantics is limited to just those quantifiers displaying the first 
pattern of inference, and as such it expresses only a sub-case of the more 
inclusive semantics of resumptive quantification. The semantics of 
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resumptive quantification, therefore, embeds a rather different claim as 
to the extension of independent first-order quantification in natural 
language than does the semantics of branching quantification. Insofar as 
this claim is empirically justified, branching for decreasing quantifiers, at 
least as characterized by the constraint found in Barwise (1979), would 
be superfluous for the semantic analysis of natural language. 

The importance of resumptive quantifiers, therefore, is that they in- 
troduce a class of quantifiers which are both independent and first-order, 
that is, non-scopal but linearly expressible with variables only over 
individuals. This runs counter to the standard assumptions regarding 
independent quantificational interpretations, which link independence to 
lack of first-orderizability. While the discussion of the preceding 
paragraphs illustrates that certain cases conjectured to be higher-order 
are not, the question remains open as to whether there are strictly 
second-order independent qUantifier conditions in addition to the first- 
order condition revealed here. I will return to this question in some detail 
in the Section 6, turning now, however, to another application of 
resumptive quantification which pertains to aspects of the interpretation 
of singular wh-phrases. 

4 .  A B S O R B E D  AND R E S U M P T I V E  W H ' O U E S T I O N S  

Under the semantics of wh-questions developed in Higginbotham and 
May (1981), May (1985, Chapter 2, 1988), associated with a wh-question 
like (37): 

(37) Who left, 

is a question Q on a domain D, a family of sets of assignments of 
truth-values to pairs (x left, a), for every a ~ D. Call each such set in Q a 
theory T. An answer to Q is a sentence whose truth is inconsistent with 
some member T of Q. The sentence in (38), 

(38) John left, 

counts as an answer to (37), as its truth is inconsistent with those theories 
in which falsehood is assigned to (x left, John), as does (39), 

(39) John left and Mary left, 

since it is inconsistent with those theories in which both (x left, John) and 
(x left, Mary) are assigned falsehood. 

In the general case Q is a total assignment of truth-values to pairs, so 
that relative to a domain of cardinality n, there will be 2 n theories in Q. 
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More usually, however, we eschew such an exhaustive enumeration in 
favor of a partial Q, Q-, a sub-family of theories of total Qs. Evaluating a 
wh-question relative to some Q-  expresses the more natural circumstance 
of limited informational structure relative to which questions are posed. 

With respect to such partial structures, call an answer to Q- a satis- 
factory answer if it is not inconsistent with every theory in Q-. Suppose 
that the pair (x left, John) = 0 in every T e Q-. Then John left would not 
be a satisfactory answer to Who le[t, because it could not possibly relieve 
our ignorance about what actually holds relative to the informational 
structure of Q-. Relief from ignorance would only be possible if under at 
least one alternative theory (x left, John) -- 1 ; that is, only if Q- allows for 
alternative situations to be the case. Only then would John left be a 
satisfactory answer, as then there will be at least one assignment with 
which it is not inconsistent. Notice that under these definitions that John 
runs, even though it is not inconsistent with any theory, is not a 
satisfactory answer to Who left, since it is not even an answer in the first 
place, which requires that it be inconsistent with at least some T ~ Q, 
which it is not. 

Thus among possible answers we characterize those which are satis- 
factory as well as those which are unsatis[actory, answers which are 
inconsistent with every theory and hence could not possibly provide any 
relief from ignorance. More generally, we call an answer unacceptable if 
unsatisfactory for every Q. So for instance, contradictions would be 
unacceptable answers, since they would be inconsistent with every theory 
T for any Q- formed from an arbitrary Q on D. Among the satisfactory 
answers we can more finely distinguish complete answers from incomplete 
answers: An answer is complete if inconsistent with all but one theory, 
and incomplete otherwise. That  is, a complete answer provides a com- 
plete relief from ignorance, an incomplete answer leaves other alter- 
natives as open possibilities. Finally, we can distinguish direct answers 
from indirect answers. The former are answers which contradict an 
assignment of falsehood, while indirect answers are those which con- 
tradict an assignment of truth. Thus, while John left, is a direct answer to 
Who le[t, John didn' t  leave is an indirect answer. 

Turning now to singular Wh-questions, they have the property of 
presupposing that they have at least one satisfactory answer. (This 
excludes for them any Q- which consists of just a single theory, as they 
cannot have any satisfactory answers.) A strong presupposition is carried, 
however, by wh-questions containing determiner wh-phrases, as in (40): 

(40) Which man left. 
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For this case the presuppositions call for a single answer - as opposed to 
their monomorphemic counterparts, multiple answers like (39) violate 
assumptions inherent in their use. To incorporate this stronger presup- 
position, suppose that an admissible Q- for determiner wh-questions 
contains only those theories in which one pair 0k(x), a) is assigned truth, 
for some a c D. Then (38) will be a satisfactory answer to (40), as it will 
not be inconsistent with that theory in which (x left, John) is assigned 
truth, but (39), the multiple answer, will be unsatisfactory, as one or the 
other of its components will be inconsistent with every T ~ Q. I will refer 
to the restriction just formulated as the singular presupposition. 

With this much background, we can observe the role of binary and 
resumptive operators in wh-questions by turning our attention to multiple 
singular wh-questions, especially as they occur with determiner wh- 
phrases, as illustrated by (41): 

(41) Which man loves which woman. 

Its LF-representation is as in (42): 

(42) [~ which woman s, which mani [s ei loves ej]]. 

In this structure both wh-phrases are in COMP; cf. May (1985, Chapter 
5) for structural details. Consequently, they mutually c-command, and 
hence form a E-sequence. It is, moreover, a E-sequence which satisfies 
the identity condition, so that interpretations are assigned relative to a 
binary wh-operator, (which j, whiehi), and a pair wh-operator, wifieh~,s. 15 
To a certain extent the interpretations assigned will be non-distinct. 
Since each operator binds two variables, the questions formed will be 
relative to relations, so that in either case we have truth-assignments to 
pairs (x loves y, (a, b)), for a, b ~ D. Relative to a domain of cardinality 
n, a total multiple Q will consist of 2 n×n theories, (although we may wish 
to limit this to 2 (n×n)-n by including disjointness conditions.) Multiple Q- 
are, as before, sub-families of Q. Where the difference between the two 
types of questions arises is in the presuppositions which are introduced by 
the differing operators. Pair operators, recal!, are members of an in- 
ductive class of simple operators, so that whichi.s is just the second 
degree operator of the class of which the unary wh-operator is the 
first-degree operator. As such it carries along the presuppositions asso- 
ciated with this class, in particular the singular presupposition excluding 
multiple answers. This is not so for binary wh-operators, which not being 

15 For the binary condition there will actually be two operators, but they will be equivalent 
and hence determine the same class of partial questions. 
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part of this class, do not carry its presuppositions. Rather it carried only 
the weaker presupposition, comparable to the unary monomorphemic 
wh-words. As a result, interpreting (41) by a binary wh-operator will 
admit both single and multiple satisfactory answers, as in (43): 16 

(43)a. John loves Mary 
b. John loves Mary and Bill loves Sally. 

The binary interpretation of (41) note is more inclusive than the pair 
interpretation, and hence in this case has the effect of masking the 
resumptive interpretation. 

It turns out, however, that there are certain wh-questions which allow 
us to isolate this latter interpretation. This is when not just the deter- 
miners are identical, but rather the entire noun phrase, t7 An example, 
from Higginbotham and May (1981), is (44): 

(44) In Gone with the Wind, which character envies which 
character. 

Here the multiple answer (45b) is inappropriate, as compared to the 
single answer (45a): 

(45)a. Ashley Wilkes envies Rhett Butler. 
b. Ashley Wilkes envies Rhett Butler and Melanie Wilkes envies 

Scarlett O'Hara. 

As above, the singular presupposition, now brought along by the 
resumptive pair wh-operator, is implemented by requiring that any Q- 
contain only theories in which is only one pair (x loves y, (a, b)) which is 
assigned truth. This will properly distinguish the examples in (45) re- 
spectively as satisfactory and unsatisfactory answers to (44). Note that 
the presupposition associated with the interpretation of (44) imposes 
exactly the same requirement as that imposed for truth on (46) by the 
resumptive pair interpretation; cf. discussion of (23b) above. 

(46) Exactly one character envies exactly one character. 

L6 Not just any multiple answers, however - note that John loves Mary and John loves Sally 
is not an acceptable answer to (41). What is required here is that there be a unique pair of 
individuals in each member of the complex answer. This can be accomplished by admitting 
only assignments of truth-values to (x loves y, (a, b)) where each of the individuals is unique 
relative to other assignments. 
17 Actually the condition is a bit different, as Howard Lasnik points out to me. He notes 
that In Gone With the Wind, which male character admires which [emale character shares 
the singular presupposition with the example in the text, indicating that the relevant notion 
of identity pertains to determiner-noun pairs solely. 
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That is, the resumptive interpretation requires that there is exactly one 
pairing of characters, such that the former admires the latter. 

5. PLURAL RESUMPTIVE QUANTIFICATION 

In the previous sections I was concerned with the application of resump- 
tive quantification to singular noun phrases. In this section I turn to 
aspects of the semantics of plural noun phrases, in particular as found in 
multiple numerical sentences such as (47): 

(47) Two detectives solved two crimes. 

On the semantics developed thus far, a number of distinct interpretations 
can be attributed to this sentence. Two are the scopal interpretations. 
They allow either for a total of four crimes to have been solved (each 
detective solved two distinct crimes) or for a total of four detectives 
(each crime is solved by two distinct detectives), depending upon 
whether two detectives or two crimes is understood with broader scope. 
Or, to be more precise, on whether (47) is interpreted by the 
quantification (twai,twoj) or by the quantification (twoj,twa~). It is 
tempting to see (47) as also be interpreted by a resumptive quantification 
twoi,j, (equivalently twaj,i). On this semantics (47) will be true just in 
case there are two pairings of a detective and a crime, such that the 
former solved the latter. That is, the semantics require that there be two 
assignments of values to pairs of variables, such that the relation x solved 
y is satisfied under each assignment. (47), therefore, will be correctly 
characterized as true in the circumstance depicted in (48): 

(48) dl cl 
d2 c2 

The intended interpretation can be represented as in (49): 

(49) TWOx, y (detective(x) ^ crime(y)) x solved y. 

The interpretation is that provided by the satisfaction clause given in 
(50): 

(50) g satisfies two q~,j iff two sequences g' and g", g', g" distinct, 
satisfy ~,~, where g' and g" differ from g in at most the values 
assigned to the ith and jth places. 

(The notion of 'distinct' will be made explicit below.) Note that the 
scopal interpretations described above are semantically distinct from this 
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interpretation, as they allow up to four detectives and four crimes, 
respectively. 

Assuming that resumptive quantification, at least in the sense thus far 
defined, is involved here can be shown, however, to be incorrect, as (47) 
is false in both of the circumstances depicted in (51): 

d2 c2 d c2 

In each of these situations, as in (48), there are two pairings of a 
detective and a crime standing in the requisite relation, and hence (47) 
ought be true. But clearly Two detectives solved two crimes is false in 
these circumstances, since in (a) only one detective solved crimes, while 
in (b) only one crime was solved by detectives. Thus TWOx, y is not a 
resumptive quantifier in the basic sense defined above for singular 
phrgses, as truth in this case is not invariant under the transformation of 
the relations in (48) and (51), which are automorphisms of one another. 
Intuitively, the problem here is that resumptive quantification is sensitive 
only to how many pairs of individuals stand in a certain relation. What 
the example here shows is that plural resumptive quantifiers must satisfy 
more stringent conditions than this, conditions which impose greater 
structure on a relation in order for truth to obtain. Thus, rather than 
being sensitive simply to arbitrary pairs of individuals, they are sensitive 
to whether such pairs are disjoint; that is, to whether they have any 
members in common. To see what is involved here, consider this from 
the perspective of the satisfaction clauses for these quantifiers. 

Normally, the statement of the satisfaction clauses for quantifiers of a 
single variable turns on variation in the assignment of individuals to that 
variable. Thus a sequence g', relative to the assignment to the variable 
free in a formula P(x), differs from a sequence g if and only if a distinct 
individual is assigned at most to x. In extending the treatment to the pair 
case, the satisfaction clauses will comparably turn on variation with 
respect to multiple variables. There are two ways to state in what this 
variation consists, however. On the strong interpretation, a sequence g', 
relative to assignments to the variables free in a formula P(x, y), differs 
from a sequence g if and only if distinct individuals are assigned to x and 
to y. On the weak interpretation, which has been implicitly assumed thus 
far, it is just required that there be distinct assignments to the pair (x, y). 
The difference between strong and weak satisfaction is that only for the 
latter is the assignment (a, b) distinct from the assignment (a, c) - while 
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these are surely distinct pairs, they are not pair-wise disjoint. We charac- 
terize strong satisfaction by imposing the following condition: 

(52) g(xl, . . . , x , )  = g'(xl . . . . .  x,)  =dr :lxi(1 <~ i <~ n)g(xi)  = g'(xi). 

By this definition a sequence g is non-distinct from a sequence g', 
relative to variations in assignments of values to only xl . . . . .  x,, just in 
cases there is some variable xi among xl . . . . .  xn assigned the same value 
in both g and g'. This means that sequences distinctly satisfy a formula if 
and only if distinct values are assigned to each and every free variable by 
each of the sequences; if this is so, then the sequences strongly satisfy the 
formula. 

In general, then, weak satisfaction of a relation requires that it can be 
satisfied by any pairings drawn from D × D, while strong satisfaction 
requires that the relation can be satisfied only by distinct pairings. In this 
latter case the satisfaction clauses are stated not simply with respect to 
assignments, but rather with respect to distinct assignments~ To a large 
extent the classes of weak and strong quantifiers cleave along the 
dimension of whether they are morphologically singular or plural, so that 
the singular quantifiers considered in the previous sections are weak, 
while the plurals taken up in this section are strong. For instance, for the 
plural resumptive interpretation of Two detectives solved two crimes, it 
will now be false with respect to (51a) and (51b), but true with respect to 
(49), the desired result. This is because the assignment (d~, c~) is non- 
distinct from the assignments (dl, c2) and (d2, c~) respectively, and con- 
sequently there are not the required two distinct assignments in the 
situations depicted in (51a) or (51b) which satisfy x solved y. Notice 
interestingly that quantifiers which might seem to be semantically uni- 
form will differ along the weak/strong dimension depending upon 
whether they are singular or plural. Thus both Exactly one detective 
solved exactly one crime and Exactly two detectives solved exactly two 
crimes are false relative to (51a) and (51b). But for this to be so the 
former must be weak and the latter strong. 

Notice that the relation between assignments we are concerned with 
cannot be construedas an equivalence relation, as transitivity fails. If it 
were an equivalence relation, Two detectives solved two crimes would be 
false in the situation depicted in (53), contrary to fact: 

(53) dl el 

d 2 ~ c 2  
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This is because all of the pairings in (53) are equivalent - (d~, cl) would 
be equivalent to (d~, c2), which in turn is equivalent to (d2, c2), which in 
turn ought to be equivalent, by transitivity, to (dl, c~). But then there 
would not be two distinct verifying assignments. On the other hand, if the 
relation at hand is just non-distinctness, then it fails to follow that (dl, c~) 
and (d2, c2) are non-distinct. Consequently,  Two detectives solved two 
crimes is true in (53), since these are distinct assignments which satisfy x 
solved y. 

Now consider a class G made up all non-distinct assignments g to the 
variables x~ . . . . .  x, which show in a predicate ~0. G then will be a set of 
n-tuples, any pair of which share an assignment on some coordinate; for 
a binary relation this means that the same assignment is made to either x 
or y, inclusively. A relation ~0i,j can now be said to be directly satisfied iff 
the non-distinctness classes G of assignments gij contain just one mem- 
ber; the relation is indirectly satisfied if the cardinality of G is greater 
than one. The satisfaction clauses can then be defined to apply relative to 
a designated member  g* of G. So, for instance, x solved y is directly 
satisfied by (49), as G~ ={(dl ,  cl)} and (32 = {(d2, c2)}, where g* = GI and 
g* = G2. On the other hand, x solved y is directly satisfied by (53), as we 
have Gj ={(di ,  c2), (d2, c2)} and G2 = {(dl, cj), (dl, c2)}, and from each of 
these classes a designated member  can be chosen, so long as those 
chosen do not form a non-distinctness class themselves. Similarly, the 
relation is indirectly satisfied by (54): 

(54) dl cl 

dE ~ c2 

This is intended to represent a situation in which while it is so that each 
detective solved each crime, their doing so was mere happenstance - it 
just so happened that detective one solved crimes one and two and that 
detective two did likewise, without in any way working in concert.  Two 
detectives solved two crimes will be true with respect to (54) under the 
interpretation imposed by (50) because it will only ever  be possible to 
draw, from the four non-distinctness classes of assignments, two distinct 
pairings which satisfy the relation. Hence  we have G1 ={(dl ,  cO, (d~, c2)}, 
G2 ={(dl ,  Cl), (d2, Cl)}, G3 = {(d2, Cl), (d2, c2)} and G4 = {(dx, C2), (d2, c2)} 

- note that adding any other pair to any of these classes would render it 
no longer a non-distinctness class. From these classes we can find either 
the distinct sequences assigning (dl ,  cl) and (dE, C2), or those assigning 
(dl, c2) and (d2, Cl)) satisfying x solved y; any other pairings would form 
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non-distinctness classes. Notice that for the first two pairs of assignments 
g* = g* and g* = g*, and similarly for the latter two pairs, the designated 
member of G1 is the same as that of (/4, and that of G2 the same as that 
of (/3. The common thread which runs between all of these vagaries is 
that none of them impute any connection between the actions of the two 
detectives. They are all 'happenstance' construals, where the inter- 
pretations assigned relative to the situations in (53) and (54) are indirect 
vagaries of the direct pair interpretation of Two detectives solved two 
crimes satisfied by the bijective relation depicted by (49). 

The semantics of strong resumptive quantifiers can be applied to 
certain other puzzles involving plural quantifier phrases, which, like 
numerical expressions, in some sense project measures on their domains. 
One is an intriguing puzzle concerning most and donkey anaphora, and is 
due to Heim (1982). Recall that donkey sentences with standard 
quantifiers, like Every owner of a donkey beats it, can be fruitfully 
analyzed as involving a pair quantifier, as in (31): 

(31) Vx, y (x is owner of y) x beats y. 

A natural extension of this analysis is to treat the sentence Most owners of 
a donkey beat it as in (55): 

(55) MOSTx, y (x is owner of y) x beats y 

On this interpretation the truth-conditions require that for most pairings 
of a donkey with a donkey owner, the former beats the latter. Un- 
fortunately, this description will hold in (56) if we assume that 04, who 
owns six donkeys beats all of them, but that none of ol, 02 or 03, who are 
also donkey-owners, beats the single donkey he owns: 

(56) o~ dl 
02 d2 

03 d3 

04 d4 . . . .  , d9. 

This is because six out of the nine pairs of donkeys and donkey-owners in 
(56) are in the beating relation; hence most of the pairs stand in this 
relation. But this is contrary to fact, as Most owners of a donkey beat it is 
quite plainly false in the circumstance described. 

This is only so, however, if most is treated as a weak binary quantifier; 
it is not so if treated as strong. This is because the assignment of the pair 
(04, d4) is non-distinct from the assignment of (04, ds), and so on, for d6 
through d9. The members of this non-distinctness class of assignments 
are distinct, however, from the assignments of (01, dl), (02, d2), (os, d3), 
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and since of these, three out of four are not donkey-beaters, it follows, 
correctly now, that Most owners of a donkey beat it is false. Its truth 
requires that a majority of donkey-owners also be donkey-beaters, 
regardless of the number of donkeys they may be cruel to. TM 

5.1. Articulating the Semantics 

The semantics for the resumptive numerical sentences of the sort we 
have been considering can be given as follows: 

f ( R ,  S) = 1 iff f ( K ,  S) = 1, where K is a distinct subset of R. 

The latter notion can be defined as follows. Suppose that K is a subset of 
ordered pairs of the domain D, such that ~(x, y). Now let 

K ° = {x 13y~(x, y)} 

and 

Ko -- (y 13x~(x,  y)}. 

That is, K ° and K ~ are the domain and counter-domain of ~, respec- 
tively. Then, for some K c  R 

K is distinct =dfVx, y ~ K ° V w ,  z ~ K ~ (x ~ y ^ w ~: z). 

While these latter definitions are given for the case of a pair resumptive 
quantifiers, they can be generalized easily to resumptive quantifiers over 
n-tuples of arbitrary adicity. In the unary case, note, the distinct image of 
a set will be itself; since there is no distinction to be made between K ° 
and K o, the condition will (vacuously) require that all the members of K 
be different from one another. 

The semantics can be further restricted by having the resumptive 
quantifiers apply not just to the distinct images of their arguments, but 
rather to maximally distinct images: 

18 Suppose that with respect to the structure of donkey-owning in (56) that 04 who is the 
multiple donkey owner, doesn't beat all of the donkeys he owns. Barry Richards brings to 
my attention that many, but not all, people find Most owners of a donkey beat it false in this 
situation, truth requiring rather that each of the donkey owners beat all of the donkeys they 
own. It is not altogether clear to me at this point exactly how to incorporate the universal 
force into the semantics developed above; but see Rooth (1987) for some suggestions on 
how to proceed. Another problem with this treatment is pointed out by R. Fiengo. He notes 
if donkey-sentences are treated in the way described, then Which owner of a donkey beats it 
ought to be synonymous with Which owner of which donkey beats it, which is clearly not the 
case. 
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K is maximally distinct=dfK is d is t inct^V distinct 
K'÷ tc(Ig'l Igl). 

The semantics will now establish that truth can obtain only if the 
quantifier applies to a largest subset K of S containing only distinct 
pairings of individuals. Applicability of this articulation is to be found in 
such complicated situations as that depicted in (57): 

(57) dl cl 

d2 ~ ¢2 

d3 C3 

Relative to this structure there are sets of distinct assignments con- 
structable which are of different orders. For instance we have (dl, c2), 
(d3, c3) on the one hand, and (dl, ci), (d2, q) ,  (d3, c3) on the other, but it 
is only the latter collection which constitutes a maximally distinct set. 
Consequently we have it that relative to (57), 

(58) At most two detectives solved at most two crimes 

is false and 

(59) At least three detectives solved at least three crimes 

is true, as it is only the maximal set which matters for truth, and this set 
contains three, and not two, pairings of detectives and crimes. 

The maximality condition, it turns out, can be subsumed under a 
narrower restriction on the size specificity of numerical quantifiers. Sup- 
pose that for some distinct K c R, 

n(R, S) = 1 iff IR°I>  n A > n A I g n  > n .  

(This condition is for the common 'at least' sense of numericals; the 
'exactly' and 'at most' senses result by uniformly substituting ' = '  and '~<' 
respectively.) The idea here is that resumptive numerical quantifiers not 
only specify how many n-tuples must stand in a relation for truth, but 
also specify how many individuals can be relatees. Thus (58) is false 
relative to (57), since there are more than two detectives and two crimes, 
but, on the other hand, (57) verifies (59), as there is the required 
minimum of three detectives and three crimes. The semantics also makes 
(58) false in the following situation, in which it is intended that each 
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detective separately solved one hundred different crimes: 

(60) dl cl . . . . .  Cloo 
d2 C101~ • • • , C 2 0 0  

Falsity here ensues because there are more than two crimes; in fact, there 
are two hundred. (60) also falsifies (61), 

(61) Exactly two detectives solved exactly two crimes, 

but, in fact, verifies (62), 

(62) At least two detectives solved at least two crimes, 

as the size-specificity requirement places only a m i n i m u m  bound in this 
case, as opposed to a m a x i m a l  bound in the case of exact ly  two and at  

most  two. This just reflects, for the resumptive case, the fact that at  least 

n is an increasing determiner, while both at  most  n and exact ly  n are 
non-increasing. Thus while the former is insensitive to growth of domain, 
the latter are not, and it is just the properties of these non-increasing 
quantifiers which require this articulation of the semantics of resumptive 
quantification. 

Size-specificity, bear in mind, subsumes the maximality condition, but 
not the basic distinctness constraint, which is independent. Its in- 
dependence can be observed by noting that it is called into play even 
when size-specificity is satisfied. Recall the situation depicted in (54), 

(54) dl Cl 

d2 ~ c2 

(54) with respect to which (58), (61) and (62) are all true, even though 
there are four, and not two, pairings of individuals. In particular, there 
are not precisely two pairings, as the semantics of (61) would require, but 
there are precisely two distinct pairings, and it is this which is required for 
truth. 

The picture being painted of the semantics of resumptive numerical 
quantifiers can be construed intuitively by thinking of it being composed 
of three parts: A size-specification, a quantificational force and a dis- 
tinctness condition. This last property seems to be the most general, 
perhaps a contribution of the plurality of the sentence, while the former 
two appear more specific to numerical, or perhaps, more generally, 
measure, quantification, as they need not be distinguished in order to 
provide a proper semantics for the standard, classical quantifiers. 
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5.2. Collective Construals 

The interpretations we have this far been considering of our prototypical 
sentence Two detectives solved two crimes fall under what are commonly 
called distributive construals. Intuitively this is because there is no 
presumed connection between the events of crime-solving by each of the 
detectives; rather they constitute spatio-temporally disjoint occurrences. 
Semantically this is expressed in the satisfaction clause for the quantifier 
TWO, which in the resumptive case requires that there be two distinct 
n-tuples of individuals for whom the relevant n-place predicate holds. 
The satisfaction clause given as (50) above specifies, therefore, a singular 
interpretation when applied to Two detectives solved two crimes, as it 
requires that there must be two (or, in the general case, n-many) 
sequences satisfying a singular relation, that is a relation which holds of 
individuals. In contrast to such singular/distributive interpretations, 
morphologically plural sentences such as we are considering may also be 
understood collectively. The difference here is that it is presumed that 
there is a connection between the events of crime-solving - in fact the 
presumption is that the detectives acted together, in concert, so that 
rather than constituting multiple singular events, the crime-solving con- 
stitutes a single plural event. With respect to this single event, the 
detectives are understood to be acting as co-agents in the solving of the 
two crimes, understood as co-objects, while on the distributive inter- 
pretation no such connections are assumed. Now on the collective 
construal it will be the case that both detectives participated in solving 
both crimes, so that (55) will depict a situation under which Two 
detectives solved two crimes is true. Indeed it will depict the only situation 
under which it is true, collectively understood. Consequently it would be 
inappropriate to treat this construal via resumptive quantification, al- 
though it would appear to be appropriate to take it as a case of branching 
quantification, as suggested by Carlson (1980). Recall that essential 
branching requires that a formula be satisfied solely by situations mani- 
festing an each/all relation, an interpretation characterized by (63), and 
satisfied in (55), where X = {x [detective(x)} and Y-- {y I crime(y)}: 19 

,9 Actually (63) applies only if the numerical expression has the monotone increasing 'at 
least' sense, since there is no branching semantics defined under Barwise's treatment for the 
non-monotone 'exactly'  sense. Westerst~hl (1987), citing van Benthem, gives a strictly 
second-order  semantics for the non-monotone case in terms of relational generalized 
quantifiers. 
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(63) 3 X ~ Y [ T W O x ( x ~ X ) A T W O y ( y ¢  Y) 

^ YxVy (x ~ X A y ~ Y ~  ~0(x, y))]. 

While treating the collective interpretation via branching would be 
formally correct, I think that approaching it in this way in fact misses the 
relevant difference between the distributive and collective interpretation. 
That is, if we consider these two construals only with respect to the 
relation between individuals depicted in (55), then the difference between 
them must devolve upon whether truth obtains just in this circumstance 
(collective) or not (distributive). But, as just discussed, the relevant 
distinction is not this at all, but rather turns on how individuals are 
understood to fulfill the thematic roles of a predicate's argument struc- 
ture. This is not a distinction, however, that the semantics of branching 
can capture. It is only concerned with whether a particular type of 
relation - the each/all relation - holds between the individuals, regardless 
of whether they happen to stand in this relation because they acted in 
concert or by mere happenstance. Thus the semantics of branching 
quantification is not, in fact, sufficiently structured to distinguish the 
collective interpretation from an instance of the distributive inter- 
pretation. 

Rejecting branching, therefore, as an approach to characterizing col- 
lective construals, we need to adopt some other approach. For our 
purposes here it will do to assume a mereological structure, recently 
popularized in the literature by Link (1983, 1987) and others, in which 
the domain of the model is populated, intuitively, not only by atomic 
individuals of the sort normally countenanced, but also by sums of such 
individuals. Such individual sums are themselves to be understood as 
individuals, just as much able to bear thematic roles as atomic in- 
dividuals. Thus while the subject NP in John li[ted the piano denotes an 
atomic individual as agent of the action, the subject of John and Bill 
lifted the piano, on its NP-conjunction construal, denotes an individual 
sum, composed of John and Bill, as co-agents of the action. Individual 
sums, denotations of plural noun phrases, are to be distinguished care- 
fully from the collections serving as denotations of predicates, in that the 
latter do not bear thematic roles, but are rather collections of individuals 
who bear such roles. While individual sums are also collections of 
(atomic) individuals, the members themselves do not bear thematic roles. 
Rather it is the sum which bears the role, and hence as such can stand as 
argument of a predicate. Such individual sums can be denoted not only 
by conjunctions of (atomic) individual denoting expressions, but also by 
other plural noun phrases such as plural pronouns, and definite and 
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demonstrative noun phrases. Such entities many also be denoted, I 
presume, by numerical expressions, where the numeral fixes the atomic 
number of the sum - two detectives, for instance, denotes an individual 
sum whose atomic number is 2. The collective construal of Two detec- 

tives solved two crimes will then be just that interpretation in which the 
two NPs each denote individual sums, and it will thus be true just in case 
the detectives, acting as co-agents, solved the crimes, as co-objects. 

The view of numerical phrases which emerges from this is that they are 
ambiguous between expressions which quantify over individual atoms 
and expressions which denote individual sums. The former is distributive 
and singular, the latter is collective and plural. The two types of con- 
struals can be mixed, so that we have the interpretations represented in 
(64), where I represent expressions denoting individual sums by ']]all n', 
for some atomic number n: 

(64)a. TWOx (detective(x)) x solved II crimes [I 2 

b. TWOy (crime(y)) II detectives II 2 solved y. 

(64a) will be true just in case for each of two detectives there is a single 
pair of crimes that they both solved, while (64b)'s truth requires that for 
each of two crimes, there is a single pair of detectives who solved both of 
them. The situations depicted in (65) and (66) satisfy these conditions, 
respectively: 

(65) 

(66) 

i cl, c2 

Cl 
dl, d 2 ~  

c2 

(These interpretations perhaps become more salient if a demonstrative is 
added to one or the other of the numerical phrases. Thus, Two detectives 

solved those two crimes and Those two detectives solved two crimes more 
clearly indicate the intended construals.) These construals have a com- 
monality with the singular interpretation in that they entail that there are 
two events of crime solving, as well as a commonality with the plural 
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interpretation, in that each event involves either co-agents or co-objects 
of solving - hence their mixed interpretive status. 2° 

6. B R A N C H I N G  Q U A N T I F I C A T I O N  

A resumptive use of the quantifier m o s t  is to be found in multiple 
generalization sentences such as (67), adapted from Barwise (1979): 

(67) Most stars are connected to most dots. 

Under the semantics of strong resumptive quantification, as represented 
by (68), 

(68) MOSTx, y (star(x) ^ dot(y)) x is connected to y, 

for truth to obtain there need only be some connection between the stars 
and the dots; all that is required is that at least three disjoint pairs are 
connected. Hence, as in the above treatment of multiple numerical 
sentences, (67) is vaguely interpreted, and is true both with respect to 
(69) and (70): 

(69) * 

20 My comments here are not meant to preclude the possibility that a more thorough 
rethinking of the semantics of collective construal is called for. Considerations raised in 
Schein (1986) raise many issues regarding the role of sets or set-like objects in the 
interpretation of collective plurals, which he seeks to replace by an approach which takes 
both numerical expressions and thematic roles as predicates of event arguments. Schein's 
approach has much to recommend it, not least of which is that it makes explicit the logical 
role of thematic structure relative to the notion of event, which at best is only explicated 
under our approach implicitly with respect to the semantics of quantification and reference. 
Schein points out that once this type of interpretation is in place, it can be extended to cases 
of the sort discussed here. So, for instance, Two mathematicians proved two theorems can be 
analyzed, roughly, as 'There is an event whose participants are two mathematicians and two 
theorems which is a solving event by the former of the latter", where truth obtains under 
any way of relating the mathematicians and the theorems which satisfies this description. It 
should be noted, however, that Schein has to build into his system a quantificational 
semantics for standard (atomic) individuals in order to account for the scopal construals of 
sentences such as that above. It thus becomes a more general issue whether it is appropriate 
to analyze 'sum' interpretations under a generalization of the analysis of collectives, as 
Schein would have it, or as a generalization of the analysis of distributives, which employs 
just the calculus of individuals, as I have proposed here. 
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(70) 
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:¢ 

A similar example is brought to my attention by Barbara Partee: 

(71) Most men I know are married to most women I know. 

To my ear the truth-conditions of this sentence range vaguely over 
monogamous and polygamous situations. 

Things become somewhat more interesting, however, when the inter- 
pretation of (67) is contrasted with that of (72), again adapted from 
Barwise: 

(72) Most of the stars are all connected to most of the dots. 

This sentence, which differs essentially only in the presence of the 
quantifier word all attached to the verb phrase, is true only with respect 
to (70). That is, its truth requires that the stronger each/all condition be 
satisfied - in other words, it is an instance of essential branching 
quantification. In this regard (72) differs from the cases discussed in 
previous sections, which express at best pseudo-branching, and which 
consequently do not provide any reason to maintain branching as part of 
the quantificational resources of natural language in any fundamental 
sense. But the case here indicates that matters are more subtle - that 
while natural languages do not exhibit any instances of covert branching 
quantification, there are instances of overtly marked branching. It is the 
overt presence of all which explicitly marks the each/all condition. The 
question which arises, then, is how can the role of this element be 
integrated into the semantic composition of examples like (72)? 

Let us suppose that all (as well as each) when attached to a verb phrase 
determines that the predicate applies to atomic individuals. That is, it is 
to be understood as a 'distributor' introducing a universal quantifier over 
the atomic members of a sum. To represent this semantically, I borrow 
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from Link (1987) a two-place predicate,  '. I1' which in effect partitions an 
individual sum into its atomic parts. 21 Thus we read ' x - I I y '  as 'x is an 
atomic part of the individual sum y' - note that the variable y must range 
over  individual sums, since only they can be parti t ioned into atoms. The  
role of all and each can now be characterized as turning a predicate q~ 
into a distributed predicate Dip which denotes: 

{ylVx x(.II)y q~(x)}. 

I will assume that this operation generalizes to all positions which occur  
free within the (syntactic) scope of the distribution elements, making it, 
in this sense, unselective. So, for instance, for a two-place relation under 
the scope of a distributor, we obtain 

{(x, y) lVw,  z (w( . I I ) x  A Z(-II)y)~(W, Z)} 

as a derived relation. 
Turning now to the case at hand, I assume that at LF all is attached to 

VP, and hence has its scope delimited as narrower than the most-phrases, 
which have been extracted and adjoined to S. Consequently,  all will 
effect partitionings relative to the subject and object  positions, both of 
which reside free within its scope. This  gives the predicate 

Vw, z (w( . I I ) x  A Z(-II)y) W is connected to z, 

which expresses the each/all condition, as applied to a pair of individual 
sums. The  variables which occur  free in this predicate will then in turn be 
bound by the broader  scope partitive most-phrases. These phrases, 
however,  cannot  be treated as normal quantifier phrases - as 'mostx '  and 

'mosty '  - given the analysis of distributed predicates, as such quantifier 
phrases apply only to atomic individuals, while the variables free in the 
above expression range over  individual sums. So construed most can- 
not bind into a predicate under the scope of all; hence we must treat the 
interpretation of these phrases in a rather different fashion. 

A distinguishing characteristic of phrases with determiners like most is 
that they effect measures of groups, and this must be expressed in their 
semantics in some fashion. One way to do this, of course, is through the 
semantics of the simple atomic quantifier most. It can also be made 
concrete in another  fashion by allowing the formation of measure opera- 
tors on partitions of individual sums. Using the current  case as an 
example, we have the measure operator  'most II' defined as follows, 

21 In fact Link introduces a general partition operator and an atomic partition operator, 
with the former corresponding to all and the latter to each. I will ignore this subtlety here. 



4 3 0  R O B E R T  MAY 

(where, as before, the brackets indicate atomic number): 

x(most H)y  ~-df IIx n yll > Ily - xll. 

The most-phrase can now be taken as the existential closures of such 
measured partitions, giving the following translation: 

most of the stars ~ 3x x(mostlI) the stars. 

Under this semantics, the truth of 'most(qO' will require that there is a 
'most-sized' individual sum which satisfies ~, (where ~0 may be a dis- 
tributed predicate or not). Since most-sized is usually not atomic-sized, 
the variables bound by most under this interpretation will run freely over 
both atomic and sum individuals. Putting this together with the treatment 
of all, we arrive at the following interpretation for Most of the stars are all 
connected to most of the dots: 

(73) 3x(x(mostlI)the stars)3 y(y(mostlI)the dots)Vw, ~z(w(.II)x 
^ z(.II)y) (w is connected to z). 

(73) states that there are most-sized partitions of the stars and the dots, 
such that each atomic member of the former is connected to each atomic 
member of the latter. It is therefore true just in the sort of situation 
characterized by (71), and false with respect to (70), and hence expresses 
an essential branching condition. 

Given that the treatment of branching attributes its occurrence to 
aspects of compositional structure, we would expect the semantic 
definition of branching to be a general one, applicable regardless of the 
quantifiers involved. An impediment to this generality, however, is 
apparently placed by sentences such as (74): 

(74) Few of the stars are all connected to few of the dots. 

The reason for this is that, under the proposed semantics for (74), given 
in (75), this sentence comes out as true with respect to (70): 

(75) :Ix (x(fewII)the stars) 3y  (y(fewlI)the dots) 
Vw, z (w(-II)x ^ z(.II)y) (w is connected to z). 

This is because in the relation depicted by (70), there is a sub-relation 
whose domain and counter-domain are 'few-sized' sets of stars and dots, 
S' and D' - the bottom two stars and the bottom two dots - such that 
each member of S' is connected to every member of D'. The desired 
generality can be acquired, however, by following suggestions of Sher 
(1989a, 1989b) that branching is applicable only with respect to maximal 
sets. While for increasing quantifiers like most the effects of this con- 
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dition will not be apparent, they will be for decreasing quantifiers like 
few. In particular, (74) will now come out as false in the situation just 
described, since S' and D', while few-sized, are not the maximal sets of 
stars and dots which stand in the each/all relation. Note that these 
considerations, when taken in conjunction with those in Section 5.1, 
indicate that the maximality condition is not a particular property of 
branching quantification, but rather arise from deeper properties of the 
semantics of plurality. 

The treatment of branching envisioned here, I should point out, 
applies regardless of whether the quantified phrase is partitive or not. 
Following Heim (1982) among other references, I will assume that 
partitivity is distinguished only with respect to pragmatic conditions 
governing their use in familiar, non-novel contexts, and that their 
semantics are just the same as their non-positive counterparts. Thus the 
points I have made thus far regarding branching quantification could just 
as well have been illustrated with non-partitive expressions, (although 
perhaps certain aspects of the partitives make for more salient expression 
of the desired interpretations). Alternatively, one might hold thai par- 
titives actually semantically differ from non-partitives in some way. For 
instance, it might be assumed that they simply denote sums of certain 
sizes, where the group over which the sum ranges is contextually fixed, 
(an analysis indicated, for instance, in brief comments by Link (1987).) 
Suppose we designate such expressions by '~x x. IINP', which denotes a 
sum individual made up of 8-many atoms which are parts of the sum 
denoted by NP. The interpretation of Most of the stars are all connected to 
most of the dots would then be as in (76): 

(76) Vw, z (w.  II(mostx x. Ilthe stars) 
^ z .  II(mosty y. lithe dots)) w is connected to z). 

While this will certainly be true of (70) (and false of (69)), since it 
requires that every atom of a most-sized sum of stars be connected to all 
atoms of a most-sized sum of dots, the problem is that its negation, (77), 
is also true of (70). 

(77) 7Vw, z (w. II(mostx x. lithe stars) 
^ z.  li(mosty y.  lithe dots)) w is connected to z). 

This is because just as we can find in (70) most-sized groups of stars and 
dots for which there is an each/all relation, namely the bottom three, we 
can also find such groups, for instance the middle three stars and the 
middle three dots, for which it will not be the case that every pair of a 
star and a dot are connected. But plainly the negation of (72) is false in 
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(70): 

(78) Most of the stars aren't all connected to most of the dots. 

The negation of (73), however, will ascribe the correct truth-conditions: 

(79) --q::lx (x(mostII)the stars) 3y  (y(mastII)the dots) 
Vw, z (w(.II)x ^ z(.II)y) (w is connected to z). 

This interpretation requires that there be no way of partitioning up the 
stars and dots into most-sized groups which stand in the each/all relation. 
But clearly in (70) there is such a partitioning; hence the falsehood of 
(78). We thus must reject any analysis in which the most-phrases can be 
denoting expressions which can stand inside the scope of the universal 
quantifiers introduced by the distributing expression. 22 

Transposed into the terminology of individuals and individual sums I 
am exploiting here, the analysis of branching presented is, from the 
semantic point of view, similar to that of Barwise (1979). The treatment 
differs from Barwise's, however, in its emphasis on showing how branch- 
ing can arise as a function of the composition of sentences of a certain 
form. Branching results, on the analysis here, from particular aspects of a 
sentence's syntactic construction, turning on the presence of certain 
types of elements and constructional properties. Of particular importance 
is the role of all as a distributor and the restrictions it places on the 
variables which occur free within the predicate to which it applies. 23 
Under Barwise's analysis restrictions on branching arise from a different 
source, keyed to inferential properties of the quantifiers. So, for instance, 
true second-order branching is limited just to monotone increasing 
quantifiers, and is excluded, for the reasons discussed in Section 3, for 
decreasing quantifiers like few. On the analysis here, the key to branch- 
ing quantification resides in it being determined in a purely compositional 
fashion. Where the building blocks of this interpretation are not explicitly 
marked - for instance by the presence of all - the resulting 
quantificational conditions will be first-order, although the first-order 
quantifiers will bifurcate between those which display dependencies - the 
n-ary quantifiers - and those which do not - the independent, resumptive 
quantifiers. Moreover, because of the compositional nature of the analy- 
sis, it extends to the full class of generalized branching structures 

22 I am grateful to Bill Ladusaw for apprising me of the problems surrounding the analysis 
just described in the context of branching quantification. 

23 Or other elements such as floated each and the distributor introduced by reciprocal each 
other. On the latter see Heim, Lasnik and May (to appear). 
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discussed in Sher (1989a, 1989b), who points out that there is a whole 
range of explicitly marked second-order branching conditions, besides 
the each/all condition introduced by all, which are introduced by some 
partitioning operator on the verb phrase. These cases are beyond the 
scope of Barwise's analysis. The occurrence of branching, therefore, is 
fundamentally determined by syntactic, and not semantic, conditions. By 
treating branching in this way it is possible to explain just why and where 
this particular semantic condition will obtain - it is simply to be found 
just where there are multiple partitioning, which arise only in the 
presence of elements with very particular semantic roles. 

7. C O N C L U D I N G  C O M M E N T  

In these investigations I have been exploring the implications for the 
semantics of natural language of taking the logical form of multiple 
quantification to be symmetrically represented. The dependencies of 
relative scope, which are no longer be expressed syntactically at Logical 
Form, are semantically characterized through absorbed quantification. 
Additionally those configurations of quantifiers at LF - E-sequences - 
which allow of free relative scope ordering also allow, when satisfying an 
appropriate identity condition, of another type of interpretation, resump- 
tive quantification. These quantifiers were shown to be both independent 
- that is, not scopally related - and first-order, and to apply quite 
generally to morphologically singular and plural quantified noun phrases. 
The semantics of resumptive quantification, however, does not exhaust 
the interpretive possibilities of multiple generalization sentences meeting 
the identity condition, which shows up in the analysis of plural sentences, 
whic]h call for a more highly articulated semantics for resumptive 
quantifiers. To account for collective construals individual sums are 
introduced into the domain as their denotations, alongside of individual 
atoms. Plural noun phrases are therefore to be divided into two types. 
The first are exemplified by quantifier phrases, such as many students or 
two detectives. They range over atomic individuals, and are, in the 
defined sense, singular. When sequences of such phrases satisfy the 
identity condition they may be interpreted resumptively. The second 
class are denoting expressions, whose denotations are non-atomic in- 
dividual sums. Included in this class are the definite plurals and plural 
pronouns, as well as numerical expressions, which reside ambiguously 
in both this and the former class. Under this interpretation they 
express collective construals. Moreover, plurals can be understood to 
existentially quantify over the non-atomic entities to which the latter 
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sort of expressions refer. This latter construal is implicated in the analysis 
of configurations in which true branching quantification is observed. 
Examination of these cases showed, however, that while branching is 
found in natural languages, it is only found when explicitly indicated in 
the sentences overt form, and as such fixing on this interpretation is 
strictly compositional. In general, then, natural language quantification, 
relative to our assumptions regarding its logical form, falls within the 
confines of a first-order theory, even when independent, except where 
certain syntactic devices such as floated quantifiers come into play and 
determine a more highly structured interpretation not expressible in 
first-order terms. 
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