
S T U A R T  M. S H I E B E R  

D I R E C T  P A R S I N G  O F  I D / L P  G R A M M A R S  

1. I N T R O D U C T I O N  

The Immediate Dominance/Linear Precedence (ID/LP) formalism is a 
recent extension of Generalized Phrase Structure Grammar (GPSG) 
(Gazdar and Pullum, 1982; Gazdar and Pullum, 1981) designed to 
perform some of the tasks previously assigned to metarules - for example, 
modeling the word-order characteristics of so-called free-word-order 
languages. (See, e.g., Stucky, 1981; Pullum, 1982; Uszkoreit, 1982.) It 
allows a simple specification of classes of rules that differ only in 
constituent order. ID/LP grammars (as well as metarule grammars) have 
been proposed for use in parsing by expanding them into equivalent 
context-free grammars (Gazdar and Pullum, 1982; Thompson, 1982). We 
develop a parsing algorithm, based on the algorithm of Earley, for parsing 
ID/LP grammars directly, circumventing the initial expansion phase. A 
proof of correctness of the algorithm is supplied. We also discuss some 
aspects of the time complexity of the algorithm and some formal proper- 
ties associated with 1D/LP grammars and their relationship to context-free 
grammars. 

2.  A N  I N F O R M A L  I N T R O D U C T I O N  TO ID/LP G R A M M A R S  

A complete explication of the motivation for and use of the ID/LP 
grammar formalism can be found in Gazdar and Pullum (1982). We 
provide here only a brief and informal introduction to ID/LP so as to 
convey something of its flavor as a tool for use in formal linguistics. 

Languages such as English that rely heavily on word order to convey 
syntactic information are amenable to the kind of analysis in which the 
immediate dominance of constituents is correlated on a one-to-one basis 
with a particular linear ordering on constituents. Such a correlation is 
provided b~y the context-free phrase structure formalism. However, for 
languages in which linear order plays a considerably more limited role, the 
insistence upon such a strict correlation can be quite inefficient and 
unintuitive, leading to grammars that overlook key generalizations. For 
example, in the Bantu language Makua, constituent order is much freer 
than in English. In a sentence with a verb, a noun phrase complement, 
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and a sentential complement, three orders of the constituents are 
allowed. 1 

(1)(a) Aho-ctiw61-a Hifi-Sep6t6 wiirfi ikitgfftbwil6 y-or66ra u-s6mfi 
SA/T-know-T Sepete that book-DEM SA-good INF-read 

Sepete knows that the book is good to read. 

(b) Hifi-Sep6t6 aho-cfiw61-a wiirfi ikiuifibwil6 y-or66ra u-s6m~i 
(c) Aho-cfiw61-a wiirfi ikit~ftbwil6 y-or66ra u-s6mfi Hifi-Sep6t6 

Rather than write three phrase structure rules for the possible orderings, 
we would like to express directly the following two orthogonal pro- 
positions: 

- A sentence can be composed of a verb with NP and g complements. 
- T h e  verb must come before the S. 

That is, we would like to separate the specification of immediate 
dominance from that of linear precedence. In the ID/LP formalism 
presented in this paper, these facts would be encoded, respectively, as an 
ID rule 

(2) S---~Io { V, NP, S} 

and an LP rule 

(3) v < g. 

The LP rule has force throughout the entire grammar. It therefore applies 
to any rule that introduces siblings of categories V and S. The LP relation 
is thus the repository of grammar-wide generalizations about linear order. 
By way of comparison, note that context-free phrase structure grammars 
offer no way of stating such generalizations. 

ID rules are just one of several devices within the GPSG framework that 
provide a format for the inductive definition of a context-free grammar. 
The other devices include, most notably, a set of metarules (for deriving 
ID rules from other ID rules), and feature instantiation rules (for deriving 
instantiated ID rules from the previously derived ID rules). These devices 
have been traditionally described in the literature as engendering a 
process of grammar derivation by expansion from an initial set of basic 
rules to the end product of a context-free grammar, proceeding through 
the stages of metarule closure, feature instantiation, and finally, lineariza- 
tion according to the LP relation. An ID rule can thus be thought of (and 
has indeed been traditionally so regarded) as a schema for a set of 
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context-free phrase structure rules, namely, the set of 'linearizations' of 
the rule consistent with the LP relation. 

3. A D V A N T A G E S  O F  A D I R E C T  I N T E R P R E T A T I O N  O F  I D / L P  

However, ID rules need not be so viewed. In fact, they can just as 
straightforwardly be viewed as node-admissibility constraints themselves - 
as distinguished from a metagrammatical device for specifying such 
constraints. This would lead to the possibility of deriving algorithms for 
parsing and generation that use ID rules directly, without first expanding 
them into an equivalent context-free grammar. We will discuss several 
advantages of such a direct interpretation of ID rules, some of them 
theoretical, some more practical in nature. 

First, proponents of GPSG make the claim that a grammar with only 
context-free power can capture the generalizations that natural languages 
seem to embody. If GPSG is to be taken seriously as a model for the 
encoding of information used in human sentence processing, the in- 
formation actually used by the sentence-processing mechanisms should 
encode such generalizations as well. That is, the processor should be using 
the grammar in a form in which generalizations are stated. But the 
demonstrations Of some of the desirable properties of GPSGs, e.g., their 
generative and computational restrictiveness, are based on their expansion 
into forms that do not express these generalizations, namely, huge 'object 
grammars' of literally trillions of rules. Thus, an existence proof is needed 
that GPSGs can be used directly without the loss of these properties. We 
will shortly present such an existence proof for at least one segment of the 
problem, the direct parsing of ID/LP grammars. 2 

Second, if GPSGs are to be used as the basis of a practical computer 
implementation, such direct-interpretation algorithms will be necessary. 
The expansion of a GPSG into its equivalent context-free grammar has 
never been, and undoubtedly could not be, the basis of an implementation 
of the formalism. In this vein, it is notable that the algorithm to be 
presented here has already been the basis of two GPSG implementations. 3 
In fact, many implementations already do the work of feature instantiation 
directly without expansion of the grammar (e.g., Bear and Karttunen, 
1982; Gawron et al., 1982; Rosenschein and Shieber, 1982) and some 
work has been done on direct parsing with metarules (see Stucky [1983] 
and references cited therein). But as linearization is the final stage in the 
expansion cascade, removal of linearization (by direct parsing of ID/LP) is 
a prerequisite for removal of the other stages of expansion. Im- 
plementations that perform feature instantiation 'on the fly' therefore 



138 S T U A R T  M. S H I E B E R  

cannot include the ID/LP device (unless they parse ID/LP directly). Thus 
direct parsing of ID/LP is critical to allowing direct parsing of earlier 
stages in the GPSG cascade. 

Third, as formalisms get more complex in their design, it may be 
impossible to directly expand grammars written in the formalism into a 
strongly equivalent context-free grammar, even though the formalism is 
only of context-free power. This is the case with the Kleene star notation 
in ID rules (Klein, 1983), and the extended version of GPSG due to Culy 
(1983). In these cases, the need for direct interpretation is obvious. In fact, 
in Section 6 we discuss application of the ID/LP parsing algorithm to the 
Kleene star notation. 

Finally, although we will see that the ID/LP formalism and context-free 
grammars have virtually the same generative capacity (in a sense to be 
made precise later) and the respective algorithms for parsing have the 
same time complexity, it seems that under certain conditions, the ID/LP 
representation of grammars would allow more efficient parsing. This 
factor will be discussed in Section 7. 

4 .  A F O M A L  D E F I N I T I O N  OF I D / L P  G R A M M A R S  

We now provide a formalization of ID/LP grammars that is independent of 
their linearization into context-free grammars. We will use this for- 
malization to define and prove the correctness of a parsing algorithm for 
ID/LP grammars, as well as to discuss the mathematical properties of such 
grammars. The formalism defined here differs slightly from the one 
implicit in Gazdar and Pullum (1982) in being somewhat more restrictive. 
We will mention these differences where they arise. 

An ID/LP grammar G is a quintuple (N, ~i,, ID, LP, S) where 

- N is a finite nonempty set, the set of nonterminals. 
- 2 £  is a finite nonempty set disjoint from N, the set of terminals. 
- I D  is a finite set of ordered pairs (o~,/3), where a ~ N and /3 

~ ( N  U X). 
(oz,/3) e ID is notated O~---~ID/3. Note that the right-hand sides of rules 

are sets of terminals and nonterminals, so that repeated items are 
disallowed - unlike the ID/LP characterization of Gazclar and Pullum 
(1982) and Klein (1983). The extension to multisets, however, is straight- 
forward. We merely let/3 range over multisets of elements of N U E rather 
than sets. The changes required in the algorithm will be discussed later. 

- L P  is a strict partial ordering of N U~,  that is, an irreflexive, 
asymmetric, transitive relation in (N U •) × (N U X). 
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(a ,  13) e L P  is conventionally notated a < [3. This notation is extended 
to apply to sets or strings of symbols so that, if 13 is a set or string, then 
a < [3 iff V/3' ~/3: a </3 '  and, similarly, for a a set or string. We will also 
use the symbol ~ both in the standard way and in its extended form 
covering sets and strings. 

- S is an element of N, the start symbol. 

We now define ID/LP derivation and some concomitant notions. Note 
that these definitions hold equally well for the multiset characterization of 
ID/LP under the appropriate interpretations of set operations as their 
multiset counterparts. (We notate the empty string as A, the empty set as 

0.) 

DEFINITION 1. LP-acceptability: A string a = a l . . .  an, where ai E 
N U "Z is LP-acceptable iff Vi, j: 1 < i <- j < - n--~ ( ai ~ aj). 

Intuitively understood, a string is LP-acceptable if the order of its 
elements does not violate the LP relation. 

DEFINITION 2. The permute function: A function permute from ~ ( N  U 
E) to ~ ( ( N U  ~)*) is defined as follows: 

- permute(O) = 0, and 
- for all a s ~ ( N U  E), permute(a) = {A[3 I A ~ a ^ [3 ~ permute(a - A)}. 

Intuitively understood, permute(a)  is the set of all strings that are 
permutations of the elements of the set a.  

DEFINITION 3. The expand function: A function expand from ~ ( N  U 
E) to ~ ( ( N  U E)*) is defined as follows: 

- expand(a)  = {[3 [[3 E permute(a) and [3 is LP-acceptable}. 

Intuitively understood, expand(a)  is the set of permutations of a whose 
order does not violate the LP relation. 

We now define the yields and derives relations and the notion of an ID/LP 
grammar's  language in the standard manner. 

DEFINITION 4. The yields relation: A y i e l d s  a (notated A---> a) iff 
A-->ID a '  and a ~ expand(a') .  

DEFINITION 5. The derives relation: aA[3 derives aT~3 (notated 
a A [ 3 ~ a T / 3 )  iff A--> % The relation denoted by ~ *  is the reflexive, 
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transitive closure of the derives relation. 

DEFINITION 6. The language of an ID/LP grammar: The language L of 
an ID/LP grammar is defined as follows: L = {w ~ X* I S ~ *  w}. 

5 .  A N  A L G O R I T H M  F O R  P A R S I N G  I D / L P  G R A M M A R S  

D I R E C T L Y  

Given an independent characterization of ID/LP, we can pursue the 
possibility of using ID/LP grammars directly for generation or parsing 
without first expanding them into an equivalent context-free grammar. We 
present one such algorithm for parsing strings directly with respect to 
ID/LP grammars. The algorithm is based on the context-free parsing 
algorithm of Earley (1970). 

The Earley parsing algorithm for context-free grammars works on a 
string a l . . .  an b y  building a set of parse lists Io . . . .  , In, each list 
containing several items of the form [ A - - ~ a . / 3 ,  i], where A ~  N, a ,  
/3 c (NU~)* ,  0 - i - n ,  and A--~ a/3 is a production in the context-free 
grammar. The existence of such an item on parse l i s t / j  means that the 
algorithm is 'looking for' a parse of the string starting at ai+l as an A, and 
has succeeded in locating the a part of the constituent in the string 
a , + l . . ,  a i, with only the/3 part of the constituent still to be found. We can 
express this more formally as follows: an item [A---~ a . / 3 ,  i] is o n / j  if and 
only if a ~ *  ai+l • •. aj and there exist strings % 8 6 (N tO ~)*, S ~ *  3'A8 
and ~/~* a l . . .  ai. Clearly, if an item of the form [S---~ a . ,  0] is found on 
parse list In, then the algorithm has found an S covering the whole string 
and the string is accepted. The Eafley algorithm is correct in the sense that, 
if there is a parse for the string, then such an item is certain to show up 
eventually, and, if no parse exists, no such item will show up. Finally, an 
algorithm exists for extracting a parse from the engendered parse lists. 

The ID/LP version of the grammar works quite similarly. An item is of 
the form [A, a , /3 ,  i] ,  4 where A, a and i are as before, 13 c ~ ( N  U E) and, if 
a = al  . . .  am, then A---~ID{al . . . . .  an} U 13 is an ID rule. Furthermore, a 
is LP-acceptable. The interpretation is almost as before: we have found 
the a part of an A between the symbols a,+a and aj, and we are looking for 
a parse of the symbols after aj as some LP-acceptable permutation of/3.5 
As a consequence, the existence of an item of the form [S, a ,  0, 0] on parse 
list I ,  indicates recognition of the string. 

We are now ready to present the details of the algorithm for constructing 
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the parse lists//. 
Given a grammar G = (N, E, ID, LP, S) and an input string 

ala2. . ,  an ~ ~,*, we construct parse lists Io , . . . ,  I, as follows: 
W 

(1) For all S ~ D / 3 ,  add [ S, A,/3, 0] to Io. 

Next we perform Steps 2 and 3 until no new items can be added to I0. 

(2) For all [B, y, 0, 0] ~ Io, and for all [A, a, {B} U/3, 0] ~ Io such 
that B :fi/3 and B ~/3, add [A, aB, [3, 0] to Io. 

(3) For all [A, a, {B} U t3, 0] c Io, such that B :fi/3 and B ¢~/3, for 
all B--~ID T, add the item [B, A, Y, 0] to Io. 

We now construct/j ,  having constructed Io , . . . , / j -1 .  

(4) For each item [A, a,{a}U/3, i ]c/ j -1 such that a =a j  and 
a :fi/3 and a ~/3, add the item [A, aa,/3, i] to / / .  

We perform Steps 5 and 6 until no new items can be added to/ j .  

(5) For all [B, 7, 0, i] ~/i  and for all [A, a, {B} U/3, k] ~/~ such that 
B ~/3 and B ¢~/3, add the item [A, aB, [3, k] to / j .  

(6) For all [A, a, {B} U/3, i] ~/j  such that B ~/3 and B ~/3, and for 
all B--->m % add the item [B, A, y, j] to / j .  

The string is accepted if and only if some item of the form [S, a, 0, 0] c In. 

We defer to Appendix I the proof (Theorem 7) that the parse lists 
constructed by the algorithm possess the properties outlined above. As an 
immediate corollary of Theorem 7, we have the following guarantee of the 
algorithm's correctness: 

THEOREM 1. The algorithm accepts an input w if and only if S ~ *  w. 

In Appendix II, we present the algorithm for extracting a parse from the 
parse lists. The algorithm is completely analogous to the extraction 
algorithm for Earley parse lists (Aho and Ullman, 1972). 

6. AN EXAMPLE 

The operation of the algorithm can be seen in a simple example. Consider 
the following grammar, an abstraction of the Makua grammar fragment 
presented previously. 
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S--->ID {A, B, C} 
A--->XD {a} 
B ~ m  { b} 
C ~,~, {c} 

A < B  

Suppose we are given the string acb to parse. The algorithm would 
begin in Step 1 by adding the single item [S, A, {A, B, C}, 0] to parse list 
Io. Since A ~ {B, C} and C :fi {A, C}, we add the items [A, A, {a}, 0] and 
[C, A, {c}, 0] to Io by Step 3. However, note that B > {A, C} so that we do 
not add [B, A, {b}, 0]. 

No more iterations of Steps 2 or 3 are possible, so we move on to step 4 
to construct 11. We add [A, a, 0, 0] to 11 because the first element of the 
string is an a. By Step 5, we add [S, A, {B, C}, 0] to 11, thus recording the 
fact that we have found an A and need only find a BC or CB to complete 
the S. This newly added item causes the items [B,A,{b}, 1] and 
[C, A{c}, 1] to be added to 11 by Step 6. 

Continuing in this manner, we construct parse lists 12 and 13. The 
complete set of parse lists is given below. 

List Item Step 

Io: 

/2: 

accept. 

[S, A, {A, B, C}, 0] 1 
[A, A, {a}, 0] 3 
[C, A, {c}, 0] 3 

[A, a, 0, 0] 4 
[S, A, {S, C}, 0] 5 
[B, A, {b}, 1] 6 
[C, A, {c}, 1] 6 

[C,c,O, 1] 4 
[S, AC, {B}, 0] 5 
[B, A, {b}, 2] 6 

[B, b, 0, 2] 4 
[S, ACB, O, 0] 5 
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Since the final parse list/3 contains the item [S, ACB, O, 0], we accept the 
input. Using the algorithm of Appendix II, we compute a rightmost 
derivation corresponding to the parse tree 

S 

I I I 
a b c 

If we look at the progression of S items derived in the parse lists - 
[S, A, {A, B, C}, 0], IS, A, {B, C}, 0], IS, AC, {B}, 0], and IS, ACB, 9, 0] 
- we can see clearly the character of the algorithm, extracting elements 
from the set as they are found, making sure at each stage that the resulting 
string is LP-acceptable. This basic character can be maintained with the 
multiset characterization of ID/LP (Klein, 1983). The algorithm remains 
unchanged, except that the symbol U must be reinterpreted as multiset 
union (allowing repetitions) and the constraints that B ~/3 in Steps 2, 3, 5 
and 6, and that a ~/3 in Step 4 must be removed. 

Another topic discussed by Klein is the use of Kleene star on elements 
of the right hand sides in ID rules to mean that 0 or more of the elements 
may occur and be distributed freely with respect to one another. Clearly, 
such an extended ID/LP formalism could not be utilized as ID/LP has been 
in the past, i.e., by expanding it into a strongly equivalent context-free 
grammar. Fortunately, a very simple charge in the algorithm of Section 5 
allows direct parsing of the formalism. This change is the same as the 
multiset change, except that the union operation does not necessarily add 
duplicates if the singleton set added contains a symbol that was starred in 
the original rule. In addition, the notion of 0 must be extended to include 
sets with members that are so starred. A similar technique could be used, 
of course, to augment Earley's algorithm itself for parsing context-free 
grammars with Kleene star on the right-hand sides of rules. 

7 .  T H E  T I M E  C O M P L E X I T Y  OF T H E  A L G O R I T H M  

We will not present a rigorous demonstration of time complexity, but it 
should be clear from the close relation between the presented algorithm 
and Earley's that the complexity is that of Earley's algorithm. In the worst 
case, where the LP rules always specify a unique ordering for the 
right-hand side of every ID rule, the presented algorithm reduces to 
Earley's algorithm. Since, given a grammar, checking the LP rules takes 
constant time, 6 the time complexity of the present algorithm is identical to 



144 S T U A R T  M. S H I E B E R  

Earley's (though the constant of proportionality might be quite different). 
That is, it is O(IG 12 n3), where I GI is the size of the grammar (number of 
ID rules) and n is the length of the input. 

It is important to realize that this time complexity measure cannot be 
used directly to compare the efficiency of Earley's algorithm with that of 
the ID/LP algorithm working on 'equivalent' grammars, simply because 
the I G Is in the two complexity measures are different. Making such formal 
comparisons would be analogous to preferring over a GPSG a grammar 
based on some radically different notation for context-free grammars 
merely because I GI under this notation could be construed to be much 
smaller than I G I for the typical GPSG grammar with its hundreds of rules. 
Whether or not such a preference would be valid in particular cases, such 
reasoning is clearly specious. Nonetheless, we will engage in just such 
considerations, rationalizing them on the basis of the quite close similarity 
of the ID/LP and Earley algorithms - a relationship that does not hold in 
general between algorithms for different formalisms. The reader is fore- 
warned, however, that the conclusions here are informal. 

With this caveat, we move on to discuss the critical question of the 
relative efficiency of direct parsing of an ID/LP grammar relative to the 
context-free parsing of the linearized form of the grammar, keeping in 
mind that we are comparing two algorithms that differ in the constant. 
Comparisons of grammar size clearly favor the direct-parsing algorithm. 
Since differences in grammar size can often swamp complexity due to 
input length (Graham et al., 1980), this factor could be crucial in practice. 
Similarly, since the proof of Earley's algorithm's O(n 3) behavior is based 
on the number of items added to the lists, the ID/LP algorithm is favored 
because several Earley items are encoded as a single ID/LP item. Whether 
in practice these differences compensate for any difference in constant 
depends critically on such ill-defined properties as the relative costs of 
primitive operations and, as discussed above, relative grammar size. The 
safe assumption is that there will be some grammars for which expansion is 
better, other for which direct parsing is better; however, as the grammars 
grow freer in their order and larger, so that the factors mentioned above 
increase in importance, the benefits of the direct-parsing algorithm in 
terms of parsing efficiency will become more pronounced. It nevertheless 
seems clear that, as far as practical computer implementation is concer- 
ned, the direct-parsing algorithm is advantageous. 

8. THE EXPRESSIVE POWER OF I D / L P  

Finally, a comment should be made regarding expressive power, and the 
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relationship of this characterization of ID/LP to that proposed by Gazdar 
and Pullum (1982). Gazdar and Pullum note that the ID/LP format is 
restrictive in the sense that not every context-free grammar can be 
expressed as an ID/LP grammar. Specifically, they claim that II)/LP 
grammars exist only for context-free grammars with the Exhaustive 
Constant Partial Ordering (ECPO) property, according to which "the set 
of expansions for any given category is closed under a partial ordering that 
is constant for the expansion of all categories" (Gazdar and Pullum, 1982, 
p. 21). This is, of course, true of the characterization of ID/LP presented in 
Section 4. 

However, the ECPO property is a property of grammars, not languages. 
And though the ECPO property is a restriction on CF grammars, ID/LP 
encodability is not a restriction on CF languages, for it can be shown 
straightforwardly that any context-free language can be generated by an 
ID/LP grammar and that, conversely, every ID/LP grammar has a 
strongly equivalent context-free phrase structure grammar. We prove 
these two statements below. 

THEOREM 2. Every context-free grammar G is weakly equivalent to an 
ID/LP grammar. 7 

Proof. 8 We construct an ID/LP grammar from G as follows. First, we 
convert G to a Chomsky-normal-form grammar G'. This transformation 
preserves weak-generative capacity and guarantees that all nonunary rules 
are of the form A ~ BC, where B and C are nonterminals and all unary 
rules are of the form A--~ a, where a is a terminal. Second, we construct 
an ID/LP grammar G" from G'. For each unary rule A---~ a of G' we add 
A---~t/~ {a} to G". Let < be a total ordering on the nonterminal vocabulary 
of G'. For each rule in G' of the form A--~BC, if B < C, then add 
A--~D{B, C} to G". If B;~ C, then add the rules A--~D{B, C'} and 
C'---~m {C} to G" and B < C' to the < ordering. 9 G" (along with the < 
ordering) is an ID/LP grammar with the same weak-generative capacity 
as G. [] 

Theorem 2 leads us to the following trivial corollary. 

COROLLARY 3. Every context-free language can be encoded in an 
ID/LP grammar. 

THEOREM 4. Every ID/LP grammar G is strongly equivalent to a 
context-free grammar. 

Proof. We construct a context-free grammar G' from G as follows. For 
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every rule of G, A--->rD/3, we add A--->/3' to G' for each/3 'e  expand(~3). 
G' is a context-free grammar with the same strong-generative capacity as 
G. This is, of course, the construction that previous work on ID/LP has 
presupposed as a definition of the formalism. [] 

Thus, we see that the ECPO property and ID/LP format impose no formal 
limitations upon the context-free languages that can be encoded; one can 
always find an ECPO grammar for any context-free language. Gazdar 
and Pullum note that the importance of the ECPO property is that it may 
be a universal property of linguistically motivated grammars. This is a 
strong linguistic claim - though it should be clear that it is not a formal 
claim but rather an aesthetic one, subject to the frailties of linguistic 
judgment. 

In any case, it is interesting to note that the extended ID/LP formalism 
used by Gazdar and Pullum (1982) even allows certain non-ECPO 
context-free grammars to be encoded, contrary to the statement of Gazdar 
and Pullum that "a CF-PSG can be put into ID/LP format if and only if it 
has the ECPO property" (Gazdar and Pullum, 1982, p. 21). Their ID/LP 
formalism is a slight extension of the one presented in Section 4. Besides 
allowing multisets on the right-hand side of rules (which does not change 
the structural generative capacity of the formalism), they permit the use in 
ID and LP rules of the special symbol H to denote the head of the rule in 
the sense of X syntax (Jackendott, 1977). Since the syntactic category 
represented by H changes from one ID rule to another, certain non- 
ECPO grammars can be encoded with this extended formalism. For 
instance, the following grammar is non-ECPO: 

A---> B C  
E--> B C D  
E--->CBD 
E--> B D C  

but an isomorphic grammar can be expressed in the Gazdar and Pullum 
ID/LP formalism (through the renaming of A as C and E as/~) with the 

lO ID/LP grammar: 

C-->m {B, H} 
b --'>ID {B, C, H} 

B < H .  

Here, then, is a counterexample to the above-cited claim of Gazdar and 
Pullum. An alternative interpretation of the H symbol as an abbreviation 
for a feature, say, ishead, 11 would remove the anomaly of non-ECPO 
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ID/LP grammars, since the category C[+ishead] is different from 
C[-ishead]. The concept 'head' would then be defined as follows: "In a 
rule of the form/3o----~/31.../3,, where/3~ has the feature [+ishead], [3~ is 
the head of /30." The feature ishead would, ironically, not be a head 
feature, since it must not be required of the parent node. This presents no 
problem for the current theory of GPSG because several features (e.g., 
foot) are not required to effect agreement between a parent and its head. 

Although, as we have just seen, the expressive power (in terms of 
strong-generative capacity) of Gazdar and Pullum's ID/LP formalism is 
greater than that presented here, the algorithm described could be 
augmented to handle the extension merely by changing the definitions of 
ID and LP in the obvious way. The multiset characterization and the use 
of Kleene star were discussed previously in Section 6. 

9 .  C O N C L U S I O N  

One might be led to extrapolate from the existence of the presented 
algorithm to the conjecture that direct parsing algorithms would exist for 
other extended grammar formalisms. Indeed, the preponderance of par- 
sers for annotated phrase-structure grammars that parse directly, e.g. 
(Bear and Karttunen, 1979; Gawron et al., 1982; Rosenschein and 
Shieber, 1982) (as distinguished from converting the grammars to an 
equivalent context-free form) could be seen, in retrospect, to be further 
evidence. Such an extrapolation is quite dangerous, however. On the one 
hand, ID/LP is a limited formalism that is actually less expressive (in 
strong-generative capacity) than context-free grammars, while certain 
metarule formalisms have been shown to be much more powerful than 
context-free grammars (Uszkoreit and Peters, 1983). On the other hand, 
certain classes of non-context-free grammars have very efficient parsing 
algorithms - better, in fact, than context-free grammars in general. Thus, 
any conjectures about direct-parsing algorithms will have to be examined 
on a case-by-case basis. It is in this spirit that we are now pursuing 
research on the direct parsing of metarule grammars and on other 
grammar formalisms. The main thrust of such research, however, must 
necessarily be directed toward perspicuous limited formalisms that can 
express the types of generalizations linguists want to make - and that do so 
without inordinately expanding expressive power. 

A P P E N D I X  I. A C O R R E C T N E S S  P R O O F  

We now prove that the algorithm presented in Section 5 is correct, that is, 
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the algorithm accepts a string just in case the grammar derives it. 12 

L E M M A  5. For all a e N U E, /3 e ~ ( N  U E), and/3 '  ~ ~ ( ( N  U E)*) such 
that a ¢/3 and/3 '  ~ expand(~3), the following biconditional holds: 

a ~/3 <---> a/3' c expand({a} U/3) 

Proof. 
If direction: a/3' ~ expand({a} U/3), so a/3' is LP-acceptable and a :p/3'. 

Since/3'  and/3 have the same elements, a ~-/3. 
Only-if direction: a :I-/3 and /3' is LP-acceptable, so a/3' is also 

LP-acceptable. Also, since a ~ [3, a/3' ~ permute({a} U/3). Therefore, 

a/3' ~ expand({a} U /3). [] 

C O R O L L A R Y  6. If A--> a3' for all 3' ~ expand({a} U/3) such that a ~/3 
and a ;~/3, then A--> aa/3' for all/3' ~ expand(~3). 

T H E O R E M  7. If parse lists are constructed as specified, then the item 
[A, or,/3, i] is o n / j  iff 

claim i: a ~ *  a i + l . . ,  aj, and 
claim ii: there exist 3' and ~ such that S ~ *  3,A~ and 3, ~ *  a ~ . . .  al, and 
claim iii: A--> a/3' for all/3' c expand(~3). 

Proof. 
Only-ff direction: We must show that, if [A, a,/3, i] is added to / j ,  then 

the claims hold. We prove the three claims by induction on the number of 
items that have been added to Io . . . . .  /~ before [A, a,/3,  ~/] is added to / j .  
In the following analysis, each claim is handled in a separate numbered 
paragraph and i.h. refers to the induction hypotheses. 

Case 1: The Base Case 
The item [A, a, /3,  i] is added to /j before any other items have been 

added. This can arise only from Rule 1. Thus, i = j = 0, A = S, and a = A. 

(i) ~ ~ *  A 
(ii) S ~ *  ~A~, where 3' = ~ = A 
(iii) S---->/3' for all/3' c expand(~3), since S--->to/3. 

The claims therefore hold for the base case. 
The inductive step comprises cases 2 through 6, depending on the rule 

used to introduce the item to the list. 

Case 2: Introduction by Rule 2 
The item [A, ~,/3, i] was added to /j by Rule 2. Thus, i = j = 0 and 
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there exist a '  and B such that a = a 'B ,  [B, 2/, 0, 0] 6 Io, [A, a ' ,  {B} U 
fl, 0]~ Io, and B ~ / 3 .  

(i) By i.h., a ' ~ * A ,  - y ~ * A ,  and B--~y .  Thus, a = a ' B ~  

(ii) By i.h., S ~ *  2/'A6', where 2/' ~ *  A. 

(iii) Again by i.h., A---~ od/T, where /3' c expand({B} U/3), so that, 
since BY#~3, A---~ a 'B/3"= a/3", where /3" ~ expand(/3) by 
Corollary 6. 

Case 3: Induction by Rule 3 
The item [A, A,/3, 0] was added to Io by Rule 3, so there exist B, 2/, and 

6 such that [B, % {A} U 6, 0] is on Io and A :fi 6 and A--~rD/3. 

(i) o~ ~ *  a i +  1 . . . a] follows trivially, since i = ] = 0 and a = A. 

(ii) By i.h., S ~ ' 3 / B 6 ' ,  2 / '~*A,  2 /~*A,  and B-+/3 '  for all 
/3' E expand({A} U 6). So B---~ A6" for all 6" c expand(6), since 
A ~ 6 and by Corollary 6. Then S ~ *  B6' ~ A6"6'.  

(iii) follows directly from A---~rD/3- 

Case 4: Introduction by Rule 4 
The item [A, c~,/3, i] was added to i t e m / / b y  Rule 4. Thus, there exist a '  

and a such that a = a ' a ,  [A, a ' ,  {a} U/3, i] ~//-x, a = aj, and a ~/3.  

(i) By i.h., a '  ~ *  ai+l • • • aj-1 so a = a 'a  ~ ai+l . . .  aj. 

(ii) By i.h., S =~* 2/A6, where 3 ~ *  a l  . . .  at. 

(iii) A--~ a'/3', where /3' ~ expand({a} U/3), by i.h. So, A ~ a'a/3", 

where /3" e expand(~3), since a fi/3 and by Corollary 6. Thus, 
A - ~  a/3". 

Case 5: Introduction by Rule 5 
The item [A, o~,/3, i] was added to / j  by Rule 5. Thus, there exist a ' ,  6, 

k, and B such that ol = a 'B ,  [B, 3, 0, k] is on/ j ,  [A, a ' ,  {B} U/9, i] is on lk, 
and B ~/3.  

(i) By i.h., a ' ~ *  a i+ l . . ,  ak, B - +  6, and 3 ~ *  ak+ l . . ,  aj. Thus, 
a = a 'B=~a '6=~*  a i+ l . . ,  akak+l . . .  a i = ai+l . . .  a i. 

(ii) By i.h., S =~* 2/A3, where 3 =~* al . . . ai. 

(iii) By i.h., A----~a'/3", where /3"~expand({B}U/3) .  Since B ~ / 3 ,  
A ~ a'B/3', where/3 '  ~ expand(~3) by Corollary 6. 
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Case 6: Introduction by Rule 6 

The item [A, a , /3 ,  i] was added t o / / b y  Rule 6. Thus, i : j, a : A, and 
there exist B, % 8, and k such that [B, 7, {A} tA 8, k] is o n / / ,  A :p 8, and 

A "-'~ ro /3. 

(i) ~ ~ *  A follows trivially, since a = A. 

(ii) By i.h., S ~ *  T'B~', where 3" ~ *  al . . .  a~. Also by i.h., B---> 
y~, where ~ ~ expand({A} tA 8). So, since A :p 8, B ~ 7A~', 
where ~'~expand(8).  Thus, S ~ * 7 ' y A ~ ' 6 ' .  Now, y ~ *  
ak+l . . -  aj by i.h. So, S ~ *  al . . .  ajAX'S'. 

(iii) A ~* /3 '  for a l l /3 '~  expand(~3) follows directly from A-%D/3- 

Thus, the only-if direction is proved for all six cases. 

I| direction: We must show that, if the three claims hold, [A, a , /3 ,  i] 
is added to l i s t / / b y  the algorithm. The proof is by induction on the rank 
p of an instance 5¢ of the claims, where an instance is the septuple 
[a,/3, y, 8, A,  i, j] of elements necessary and sufficient to form a particular 
instance of the claims, and p(5~)- 3-1(5~)+2[j+ 3-2(5~)+ 33(5~)]. Here 
3-1(5~) is the length of a shortest derivation S ~ *  3,A6, 3~2(5~) is the length 
of a shortest derivation 3' ~ *  a l . . .  ai, and 3-3(5 ~) is the length of a shortest 
derivation a ~ *  ai+l . . .  aj. 

The base case - If p(5 ~) = 0, then ~'-1(~ 6~) = ~'-2(~ ,~) ~--- ~'-3(~ -~) ~--- j = 0. Thus, 
a = 7 = ~ = A and A = S. We must therefore show that IS, A,/3, 0] is on 
list Io. This follows immediately from Rule 1, since we are given S-->/3' for 
all/3' ~ expand(~3), so it must be that S-->m/3. But Rule 1 would then add 
the appropriate item to I0. 

The induction step - Let 5¢ be an instance such that p(5 ~) > 0 and let us 
assume that the induction hypothesis holds for all instances of lesser rank. 
Three cases now arise, depending on whether a ends in a terminal or a 
nonterminal or is A. 

C a s e l :  a = a ' a i o r s o m e  a ~  
Since a ~ *  ai+l • • • aj, we conclude that a = aj. Consider the instance 

5~' = [a', {aj} U/3, 7, 8, A, i, j - 1]. Now, a ~/3  and aj ~ a so a] ~/3.  Since 
A--~a'aj/3, ~' is an instance of the claims and is at most of rank 
3-1(5~) + 2[(j - 1) + 3-2(5~) + 3-3(5~)] = p(5~) - 2. Thus, by i.h., [A, a ' ,  {aj} U 
/3, i] is on / / -1  and, by Rule 4, [A, a, /3,  i] is o n / / .  

Case 2: a = a ' B f o r s o m e  B ~ N  
There exists a k, i ~ k < - j ,  such that o ~ ' ~ * a i + l . . ,  ak, and 

B ~ *  ak+l • • • aj. Furthermore, we can conclude from the instance N that 
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A--+ a'B/3. Consider the instance 5¢' = [a ' ,  B/3, 3/, 8, A, i, k]. Its rank is 
3-1(5) + 2[k + J-2(5) + 3-3(5')] and, since k < /  and ~-3(5') < J-3(5), it is of 
lower rank. Therefore, we can conclude that [A, a ' ,  {B} tO/3, i] is on lk. 
Now, let B ~  ~ be the first step in a minimum-length derivation 
B ~ *  a k + l . . ,  a.i and consider the instance 5 '  = [if, 0, 3"a', BS, B,  k, j]. 
Since S ~ *  7.46 ~ 3"a'B/38, we conclude that J-1(5') -< J-1(5) + 1. Let  111 

be the minimum number of steps in a derivation a' ~ *  ai+ 1 . . . ak and n2 
be the minimum number in a derivation B ~ *  ak+1. •. % Then J-3(5) = 
111 + rt2. Since B ~  f f~*  ak+l . . .  aj, we conclude that 3-3(5') = n 2 -  1. 
Now, J-2(o ,~') = ~'-2(~ ,~) -1-" nl. So, 3-2(5') + J-3(5') = ff2(5) + nl + n2 - 1 = 
3-2(5) + 3-3(5) - 1 and 0(5') < 0(5). By i.h., we conclude that [B, (, 0, k] 
is on / i -  Thus, by Rule 2 or 5, we see that [A, a, /3,  i] is on list / j .  

C a s e  3:  a = A 

We conclude that i = j and 3-3(1) = 0. Since p(5) > 0, we conclude that 
$1(5) > 0 because, if ff l(5) = 0, then S = 3"A8 and 3/= A; 3-2(5) = 
ff3(5) = 0 and i = j = 0 and a = A, but this is just the base case. Thus, 
there exist B c N and 3", 3'", 8', 8" such that S ~ *  3 " B 8 ' ~  7 '7"A8"8' ,  
where B--~3""AS", 3, = 3"3'", 8 =  8"8', and 3"B8' is the penultimate 
step of a shortest derivation S ~ * 3 " A &  Consider the instance 5 ' =  
[3'", AS", 3", 8', B, k, j], where k is an integer such that 3" ~ *  a l . . .  a~ 
and 3'" ~ *  a k + l . . .  % Let the lengths of minimum-length derivations of 
these be n l  and n2,  respectively. Then J-2(5')= nl, f f3(5 ' )= n2, and 
ff2(5) = nl + n2. We also note that 3-~(5')= • ( 5 ) -  1. Thus, p ( 5 ' ) =  
p(5) - 1, and, by i.h., [B, 3'", {A} tO 8", k] is on list//. Since B-+  3""A8", we 
conclude that A ~ 8" and Rule 6 would add [A, 0,/3, j] to l ist / / .  [] 

The following trivial corollary of Theorem 7 guarantees the correctness of 
the algorithm. 

T H E O R E M  1. The algorithm accepts an input w iff S ~ *  w. 

APPENDIX II. A PARSE E X T R A C T I O N  ALGORITHM 

The following algorithm extracts a rightmost derivation from the parse 
lists generated by the ID/LP algorithm. The algorithm is presented merely 
for completeness, as its operation is virtually identical to that of Aho and 
Ullman (1972). It assumes that the elements of ID are numbered, and 
builds a list of production numbers corresponding to the production used 
in a rightmost derivation of the input sentence. This list of productions 
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contains the same information as a parse tree. The list is built in the global 
variable 7r, which is initially set to A. It is called with R ([S, a, O, 0], n), 
where [ S, a ,  0, O] is on I , .  

R([A,  f i x . . . / 3 , . ,  O, i], j ) :  

h : =  n u m b e r  of  p r o d u c t i o n  A-- -~D {/31 . . . . .  /3,~}; 

z r : =  h~r; 

k : =  m ;  l : = j ;  

r e p e a t  

if /3k ~ 
t h e n  k : - - k - l ;  l : = l l  

e l se  

f ind  an  i t e m  [/3k, 3', 0, r] o n  Ii f o r  s o m e  r s u c h  t h a t  

[ A , / 3 1 . . . / 3 k  - 1, {/3k, • • • , /3m}, i] is in I,; 
e x e c u t e  R([/3k,  "y, 0, r], l);  

k : = k - 1 ;  / : = r  
until k = 0. 

N O T E S  

* This research was supported by National Science Foundation Grant No. IST-8103550. 
The views and conclusions contained in this document are those of the author and should not 
be interpreted as representative of the official policies, either expressed or implied, of the 
National Science Foundation or the United States government. I am indebted to Chris Culy 
for his meticulous checking of the proofs and for the characterization of the proof of 
Theorem 2. I am also grateful to Stanley Peters, Geoff Pullum, Susan Stucky, Hans 
Uszkoreit, and two anonymous referees for their comments on earlier drafts. 
1 The data are from Stucky (1981). The analysis presented here is for expository purposes 
and is, of course, a grossly simplified distillation of the extensive analysis presented by Stucky. 
2 Another undesirable corollary of the indirect-interpretation method of ID/LP grammar use 
is that, viewed as a mere abbreviation for a context-free grammar, an ID/LP grammar for a 
free-word-order language would induce a much larger grammar than one for a fixed-word- 
order language. The problem is compounded in that the process of linearizing ID rules is 
exponential in rule length, and free-word-order languages tend to have longer rules (flatter 
structure) than fixed-word-order languages. From this would follow the unintuitive predic- 
tion that a processor for a free-word-order language would be manipulating a grammar 
orders of magnitude larger than a processor for a fixed-word-order language. Although 
based on a naive view of psychological reality, these arguments do seem to cast doubt on the 
view that humans would use in any sense a grammar encoding indirectly by expansion. 
3 The implementations of the direct ID/LP parsing algorithm are due to Roger Evans at the 
University of Sussex and Mark David at the University of California at Los Angeles, in 
Prolog and Franz Lisp respectively. 
4 The notation used is modeled on that of Aho and UUman (1972), except that we denote an 
item by [A, a,/3, i] rather than [A----> c¢./3, i] to highlight the fact that in the ID/LP version 
of the algorithm, since a and/3 are a string and a set, respectively, they could not both be on 
the right-hand side of either a yields or a dominates arrow. 
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5 The formal characterization of this statement, which is analogous to that given above for 
Earley's algorithm is found in the statement of Theorem 7 in Appendix I. 
6 "Any process concerning [the symbols of G] can be considered elementary." (Aho and 
Ullman, 1972, p. 326) Thus, given the grammar, the LP check (deciding whether a given 
symbol precedes a given set) can be done in constant time. This can be seen quite clearly by 
noting that, at worst, it could be performed as a table lookup, since there are only finite 
numbers of symbols and sets of symbols. Note that this is so even for the multiset case, since 
the check need be done only on the multiset with duplicates removed, and this can be 
precomputed. 
7 In fact, a stronger theorem can be proved: every context-free grammar is structurally 
equivalent to an ID/LP grammar, that is, it is strongly equivalent up to a renaming of 
nonterminal labels - so that the skeletal tree structure and the frontier are identical though 
the labelings may be different. Stronger still is the fact that the relabeling is such that there 
exists a homomorphism from the ID/LP tree labeling to the CF tree labeling. The proof of 
this stronger theorem is not supplied. 
8 This theorem is also a direct consequence of the existence of two CFG normal forms that 
are weakly equivalent to context-free grammars. Chomsky (1963) discusses modified normal 
grammars, defined as Chomsky-normal-form grammars in which a nonterminal may not 
occur as both a left nonterminal on the right-hand side of a rule and a right nonterminal of a 
(different or same) rule. The ability to define a partial order on the nonterminals of the 
grammar is obvious. Stanley (1965), in a short article providing a correction to some formal 
claims of Chomsky (1963), discusses an even stronger normal form, a-normalized grammars. 
Both articles intimate the existence of, but do not furnish, proofs of the weak equivalence of 
the normal forms to context-free grammars. I am indebted to Stanley Peters for bringing 
these normal forms to my attention. 
9 This also covers the case in which B = C. 
1o Even the requirement that a lexical category X be introduced only under the category 32 
does not affect the existence of such non-ECPO grammars, as can be easily shown. Stricter 
variants of J~ theory may disallow these pathological cases, though the literature has not 
provided any such constraints. 
11 Note tha t the  head feature discussed by Gazdar and Pullum (1982) does not do the work of 
ishead. Ishead is a binary feature that is true of only one filial constituent. All the children 
can possess the feature head. 
12 The proof is modeled directly on the proof of correctness of Earley's algorithm given by 
Aho and Ullman (1972). 
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