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Nonlinear waves, solitary and periodic, are studied exactly in the Pitaevskii-Gross 
equation for the wave function of the condensate of a superfluid. We also study the 
relationship between these two waves and Bogoliubov's phonon, and the energies 
associated with these waves. The creation energy of a solitary wave with amplitude 
A is proportional to A a/z. Solitary waves show interesting behavior on their collision 
due to their localized character. The effect of collision on solitary waves can be 
described by the phase shift. We give a formula of the phase shift on a collision of 
two solitary waves. We further discuss the decay of an arbitrary initial disturbance 
into solitary waves. 

I. INTRODUCTION 

The solitary wave (or soliton) appears to be one of the interesting modes of 
motion in some sorts of nonlinear media, for example, in a low-density plasma, I ~  
an anharmonic crystal, 5 and so on. A solitary wave is a nonlinear and pulselike 
wave and propagates without decay through the media with a velocity which 
depends on its amplitude. Further, in spite of a nonlinear interaction during 
their collisions two solitary waves restore their initial wave shapes at large spatial 
separation; new effects on various properties may be expected which could not 
be found by the usual perturbational considerations. 

We can expect the existence in a superfluid of such solitary waves and of the 
nonlinear waves in general for the following reason. In the linear approximation, 
with respect to the deviation from equilibrium, a wave (a phonon, first sound or 
second sound) propagates with a definite velocity, its wave shape remaining 
unchanged. When the amplitude of the wave is not small the velocity of propaga- 
tion is different for different points in the wave. This results in a steepening of the 
wave and, finally, in its decay. However, in a nonlinear dispersive medium there 
exists another mechanism which competes with the above steepening effect and 
tends to keep the wave shape unchanged. This is a dispersive effect and in our case 
appears as a nonlinear dependence of the dispersion relation on the wave vector. 
Thus the nonlinear wave can exist stably when the two above-mentioned mechan- 
isms balance each other. The nonlinear wave phenomenon occurs commonly in 
nonlinear dispersive media. 
*On leave from Department of PhysiCs, Kyushu University, Fukuoka, Japan. 
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As a first attempt to study such nonlinear waves in a superfluid we examine 
tlae Pitaevskii-Gross (PG) equation 6 for the condensate at absolute zero tempera- 
ture. Although this equation is rather an academic one and has no relation to real 
superfluid helium, this model has in the past provided some qualitative under- 
standing about superfluid helium. In addition we can treat it rigorously, as its 
mathematical structure is simple. 

In Section 2 we write down the PG equation in terms of the density and 
velocity fields. We can apply the reductive perturbation method 7 to the case of a 
wave with small but finite amplitude. Our basic equations are reduced to the 
Korteweg-de Vries (KdV) equation, 8'9 which has historically been shown to 
describe the asymptotic development of a shallow-water wave. 1° The KdV 
equation has two types of stationary solution, that is, the solitary wave and the 
nonlinear periodic wave. We review these perturbational solutions in Section 3 
to show the similarities of our system with others studied previously. However, 
we can solve exactly our basic equations for both types of waves. Our solutions 
and their properties are discussed in Section 4. We also discuss the relationship 
between the present nonlinear waves and Bogoliubov's phonon. The energies 
and the local currents associated with the waves are studied in Section 5. 

In subsequent sections we explain further properties of the solitary wave. 
For this purpose we discuss in Section 6 which quantities are conserved during 
the evolution of the system, and derive two types of conservation law from our 
basic equations. We study the collision of two solitary waves'* in Section 7. By 
means of the conservation laws we can show not only that the solitary waves 
restore their initial wave shapes after the collision but also that the phases of the 
restored waves are shifted by the interaction during the collision. We further 
discuss the conversion of an initial disturbance into solitary waves 3 in Section 8. 
In conclusion we extend the results found from the KdV equation to our system, 
and obtain a few new findings. Some discussion is given in the final section. 

2. BASIC EQUATIONS 

We start from the Pitaevskii-Gross equation 6 

ih Off, t) = - ~ - - - - V 2 ~ /  - ~/~/ "-[- gl0120 (1) 
z m  

where ~,(r, t) is the wave function of the condensate, ~ is the chemical potential 
assumed to be constant, m is the mass of a particle, and g is a repulsive coupling 
constant. Let us restrict ourselves to the case of unidirectional motion and intro- 
duce the density field p(x, t) and the velocity field S(x, t) which are related to 
~b(x, t) by 

Em; 1 0(x, t) = ~ exp i-~ S(x', t) dx' (2) 

Here p and S are real functions. Substituting (2) into (1) and separating the real 
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and imaginary parts from the resulting equations we get 

f xOs(x''t) ~S 2 2~flp - - - T s  dx' + + 

1 2 -2163Pl 2 1~2P fl 

o7 + (ps) = o 

where 

(3) 

(4) 

- h /2m ~ = g /h  

Differentiating (3) with respect to x we find 

63S 63 ( 1  2 I 2 -2IOpI2[I ot2p -la2p)~. 
a t  + ~ s  + 2 ~ p  + ~ p /~x/ - ~-~x~j = 0 (5) 

Equations (4) and (5) are the equations of continuity and acceleration. The chemical 
potential is determined by (3). These three equations construct a set of the basic 
equations of our problem. 

3. PERTURBATIONAL TREATMENT OF NONLINEAR WAVES 

When we apply an infinitesimal disturbance to our system, we find Bogo- 
liubov's phonon as the normal mode of our set of equations (4) and (5). We want 
to know the result of applying a small but finite disturbance to our system. Let us 
expand p(x, t) and S(x, t) in the following forms: 

p(x, 0 = Po + epl(x, t) + ~2p2(x, t) + . . .  
(6) 

S(x, t) = eS~(x, t) + ~2S2(x, t) + . . .  

where Po is a constant and t is a small but finite expansion parameter. We expect 
the existence of waves which propagate with definite velocities in spite of the non- 
linear character of our system, and therefore we transform the space and time 
coordinates to new ones, a that is, 

= d/2(x - vt) 

T = ~3/2t (7) 

where v is a constant velocity to be determined later. Equations (4) and (5) are 
reduced to 

0 63p 
.~P(S - v) = ~ (8) 

OS Op e 2 c~ (1 _2Idol z tOep~ OS 
(9) 
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where the z dependences are now in higher order of e compared to the ~ depend- 
ences. Substituting (6) into the above equations and equating the terms of first 
order in e to zero we get 

63sl 
v - - ~ -  - 2 : ( f l  = 0 

Nontrivial solutions exist only when the velocity v is given by 

v 2 = 2otflp o = g mPO 
Equating the terms of second order in e to zero we get 

~ 1  63S1 
v - P o - ~  = 0 

(10) 

+ ( p l s t )  = ~ - ~ - - -  ; o  - -  

(11) 

(12) 
63St 63S1 0~2 633,01 _ 63S2 63P2 
" ~ z + S " ~  P o - ~  v - ~ - 2 o t f l  

Although these equations involve P2 and $2 we can easily eliminate them because 
of the relation (11), and we find that 

63Sl '~-~ 2 633p163~3 
(vPl + poS1) + PoSI"-~ + v (plS1) - oc = 0 (13) 

This expression together with either of (10) constructs a set of equations for the 
first-order quantities Pl and St. Now we have to set the boundary condition on 
p and S. We choose them in the general forms such that for localized solutions 

P l  ~ 0 (p ~ P0) S 1 ~ Slo  o ~__ 0 for ]~l --+ oo (14) 

and their derivatives also tend to zero, and such that for periodic solutions Pl 
and $1 - $ i o o  are periodic functions. Since we obtain from (10) that 

vpl = po(St - $1oo) (15) 

for both cases, (13) is reduced to 

63St 3 S 63S1 1 63S 1 a 2 633S 1 
63"C -[" 2 1-"~- - -  ~Sloo 63~ 2v 63~3 - 0 (16) 

This is one variation of the Korteweg-de Vries (KdV) equation* which has been 
studied in other nonlinear systems. This equation has two types of stationary 
solution, a One is the solitary wave and the other is the periodic wave. 

*In fact, when we operate another transformation defined by the relations that t/ = 21/3(~ - Slco'Q, 
= -$1®~, and S 1 = $1~o{1 - 2 2/a. 3-  IZ(t/, ~)}, Eq. (16) is reduced to the KdV equation that 

OZ Z az + I a2 I a~z 
a--( + ~ ~s,®l ~ = o 
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Let us first study the single solitary wave. Our solution is given by 

S x ( ~ , ~ ) = S l ® - a v s e c h  2 ~ - u z - O )  (17) 

and therefore 01 is expressed by 

2 0 
p t (~ , z )  = - a s e c h  (~-~ x//-a(~ - uz - O)) (18) 

where u = Silo - ½av, a is a positive constant of integration (a > 0), and 0 is an 
arbitrary phase constant which has the dimension of length. The phase velocity 
of the wave changes from v to v + eu due to the nonlinear effect.* In order to 
complete our solution let us relate Po to the average density of the system n. If 
we assume that the total number of particles and the volume f~ = La of the system 
are fixed (where L and tr are the length and the cross section of the system, respec- 
tively), we find that 

n = 1 -  2h 1 
- -  - - .  Z v / - ~  (19) 
Po mlv[ 

where we neglect the terms of the order of L -2. This expression means that Po 
is larger than n. This relation with (11) determines P0 and v in terms of n, a, and L. 
However, Po can be regarded as n and equivalently Ivl can be replaced by the 
velocity of Bogoliubov's phonon c = ~ as  h/(mlvl) is of the order of the 
healing length r = h / 2 ~  and L has a macroscopic value, that is, 

[2h/mlvlL)] << 1 

Finally, the chemical potential in this case is given by 

= gPo -- my .  eSlo o ~- gn - m c .  eSloo (20) 

The periodic solution is expressed by the Jacobian elliptic functions 11 whose 
modulus k has an arbitrary value between 0 and 1 (0 _< k _< l).t Requiring that 
St is a periodic function around $1~, we get 

where w = $1oo- { ( 2 -  k2)/2- 3 E / 2 K } a c ,  and we have used the simplified 
notation that dn x -- dn(x, k), and K and E are the first and second complete 

*Taniuti  and Yaj ima discussed a special case that u = 0 in Ref. 8. 
t T h e  general solut ion is given by 

where w = S 1~o - {(2 - k2)/2 - (~}av and  a,  0, and ), a re  arb i t rary  constants .  
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elliptic integrals : 

~ 12 dO 
K = K ( k )  = 

.o x / l  - k 2 sin 2 0 

~ n [ 2  

E = E ( k )  = dO x / l  - k 2 sin 2 0 
, , '0 

The density field is given by 

(22) 

(23) 

which describes a perodic wave around the average density n. The wavelength in 
the present case is given by (4~/cx/~)K.  

We have explained the nonlinear stationary waves in our system by reductive 
perturbation in the lowest order. However, as we can find the exact stationary 
solutions, we stop to discuss the details of our system on the basis of the perturba- 
tional solutions. 

4. EXACT STATIONARY SOLUTIONS FOR (4) AND (5) 

Let us choose the boundary condition for a solitary wave so that 

p(x ,  t) ~ Po 
for Ix]--* oo (24) 

s (x ,  t) ~ s oo 

and the derivatives of p and S also vanish up to the second order as Ixl -~ ~ .  
Putting 

p(x ,  t) = ? o F ( x ,  - V t  - O) (25) 

we find from (4) that 

V -  Sao 
S(x ,  t) = V (26) 

F 

Equation (5) is reduced to 

1'2 0 ( 1'2 O F )  ~t2F - ' - - ' ~ F -  ' - - Y  = ~So0 - V)2{F -2 - 1} + v Z { F  - 1} (27) 
ax ( ~x J 

For a simple solitary wave we find 

where 

 2Q2 
A =  v2 - 1 -  (29) 
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The quantity v is defined by (11). Equation (29) determines the width and velocity 
of the solitary wave in terms of the amplitude A. Further, these relations require 
that 

1 _> A > 0 (30) 

We exclude the case A = 0 because this case does not represent the solitary wave. 
If we assume that A is small, our solution is reduced to the one obtained by the 
perturbational treatment in Section 3. 

Our solution has the following interesting properties. Firstly, it is a pulselike 
wave which propagates without decay and so it is called a solitary wave. Secondly, 
the waveshape becomes steep as A becomes large. Thirdly, the phase velocity V 
is determined by the amplitude A and is limited within the range that 

- v x / 1 -  A < V -  S~o -< vw/T-  A 

When the wave has the maximum amplitude (A = 1), it propagates with tke 
velocity S~, that is, it is at rest relative to the fluid. Lastly, the wave is rarefaction 
wave. As we approach the center of the wave, the relative fluid velocity S - Soo 
increases negatively (or positively) in the wave propagating toward the positive 
(or negative) x direction. 

The chemical potential is given by 

Ps = gPo + 1 (  s2 - 2S~o V) (31) 
i m  

which should be compared with that of the uniform flow state with the velocity So, 
that is, 

/~v = gn + 2m 

The density Po is related to n by 

n 4A 
- 1 (32)  

Po QL 

Here the system has the length L ( - L / 2  < x <_ L/2). Again, P0 and v can be 
regarded as n and c, respectively, as discussed in Section 3. 

Next let us study a periodic wave under periodic boundary conditions on p 
and S oscillating around n and S~o, respectively. We can find (25), (26), and (27) 
again where V is replaced by W to avoid confusion. The solution is given by 

where Q is real, F = ElK ,  and 
~2Q2 

A -  ¢2 

(33) 

(34) 
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W -  soo)a = (1 +rA){1-o-r)A}{1-(1-k2-r)A} (35) 
c 

The modulus of the Jacobian elliptic function k is an arbitrary number between 
0 and 1. The amplitude A is again limited within the range 0 < A _ i because of 
(34) and the requirement that the density should be nonnegative. The wavelength 
2 is given by 

4K 4~K 
2 = Q cv/- ~ (36) 

which depends on the amplitude. The variation of p - n over one period is 
described by a wave whose compressed part is rather spread out and flat, and whose 
rarefied part is steep. This periodic wave propagates much faster than the solitary 
wave relative to the fluid, if A, n, and S~o have the same values in both cases, be- 
cause the relative velocity of the former, ] W - S~ol, is larger than that of the latter, 
IV - Sod, for every allowed value of k (Fig. 1). The present chemical potential is 
given by 

1 2 lap = gn + ~m(So~ - 2S~ W)  

+ ½ m c Z A 2 [ { F ( 2  - k ~ - 2r) - ( 1  - F ) ( 1  - k z - F ) }  

- r ( 1  - r ) ( 1  - k 2 - F ) A ]  

This is larger than the chemical potential of the solitary wave given by (31). 

2.0 

0 . 9  

0 0.5 1.0 
A 

Fig. 1. The relative wave velocity {(W - S~)/c} 2 as the function of the 
wave ampli tude A. The quanti ty k(0 < k < 1) is the modulus  of  the 
Jacobian elliptic function. The line k = 0 is the dispersion relation of 
Bogoliubov's phonon,  and  the line k = 1 is that  of the solitary wave if we 
neglect the correction of the order of  1/L. 

(37) 
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Now let us discuss the mutual relations among the present two types of non- 
linear waves and Bogoliubov's phonon. In the limit k - ,  1 we find that (33), (34), 
and  (35) are reduced to (28) and (29) because dn x --, sech x, K --, In (4/~/ - k2), 
E --, 1, and F - ,  0. Further, since 2 --, c~ the wave in this limit is nothing but the 
solitary wave. Next we consider the limit k --, 0. Sincc dn2x --, 1 + (k2/2) cos 2x 
and F --* 1 in this limit, we get that 

p(x, t) = n[1 - ½k2A cos {Q(x - We - 0)}] (38) 

The quantities k2A and Q are now independent parameters because of the arbitrary 
k. Thus the dispersion relation is given by 

boo(Q) = hQW = hcQ~/T + A = h2c2Q 2 + / - ~ - m  ] (39) 

in the case S~ = 0. This is just Bogoliubov's phonon. Hence it is clear that the 
present periodic wave reduces to the solitary wave or to Bogoliubov's phonon in 
the appropriate limits. 

5. ENERGIES AND LOCAL CURRENTS 

Let us discuss the energies associated with a single solitary wave and a 
periodic wave, which are propagating towards the positive x direction, in the 
case S~ = 0. The energy of the system is given by 

~'~ fL/2 ~2 E[A]=-LJ_L/2dXI-g--mm p-I[opl2~X] "4- ½raPS 2 -~- ½gp2] (40) 

where L is the length of the system ( -  L/2 <_ x < L/2). For the case of a single 
solitary wave we find by the use of (26) and (28) that 

f~ 1 2 _ + V2}l Es[A] = -~ .~mpo[v  L - 4-~ {(l IA)t~2 

Using (29) and (32) we can reduce Es to 

E~[a] = E~ + ~ [ a ]  
(41) 

es[A] = L . ~ n m c 2 a 3 1 2  

where E G = [1. (nmc2/2) is the ground-state energy and es is calculated in the 
order of r/L. The quantity e s can be interpreted as the creation energy of one 
solitary wave with an amplitude A, and is proportional to A a12. 

Next we consider the case of one periodic wave. The energy is expressed by 

EpEA] = Eo + AEeEA] 

AEe[A] = llnmc2A2[{~(2 - k2)F - ~1 - k 2) - F 2} (42) 

-½r(1 - r)(1 - k 2 - -  I")A] 
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It is convenient to rewrite (42) in terms of the energy per period of the wave in 
order to compare it with the case of the solitary wave. Since the number of oscil- 
lations in the system is L/A, where 2 is given by (36), we find that 

L 
AE~[A] = ~ . ~  ~[A] 

~e[A] L nmc2A3/2 

× [{(2 - k2)E - ~(1 - k2)r - I rK}  

- ~ E ( 1  - r ) ( 1  - k 2 - F ) A ]  (43)  

Figure 2 shows the forms of the terms in the square bracket of (43) in the cases 
A = 1 and A = 0. The curves for other values of A(0 < A < 1) lie between these 
two curves. The energy ee[A] is naturally reduced to the solitary wave energy 
es[A ] in the limit k -* 1 where E ~ 1, F -* 1, and (1 - k2)K -+ O. In the opposite 
limit k --* 0, ep[A] tends to zero, but we have to take account of the k dependence 
because the amplitude of ' the wave is proportional to k2A in this case. Then we 
find that 

AEe[A] = f~. ½nmc2(½k2A)2(1 + A) 

= Q. ½nm(½k2A) 2 (44) 

1.0 

ss~] 

' ' ' ' I ' ' ' ' 

0.5 

A=I 

A=O 

0 
0 0.5 k 2 1.0 

Fig. 2. The curves ep[A]/es[A] as the function of k 2 in the cases that 
A = 0 and 1. The curves for other values of A between 0 and I run 
between the two curves indicated. The value of ee[A]/es[A] is 0 at 
k = 0 and I at  k = 1 for every value of A. 
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where ho,'(Q) is the energy of Bogoliubov's phonon given by (39). Since the ampli- 
tude of the wave is related to the number of phonons with wave number Q by 

AEe[A ] is rewritten as 

(hQ) 2 . 
(½kZA) 2 = nm--~(Q) NQ 

AEe[ A ] = [1. ~ho~Q)NQ (45) 

This is the familiar expression for the phonon energy contribution. The factor ½ 
comes from the fact that we have considered only the wave propagating towards 
the positive x direction. The zero-point energy is neglected in the present cal- 
culation. 

Finally, we show the local current J associated with the waves. They are 
given by 

J(x, t) = po[Soo - V(1 - F)] (46) 

We find that 

(47) 

for the case of the solitary wave and 

Je = n[S® - AW(dn2{Q(x  - wt - O)} - F)]  (48) 

for the case of the periodic wave. The current .Is is smaller than poSoo for a wave 
propagating towards the positive direction, and larger for a wave in the negative 
direction. The current Je oscillates periodically around nS~o. 

6. CONSERVATION LAWS 

Until now we have only studied the properties of a single wave. One naturally 
asks whether more than two waves can coexist stably or not. Nonlinear periodic 
waves cannot coexist stably since their linear combination does not satisfy our 
basic equations. However, the situation is different for solitary waves. Due to their 
localized character the superposition principle holds asymptotically for solitary 
waves at large spatial separation. Therefore we are interested in studying the 
collision of solitary waves which are asymptotically independent of each other 
initially and discussing the possibility of the conversion of an arbitrary initia! 
disturbance into solitary waves. In subsequent sections we study the simplest 
case of two solitary waves. 

For the above purpose we derive here two types of conservation laws in 
integral form. In order to find them we write the first few differential equations 
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which are derived by making use of (4) and (5): 

~(pS) O { 2 ~ -,IOPl 2 2020] 
+~x pS +~flpZ + ~  p /~x] _ a  ~x2~ = 0  (49) 

- ~ p s  + c,~p ~ + ~ p ~x l  J (50) 
O (1 Sa 1 2 -,[OPl 2 2 02P ~p_xOp Op} 

+ ~ x ~ p  + 2~tflp2S +-~  p I~x) -~t S~x 2 -  Ot -~x =0 

The first type of conservation law includes the familiar cases of density, current, 
and energy conservation : 

I~ = f dx{p(x, t) - po} (51) 

Is = ( dx{S(x, t) - So~} (52) 
, )  

Ios = f dx{pS - poS~o} (53) 

f I ~ 12-l[Ofll21 (54) I~  = dx {pS 2 - pos~) + ~{p2  - pg} + ~ p I ~ l  J 

These quantities are conserved during the evolution of the system. Their common 
feature is their explicit independence of x and t. This means that they tell us nothing 
about  the phases of the waves. As is well known the phases are shifted by the 
interaction during the collision. In order to obtain some information about  the 
phase shift we have to find another type of conservation laws which depends on x 
and/or t explicitly. One such law is given b y  

P = f dxix{C,(x) - a(~)} t{n(~) - n(oo)}] (55) 

if G(x) and H(x) satisfy 

Oa(x) oH(x) 
- - +  - 0  

Ot Ox 

OH(x) OM(x) 
- - +  - -  - 0  

Ot Ox 

that is, if H(x) is the current of G(x) in a general sense and further both H(x) and 
G(x) are locally conserved quantities. As seen from the sequence of our differential 
equations, we can find only one set of such conserved quantities : p and pS. In this 
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case (55) is written by* 

Pp = f dx[x{p - Po} - t{pS - poS~o}] (56) 

Needless to say there remains the possibility that we might be able to construct 
another one depending on x and/or t in a more complicated way. 

7. C O L L I S I O N  OF TWO SOLITARY WAVES 

Hereafter we confine ourselves to discussion of the problems of two solitary 
waves. We assume that in the initial stage there are two solitary waves with different 
amplitudes propagating in the positive x direction. The wave with larger amplitude 
is moving ahead of the one with smaller amplitude and they are widely separated 
so that we can neglect the effect of their overlap. The initial field is expressed by 

F(x,t;At,OI;A2,02) = F(x,t;A~,Ot) + F(x,t;A2,02) - 1 (57) 

where Ax > A2 and Q~ and V~ are related to A i by (29). Some time later the wave 
A2 catches up with the wave At. We want to know what waves we can find after 
their interaction. Zabusky t2 examined this problem in the KdV equation in a 
plasma, and found that two solitary waves are restored. L a x  13 discussed the same 
case analytically and showed that the overlap of the two solitary waves vanishes 
exponentially when their separation becomes large. On the basis of these studies 
we can expect similar behavior in our exact case. So the field at the final stage is 
described by 

¢ t . t t . t ! F(x , t ;Ax ,Ot ,A2 ,02)  = F(x , t ,Al ,0a)  + F(x,t;A'2,0'2) - 1 (59) 

Now the small wave A~ is moving ahead of the large one A'~. Let us use the conser- 
vation laws Ip, lps, and Pp in order to find relations between (At, 0t,  A2,02) and 
(A'~, 0'1, A~, 0~). Neglecting the overlap integrals in lps and Po we get 

+ ~ = w/-~x + ~ (60) 

x/~'~(1 - A'~) + x/A~(1 - A~) = x/A,( l  - At) + x/A2(I - A2) (61) 

,,/~x0] + ~ 0 ~  = .v/-~t0, + .v/~202 (62) 

Remembering that 1 > AI, A2, A't, A~ > 0 we can derive an equation 

A'xA'2 = A1A2 (63) 

*Namiki has found the same type of conservation law as this in the case of the KdV equation (private 
communication). The relation (65) is also derived in his case. 
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from (60) and (61). Thus we find that 

A't = Ai 

A~ = A 2 

and 

(64) 

01 - 0._.___~ _ AAt~2 
(65) 

0 ~  - 02 VAI 
These results tell us that the two resultant waves are never the same ones that we 
found at the initial stage. Their phases are shifted by the interaction. This result 
is just the one that Zabusky found in his computer experiment. It is interesting 
that the solitary wave appears to behave like a particle. 

8. INITIAL VALUE PROBLEM 

Next we treat the decay of an arbitrary initial disturbance into solitary 
waves) As an example let us consider the decay into two waves. We write the 
initial disturbance as 

p(x, O) = po{1 - f(x)} 
(66) 

p(x, O)S(x,O) = Po{S~ - vg(x)} 

where f(x) and g(x) are dimensionless functions.* Our problem is to find under 
what conditions on f(x) and g(x) we can observe two solitary waves after a suffi- 
ciently long time. The final field is expressed by (59). Since Ip, Ips, and Pp are con- 
served during the evolution of the system, we find that 

~/-~1 + x/~22 = ~ dxS(x) - 6 (67) 

I I dx{vg(x) - S~f(x)} - x (68) - + - 

~ 0 ' 1  + ~ 0 ' 2  = --~ f dxxf(x) (69) 

Let us first examine (68). The value of the left-hand side is positive and its maximum 
value is one. Therefore x should lie in the range 1 > x > 0. The curve (68) is 
expressed in Fig. 3. Combining (67) and (68) we can find two solitary waves at the 
final stage in the following cases : for the case 1 > ~: > ½ 

x/'-2{l -I- w/'i - -  /£2}1/2 ~ (~ ~ %/'2{i -- N//'l " -  /£2}I/2 (70) 

and for the case ½ > x > 0 

*According to the equation of continuity (6p/at) ,=o = pov(~gg/Ox). 
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v/'2{1 + 4 1  -- s:2) '/2 >_ & ~ 1 + ~ 2 { 1  + 4 1  -- 4t¢2) '/2 (71) 

1+-"~2{1--~/1-4~2}l/2 > 6 >-~2{1+ V/1-4K2}x/2 (72) 

~2 {1 -- ~ -  41¢2} 1/2 > 6 > x/~{1 -- ~/1 -/~2}1/2 (73) 

The phases of these two waves are related to one another  by (69~ The two waves 
have the same amplitude when 6 is equal to either of the two limits in (70), to 
the upper limit in (71), and to the lower limit in (73~ They propagate with the 
same velocity. However, they should be regarded as different waves, since their 
phase planes are different because of (69)~ This point was overlooked in previous 
work where the phases were not considered. The case (73) includes the corres- 
ponding criterion in the case of the KdV equation which was obtained by 
Berezin and Karpman.  3 They also discussed numerically the decay into up to 
six waves. We do not write down the amplitudes of the resultant solitary waves 

1.0 ! I I . I i , 

0.5 

~.--0.7 

o 
0 0.5 ~ 1.0 

Fig. 3. The curves described by the equation ~ -  A~) 
+ ~  - A~ - x = 0. They are symmetric with respect to the 
line x/~2 = ,v/~x • For x >_ ½ the curve is a closed one, while the 
curve is divided into four parts for x < ½. An initial disturbance 
can convert into two solitary.waves when there exists a cross point 
of the curve and the line ~/A~ + x/~2 - 6 = 0. Here we consider 
that l>A' t  >A~>0.  
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as they are such complicated functions of 6 and x that it is not easy to understand 
their context. The important point is that an initial disturbance can be converted 
into solitary waves under certain conditions. 

9. CONCLUDING REMARKS 

We have studied the solitary wave and the nonlinear periodic wave solutions 
of the Pitaevskii--Gross equation. They are described by the same functional 
forms as those of the KdV equation. The nonlinear periodic wave reduced to the 
solitary wave and to Bogoliubov's phonon in the appropriate limits. This fact 
does not mean that the present periodic waves can describe arbitrary excited 
states which deviate by a large amount from equilibrium, as the superposition 
principle does not hold for them. However, this principle holds asymptotically 
for the solitary waves. This fact together with their properties discussed in 
Sections 7 and 8 suggests that the solitary waves may play an important role in 
irreversible processes. For this reason we consider the solitary wave is of great 
interest. Before we predict its effect on the properties of the system, we have to 
extend our theory to the three-dimensional case. This will be studied in subse- 
quent work. 

We will also study nonlinear wave solutions of the two-fluid hydrodynamic 
equations of superfluid helium. The nonlinear waves will be able to exist stably 
at very low temperatures where the dissipative effects are small. 

We suggest that superfluid helium may be one of the best systems in which 
to study experimentally the present types of nonlinear wave. Up to now there are 
no experimental results for real systems except two which show the propagation 
of the solitary wave in a low-density plasma 14 and in an anharmonic crystal.* 
"Experimental" information is at present obtained from computers. Experiments 
in superfluid helium would promote our understanding of nonlinear waves in 
general and the solitary wave in particular. 
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