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The self-consistent and "conserving" (in particular the total spin is conserved) 
approximation scheme, developed in a previous paper for itinerant ferromagnetism, 
is extended to the region below the phase-transition point. The former general 
condition for the transformation properties of any approximate self-energy part 
with regard to infinitesimal transformations in spin space is applied to the case where 
the transformation is a finite rotation in spin space; these rotations correspond to 
rotations of the direction of the spontaneous magnetization which is fixed here by 
an infinitesimal auxiliary field H. This transformation property of the self-energy 
part ensures that the equations determining the corresponding Green's and correla- 
tion functions are covariant in form with respect to rotations of H. Two examples 
are considered : the "Hartree-Fock" and the "particle-hole T-matrix" approxima- 
tions for the contact interaction or Hubbard model. In the first example the resulting 
susceptibilities are shown to be causal response functions, provided the Stoner 
equation is fulfilled. In the second example the self-energy part and the T matrix 
are discussed for the two cases where H is parallel and perpendicular to the axis of 
spin quantization. In fact, these expressions can be transformed into each other 
by means of the corresponding rotation matrix in spin space. 

1. INTRODUCTION 

In a previous paper 1 a "self-consistent and conserving" approximation 
scheme for itinerant ferromagnetism was developed in analogy to the procedure 
of Baym and Kadanoff. 2 The main difference with regard to the latter work was 
the inclusion of an additional conservation law--the conservation law of the 
total spin of the many-particle system--into the approximation scheme. It turned 
out that this cannot simply be achieved by generalizing the theory of Ref. 2 
because the spin variables have to be treated differently from the space-time 
variables. The fulfillment of the conservation law of the total spin of an itinerant 
ferromagnet led to severe restrictions for the possible approximations of the 
self-energy of the quasiparticles, and in consequence to severe restrictions for the 
possible approximations of the magnetic susceptibility. 

In analogy to the work of Baym and Kadanoff 2 the method of Ref. 1 was 
based upon the equation of motion for the one-particle Green's function and 
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functional derivatives with respect to an external auxiliary potential (called U) 
yielding the appropriate correlation functions. The spin conservation law gave 
rise to a condition [Eq. (8) in Ref. 1] for the transformation properties of any 
approximate expression of the self-energy part with regard to infinitesimal trans- 
formations in spin space. It was shown that any approximate expression of the 
self-energy part given in terms of diagrams of the symmetrized technique of 
Abrikosov et  al. 3 (where the interactions occur via four-point vertices) leads 
automatically to self-consistent and conserving approximations. This in general 
is not the case for approximate expressions given by diagrams of the usual kind 
where the two-body interactions are described by interaction lines. 

In the first part of this paper the general theory of Ref. 1 is extended to the 
region below the phase-transition point where a spontaneous magnetization 
occurs. The general considerations and equations of Ref. 1, in particular those 
regarding the consequences of the conservation law of the total spin, remain valid. 
However, there exists an important difference between the solutions of the general 
equations for the paramagnetic and ferromagnetic regions: in contrast to the 
solution for the paramagnetic region the solution for the ferromagnetic region 
depends on the way lim U ~ 0 is carried out. In the latter case the auxiliary 
potential U is first taken to be the one describing the energy of the magnetic 
moments of the electrons in the presence of a constant magnetic field having the 
required direction of the spontaneous magnetization, and then the amplitude of 
this field is considered to tend to zero. This type of limiting procedure is discussed 
extensively by Mattuck. 4 

The physical meaning of the solution, for instance, of the self-energy part or 
the magnetic susceptibility must not depend on the direction of the spontaneous 
magnetization (given by the direction of the auxiliary infinitesimal field H) with 
respect to the axis of the quantization of the spins of the electrons (the latter axis 
is taken here to be always the z axis). It is just the aforementioned condition for the 
transformation properties of the self-energy part [Eq. (8) of Ref. 1] which guarantees 
that these physical requirements are also satisfied in approximate calculations. 
To fulfill these physical requirements we shall construct in this paper the approx- 
imate self-energy parts by means of the symmetrized diagram technique of 
Abrikosov et  al. 3 

As an example of a self-consistent and conserving approximation scheme the 
Hartree-Fock approximation for the contact interaction and the Hubbard model 
was discussed in Ref. 1. In the second part of this paper the corresponding equations, 
given in Ref. 1 are solved for the ferromagnetic region. The resulting expressions 
for the transverse and longitudinal susceptibilities, ;~(q, co), agree with those which 
have been derived formerly by Kubo et  al. 5 It is shown that at least at zero tem- 
perature these expressions of ;((q, co) have the correct analytic properties in the 
complex co plane which must hold for any causal response function. This is true 
if the magnetization M and the coupling constant V are related by the Stoner 
equation which is just the self-consistency condition of the Hartree-Fock approx- 
imation. For values of the coupling constant V exceeding a certain critical value 
at a given magnetization V~,(M) [where V~r(M ) > Vstoner(M ) always], the Hartree- 
Fock expressions of the susceptibilities have a singularity in the upper half of 
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the complex co plane. Further, the dispersion laws of the two collective modes 
obtained from the transverse and longitudinal susceptibilities are discussed. 

The equations determining the Green's function and susceptibility of the 
ferromagnetic state in the Hartree-Fock approximation can easily be generalized 
to the corresponding ones determining these quantities for the state of a spiral 
spin density wave of wave number, say, Q. In the limit Q ~ 0 the Green's function 
tends to that of the ferromagnetic state having its magnetization directed along 
the x axis ; this Green's function has also off-diagonal components with respect to 
the spin indices. The components of the Fourier transform of the correlation 
function have to be determined from a system of 16 linear algebraic equations 
which can be reduced and solved easily only in the limit Q --* 0. Our approximate 
calculation of the correlation function is a generalization of that given by Fedders 
and Martin 6 ensuring the covariance of the equations with respect to rotations of Q. 

In the third part of this paper the equations of Ref. 1 determining the self- 
energy part for the contact interaction and Hubbard model in the so-called 
"particle-hole T-matrix approximation" are discussed for the ferromagnetic 
region. To give an example of the covariance of this approximation scheme the 
expressions of the T matrix and self-energy part are determined for the two cases 
where the infinitesimal auxiliary field H is directed along the z and x axes. It turns 
out that, in fact, these quantities can be transformed into each other by means of 
the corresponding rotation in spin space. Brinkman and Engelsberg 7 have 
previously derived these expressions of the self-energy part and T matrix in the 
case where the magnetization is parallel to the z axis; then the evaluation of the 
equations determining the T matrix becomes most simple. Johansson 8 has 
looked for the poles of the T matrix in the case where the magnetization is parallel 
to the x axis. From our transformation relation it can be seen immediately that 
the poles coincide in both cases; it follows also that the expressions of the 
"exchange splitting energy" are identical. 

So far the equations determining the correlation function, and thus the 
susceptibility, in the particle-hole T-matrix approximation have not been solved 
for the paramagnetic region, not to speak of the ferromagnetic region. It is 
desirable to persue this problem further because recently there have been extensive 
neutron-scattering experiments on Fe and Ni, 9 in particular in the phase- 
transition region, showing some yet unexplained features. 

2. EXTENSION OF THE APPROXIMATION SCHEME TO T < T c 

The itinerant ferromagnetism is described in second quantization by the 
following Hamiltonian : 

= f ~+(r)ho(r)O,(r) d3r 

+ f ~+(rl)~(r2)V(rl, r2)~(r2)~(rl) d3rl d3r2 (1) 

+ f ~+(rl, Tx)U~p(rl, za ; r2, ~z)~p(r2, z2) d3rl d3r2 dzl dv2 
. )  
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where V is the two-body interaction potential and U is an external auxiliary 
potential. It is always summed over repeated spin variables a, fl, etc. ; a = +($) 
and -(~), and the integrations over the time variables ~1, r2, etc., are always 
taken from zero to T -  1 (T is the temperature). The one-particle Green's function 
G satisfies, then, the following equation of motion : 

f [(G°~(1, 2)) -~ - U~(1, 2)]G~a(2, 1'; U) d2 

= 6(1 - l')6,a + f E~(1, 2)G~a(2, 1'; U) d2 

(2) 

where E is the self-energy part. The arguments 1, 1', 2, etc., denote space and time 
variables. At the end of the calculation the Green's function, the self-energy part, 
and all the other quantities are taken for the limit U ~ 0. Contrary to the solutions 
for the paramagnetic region the limits of these solutions for the ferromagnetic 
region are not unique. This is due to the fact that the direction of the spontaneous 
magnetization is arbitrary for this model of an itinerant ferromagnet. In order 
to obtain a spontaneous magnetization in a certain direction one carries out the 
limiting procedure U--* 0 in two steps. First, U is specialized to describe the 
interactions of the magnetic moments of the particles with a constant homogeneous 
magnetic field H having the required direction of the magnetization; then the 
third part of the Hamiltonian in Eq. (1) becomes equal to 

9 + (r) [ - ½g#~tG~ • H] ~b~(r) d 3 r (3) 

where the components a x, a r, a z of the vector a are the Pauli spin matrices. In 
the second step of the limiting procedure the amplitude of H is let to go to zero. 
In this way one selects one of the infinite number of solutions, i.e., that giving rise 
to a spontaneous magnetization in the direction of H. In all cases where the 
infinitesimal auxiliary field H is not parallel to the z axis the 2 x 2 matrices G~ 
and ERa have off-diagonal elements being different from zero. 

The physical predictions obtained from the solution of the equation of 
motion for the Green's function, Eq. (2), must not depend on the direction of the 
auxiliary field H. That means Eq. (2) has to be covariant in form with respect to 
a rotation of H. Since, according to the form of U~ [that is the term in square 
brackets in Eq. (3)], a rotation of H leads to an equivalent one in spin space one 
concludes that Eq. (2) has also to be covariant in form with respect to the latter 
rotation in spin space. 

In order to fulfill these covariance requirements with respect to rotations 
of the auxiliary field H also in approximate calculations, one chooses an approx- 
imate expression for the self-energy part which satisfies the conditions 1, 2, and 3 
stated in Ref. 1. The first condition says that E~ has to be a functional of G and 
V only ; the dependence on U arises only via G. The third condition is a condition 
for the transformation properties of the approximate self-energy part with respect 
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to infinitesimal transformations in spin space, i.e., 

~pE1, 1'; (6~a - iA~(2))Ga,(2, 2')(6,¢ + iA,¢(2'))] 
(4) 

= (6,~ - iA,~(1))Y.~,[1, 1'; G~¢(2,2')](6,~ + iA,~(I')) 

where A,a(1) is an arbitrary infinitesimal tensor field. For the special case of an 
infinitesimal transformation corresponding to an infinitesimal rotation of H 
the components of the tensor field A,p are infinitesimal constants. In that case 
Eq. (4) can be integrated to yield the transformation relation corresponding to a 

finite rotation of H. In shorthand notation this generalized relation reads as 
follows : 

Y~(GT) = ET(G ) (5) 

where the subscript T means "transformed quantity." Now one can show easily 
by means of the relation in Eq. (5) that indeed the equation of motion for the 
Green's function [Eq. (2)] is covariant in form with respect to a rotation of H. 
It should be stressed that according to our derivation this is true also for the 
equation of motion containing the approximate Green's function and self-energy 
part, provided the latter satisfies the condition (4). 

The so-called two-particle correlation function L is defined by 

6G,~(1, 1') 
L,a~6(1, 2, 1',2') = 6U6a(2',2)lu, o (6) 

The limiting procedure U ~ 0 in Eq. (6) has to be carried out in the same way 
as has been described above. The correlation function L can also be calculated 
from an integral equation, i.e., 

L~ar~(1, 2, 1', 2') = - G~o(1, 2')G~(2, 1') + f G,~(1, 3) 

(7) 
t t 1 , t t t t x G,~(3,1 )F~,K(3, 4,3,4)L~ava(4, 2, 4 , 2  )d2 d3 d4 d4' 

where G is taken for the limit U-+ 0 and the "irreducible-vertex part"  F 1 is 
given by 

F~a~o(1, 2, 1', 2') - fiX,r(1, 1') 
6Gaa(2--~ 251u~0 (8) 

Again the limits U --+ 0 in G of Eq. (7) and on the right-hand side of Eq. (8) have 
to be carried out in the way described above. The correct, and thus also the 
approximate, F * has to satisfy a certain symmetry relation with respect to its 
arguments [see Eq. (7) in Ref. 1]. According to Eq. (8) this leads to a further condi- 
tion for the acceptable approximations of £. This condition is the aforementioned 
condition 2. 

It can be shown that the Eq. (7) for the correlation function L is, like the 
equation of motion for G, covariant in form with respect to a rotation of the 
auxiliary field H which is, as was stated above, equivalent to a certain trans- 
formation in spin space. For the proof one needs a relation between the transformed 
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F 1 and the transformed right-hand side of Eq. (8) which reads as follows (subscript 
T means, again, "transformed quantity") : 

laX(G)] aX(Gr) (9) 
r :l 66 l , -  6a, 

The relation (9) can be derived with the help of the condition in Eq. (5) for the 
transformation property of the approximate expression of the self-energy part. 

In analogy to the procedure described in Ref. 1 a generalized differential 
conservation law can be derived which reads as follows: 

iff~L,p,a(1, 2, 1', 2) + V2 C=,,a(1, 2, 1', 2')12,~2 

{10) 
= - [6(2 - 1)6,6G,~(2, 1') - 6(1' - 2)60~G=~(1, 2)] 

For the paramagnetic region Eq. (10) goes over into Eq. (t0) in Ref. 1 because 
the Green's function then has only equal diagonal components. 

From the correlation function the transverse and longitudinal susceptibilities 
of wave number q and imaginary frequency iv m = i2m~rT (the m's are all integers) 
are obtained by means of the following equations : 

z+(q, iv,,) = FT{L+ _ _ +(1, 1', 1, 1')} 

gT-(q, ivy) = FT{L_+ +_(1, 1', 1, 1')} (11) 

x~Z(q, ivm) = ¼FT{L~a~6(1, 1', 1, l')~r~Ta~a } 

where the abbreviation FT means the Fourier transform with respect to space 
and time variables [compare Eqs. (13) and (14) in Ref. 1]. Notice that below T¢ 
the transverse (superscripts + and T-) and longitudinal (superscripts zz) 
susceptibilities become different. 

In analogy to Ref. 1 it can be shown with the help of Eq. (10) that also the 
approximate dynamical (o9 > 0) susceptibilities are in accordance with the general 
relation : 

f d3r[S~(r, 0), S°(O, 0)] f o r  0~, fl  = -I- 1 - 1Z (12) (Oya~(q 0, o)) 

The conditions stated in Eq. (12) become all important in the vicinity of the phase- 
transition point because then z(q, co) has a critical behavior for small arguments. 
The fulfillment of the conditions in Eq. (12) can be ensured, as follows from the 
foregoing discussion, by choosing at the start an approximate E in accordance 
with Eq. (4), and then calculating F ~ from this Z with the help of Eq. (8), and 
finally solving Eq. (7), containing this approximate F ~, and inserting the resulting 
L into Eq. (11). 

3. THE HARTREE-FOCK A P P R O X I M A T I O N  

In this and the following sections the two-body interaction potential V in 
the Hamiltonian Eq. (1) is specialized to a delta-function potential of strength V, 
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or to the potential of the Hubbard model describing narrow-band ferromagnetism. 
In the latter model only the interactions between electrons hopping into Wannier 
states at the same atom are taken into account. It was shown in Ref. 1 that the 
symmetrized diagram technique of Abrikosov et al. 3 leads automatically to self- 
consistent and conserving approximations. For the model of contact interactions 
this means the contribution of any self-energy diagram constructed from four- 
point vertices F °, given by 

r,°p~o(1, 2, 3, 4) = V ( 6 ~ 6 ~  - 6~6~)6(1  - 2)6(3 - 1)6(2 - 4) (13) 

and dressed Green's functions G satisfies Eq. (4). 
The most simple self-energy diagram containing only one vertex part F ° 

(drawn as a square) yields a contribution 

~HF/" 1 f 0 t HF F,u~a(1, 2, 3, 1 )G~u (3, 2)d3 (14) ~ ~., 1 ' )  = - d2 

According to our approximation scheme described in Section 2 the corresponding 
correlation function L, and thus the susceptibility Z, is obtained by inserting 
Eq. (14) into Eq. (8) and using the resulting F 1 as the kernel in Eq. (7) for L. The 
whole approximation scheme is called the Hartree-Fock approximation. 

The calculations become most easy if the direction of the auxiliary infinitesimal 
field H is chosen along the z direction. Then the Green's function, and accordingly 
the self-energy part, have no off-diagonal components. The Fourier transforms 
of the diagonal components of E become, according to Eq. (14) and the definition 
of the Green's function constants, 

rY+~+(k, i~o.) = V N _ / n  Z~_L(k, i~o.) = V N + / n  (15) 

where co, = (2n + 1)gT, ~ is the volume of the crystal, and N+ denote the 
total numbers of quasi particles having spin up or down, respectively. In the 
following calculations the crystal potential occurring in the one-body part ho 
of the Hamiltonian Eq. (1) is neglected. Then the energies of the quasiparticles of 
momentum k and spin up or down, which are given by the poles of the Fourier 
transforms of the Green's functions containing the self-energy parts in Eq. (15), 
become equal to 

k 2 N-v 
EUV(k) = 2~m + V - - ~  - ~ (16) 

As usual these energies are measured relative to the chemical potential/~. The 
two Fermi spheres corresponding to the numbers N+ of particles have radii 
equal to (at zero temperature) 

k+ = (61r2N +/fl) 1/3 (17) 

The relative magnetization M can be expressed in terms of these radii by means of 

N+ - N_ k3+ - k 3 _ 
M - - - -  (18) 

N+ + N_ k3+ + k 3 
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Fig. I. Solid line: the relative magnetization M, calculated from the 
Hartree-Fock self-consistency condition Eq. (19) (Stoner equation), is 
plotted vs. the reduced coupling constant V [Eq. (20)]. The total ferro- 
magnetic state, M = 1, is reached at V = 41/3. Dashed line: maximum of 
the allowed values of the coupling constant, ~,(M) [from Eq. (27)], for 
the longitudinal Hart ree-Fock susceptibility [Eq. (23)] ; for V > V~, at a 
given M this susceptibility becomes nonanalytic in the upper half of the 
complex frequency plane. The corresponding "critical curve" for the 
transverse susceptibility [Eq. (22)] is identical to the Stoner curve (solid 
line). 

Since the quasi particle energies EriE(k) are measured relative to # their expressions, 
given in Eq. (16), have to vanish at k = k+. Setting the resulting two conditions 
equal and expressing the quantities k+ with the help of the relations (17) and (18) 
in terms of M one finds the well-known Stoner equation (valid at zero tem- 
perature) 

V = (m)-1[(1 + M )  2/3 - (1 - M )  2/3] (19) 

Here the dimensionless coupling constant F is defined by 

V = [2m/(3rc2) 2/3] ( N / ~ )  1/3 (20)  

where N is the total number of electrons. In Fig. 1 the relative magnetization M, 
calculated from the Stoner equation (19) in dependence of V, is plotted vs. this 
dimensionless coupling constant V. 

Inserting now the Hartree-Fock self-energy part, given in Eq. (14), into the 
Eq. (8), one finds for the irreducible vertex part in this approximation 

E l F  = F 0 (21) 

Thus, the kernel F 1 occurring in the Eq. (7) for L has to be approximated by F °. 
Then this equation can easily be solved by Fourier transformation. The corre- 
sponding susceptibilities are obtained with the help of Eq. (11), the results being 
equal to 

Z ° - + 

Z ~ v ( q ,  i V m ) =  1 - V Z  ° _ (22) 

"~V o o 1 Z°+ + Z °  + z Z++Z--  
Z~fv(q, iVm) = ~ 1 - -  V 2 Z  ° +Z ° _ _ (23) 
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In the expressions of Eqs. (22) and (23) the following abbreviations have been used : 

(' d3k nv 
Z°o(q, iVm) = -- T ~ J (-~n)3G,, (k + q, i~o, + ivm)G~(k, io9,) (24) 

Io~n 

The expression for )~F is obtained from that in Eq. (22) by interchanging + and - .  
The expressions of the susceptibilities given in the Eqs. (22)-(24) agree with those 
which have been derived previously by Kubo et al. 5 by means of the random- 
phase approximation in the equation of motion. Now it has been shown that 
the Kubo susceptibility is intimately connected to the Hartree-Fock approxima- 
tion of the self-energy part, given in Eq. (14). 

It is plausible to ask whether or not the self-consistent and conserving approx- 
imation scheme described in Section 2 leads automatically to an approximate 
expression of z(q, co) being an analytic function of 09 in the upper half of the 
complex co plane, as it must be on general theoretical grounds for any causal 
response function. It will be shown in the following that this is indeed so in the 
Hartree-Fock approximation. However, we have not succeeded to give a general 
proof that our self-consistent and conserving approximation leads always to 
causal response functions. Since the functions Z°p(q, o9) are analytic functions in 
the upper half of the complex o9 plane one has to look for zeros of the denominators 
of the expressions in Eqs. (22) and (23). In the appendix it is shown by using an 
idea of Pines and Nozi6res 10 that the following inequalities ensure the analyticity 
of the Hartree-Fock susceptibilities (22) and (23): 

1 - VZ ° _ ( q ,  O) > 0 (25) 

1 - V2;~°+ +(q, 0)Z ° _ _(q, 0) > 0 (26) 

It should be noted that these conditions are valid also for general noninteracting 
particle energies e(k) occurring instead of k2/2m in Eq. (16), and thus in Eqs. 
(22)-(24). 

For  a further examination of the analyticity conditions, stated in Eqs. (25) 
and (26), we specialize to the case of zero temperature and e(k) = k2/2m. Then it 
suffices to examine these inequalities for q = 0 because X°o(q, 0) has a maximum 
at q = 0. It is clear that by increasing V the left-hand sides of Eqs. (25) and (26) 
eventually become zero. The corresponding "critical" values of V are denoted 
by ~ , ;  they depend via k_+ on the magnetization M: ~,  = ~,(M). From Eq. (25) 
one  finds that the critical curve for the transverse susceptibility is identical with 
the Stoner curve shown in Fig. 1, while Eq. (26) yields the relation for the longitu- 
dinal susceptibility : 

~ ,  = ~(1 - M2) - 1/6 (27) 

The resulting critical curve M(V~,) is also shown in Fig. 1. Thus, one finds that 
for both susceptibilities the critical values of the coupling constant (larger values 
of V make these susceptibilities nonanalytic) satisfy at a given M the following 
inequality : 

Vst . . . .  (M) _< ~,(M) (28) 
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Here Vst . . . .  means the value of the coupling constant calculated from the Stoner 
equation (19). Recall that the latter relation makes the Hartree-Fock approxima- 
tion a self-consistent approximation. Thus, the inequality in Eq. (28) says that 
both susceptibilities, given in Eqs. (22) and (23), are causal response functions, 
provided that the Stoner equation is satisfied. 

A pole of the susceptibility x(q, co) on the real axis of the complex co plane, 
denoted by coo(q), corresponds to a collective mode. The expression of the 
transverse susceptibility in Eq. (22) yields the spin wave having the dispersion law 

coo = (2m)-~F(M)q 2 for q << k+ (29) 

where the function F(M)  is monotonically increasing from zero to ½ as M increases 
from 0 to 1 and has a vanishing slope at M = 1. The expression of the longitudinal 
susceptibility in Eq. (23) yields a collective mode of the zero-sound type; we find 
a dispersion law of the form (in the limit M --* 1 this mode vanishes in the con- 
tinuum of the particle-hole excitations) 

co o ~_ m - l k + q  for q << k+ (30) 

Now we turn to the Hartree-Fock approximation for the state of a spiral 
spin-density wave of wave number Q. The auxiliary field is assumed to rotate 
in the x y  plane as z increases according to 

Hx + iHy = He iOz (31) 

This auxiliary field produces a rotating magnetization of amplitude M N / t 2  
behaving in the same way as the auxiliary field in Eq. (31). The Hartree-Fock 
self-consistency condition of E is again given by Eq. (14). This equation, together 
with the equation of motion for G in Eq. (2), yields the following Fourier transforms 
of the components of G of wave number k and frequency ico. : 

1 1 [e(k + Q) - e(k)](g+ 
G HF (k, ico. ; Q) = ~(g + + g_) + ~ A(k, Q) g-) 

G~F(k,  ico.;Q) = 2 2 ~ -  ( ( ,Q))-l(g+ _ g_) (32) 

Here we have used the abbreviations 

g_+(k, ico.; Q) = [ico. - E~F(k, Q)]- '  (33) 

where the quasiparticle energies are given by 

For brevity 
M N / Q  of the spiral spin-density wave and the coupling constant V. It should 
be remarked that in the case where only one energy band is involved such a state 
can be stable only if e(k) is not of the parabolic form. 

EHF(k, Q) = ½[e(k + Q) + e(k)] T- A(k, O) - # (34) 

A(k, Q) = ¼[ak + Q) - e(k)l 2 + i_ -~f f -  j (35) 

we omit the generalized Stoner equation relating the amplitude 
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In the limit Q --* 0 the expressions of the Green's functions in Eq. (32) tend 
to those of the ferromagnetic state having a magnetization M directed along the 
x axis. The "exchange splitting of the bands," given by the difference [En+V(k, O) - 
En_F(k, 0)] of the expressions in Eq. (34), turns out to be equal to the one obtained 
from the quasiparticle energies in Eq. (16), valid when M is directed along the 
z axis ; this must be so because the Hartree-Fock approximation is self-consistent 
in the sense of Section 2 and therefore covariant with respect to rotations of the 
magnetization M. In the limit M ~ 0 the Eq• (32) yields G HF ~ G°(k, io.), 
G HF_ ~ G°(k + Q, io,,), and the off-diagonal components tend to zero• 

In the Hartree-Fock approximation for the spiral spin-density wave the 
kernel F 1 occurring in the integral equation (7) for the correlation function L 
has to be approximated by F °. Fourier transformation of Eq. (7) leads to a system 
of linear algebraic equations for the 16 components L ~ ( q ,  iv,.; Q) of the correla- 
tion function, the coefficients being equal to 

A~a~o(q, iVm, Q) T ~ t" dak G HF( k + q, ion d- iv m HF • = , ~ J ~  ;Q)G,~(k, io.;Q) (36) 
n 

Equations (32)-(36) have been derived previously 11 for the model of an 
antiferromagnetic chain. In the three-dimensional case there are nine different 
types of coefficients A ; therefore, it is not possible to transform the expressions 
for the solutions of the components of L, which are given by Kramer's rule in 
terms of the A's, into simple expressions as is the case in the limit Q ~ 0. 

The calculation of Fedders and Martin 6 for the two-band model of an 
itinerant antiferromagnet differs from the one given above essentially in that they 
have taken into account only that scattering channel of F ° leading to the "ladder 
part"  of L. Thus, their equation for L is not covariant with respect to rotations 
of Q. It is likely that the complete system of equations for the sixteen components 
of the Fourier transform of L will give rise to several collective modes, one being 
the spin wave with a soundlike dispersion law. 6 

4. PARTICLE-HOLE T-MATRIX APPROXIMATION 

The sum of all the contributions of self-energy diagrams containing 1, 2 . . . .  
vertices F ° in a chain yields the expression 

Era(l, 1') = - f T~raa(1, 2, 3, l')Grr(3, 2)d3 d2 (37) 

where the T matrix has to be determined from the integral equation 

2, 3, 4) = o f o , T~pr~(1, F~a,~(1, 2, 3, 4) + F~.,v(1, 2 ,3,  4') 
t , /  

(38) 
T t T I r x Gv~(4, 1 )G~(3, 2 ) T ~ ( 1 , 2 ,  3', 4) dl '  d2' d3' d4' 

Now we specialize U again to describe the energy of the electrons in the presence 
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of an infinitesimal auxiliary field H. Then Eq. (38) for T is covariant in form with 
respect to a rotation of H, as can be shown in an analogous way as has been done 
for Eq. (7) determining L. The Fourier transformation of Eq. (37) yields 

T d3p 
E~,~(k, ice,) = - T ~. f ~2S3_~3T~;~(k - p, ice, - i~,,)Gr~(p, i~,,) (39) 

i~,, d ~zTr~ 

First, H is chosen to be directed along the z axis. Then the matrix G~T~ becomes 
diagonal ; this is true for any approximate Green's function provided Eqs. (2) and 
(4) are satisfied. Equation (38) can be transformed by Fourier transformation into 
a system of linear algebraic equations for the components of T. Then the expres- 
sions of those components of T which are needed to calculate the self-energy 
part according to Eq. (39) turn out to be 

V2~_ _ 
T~+ + + +(q, iv.,) = 1 - V2X+ +Z- - 

(40) 
V 

T~_ _ _ + (q, iv.,) - 
1 - V Z + _  

w h e r e  the superscripts z mean that H is along the z axis and where the X~p are 
equal to 

f. d3k G T 
Z~(q,  iv.,) = - T .~ J (~n)a ~,~,(k + q, ice,, + iv.,)G~p(k, ice,,) (41) 

lo)n 

The expressions of the two other components which are needed in Eq. (39), i.e., 
T L _ _ _  and T z_ + + _,  are obtained from those in Eq. (40) by interchanging + 
and - .  In Fig. 2a the diagrammatic representation of the T matrix in terms of 
the Abrikosov-type diagrams is resolved in terms of usual diagrams containing 
interaction lines: one obtains "ladders" and "strings of bubbles." 

Second, the auxiliary field H is chosen to be directed along the x axis. In 
Fig. 2b the T matrix, given again by a chain of F ° 's, is resolved in terms of usual 
diagrams. One recognizes by comparison of the right-hand sides of a and b in 
Fig. 2 that in the latter case one vertex in each bubble is dressed by a ladder of 
interaction lines. Again Eq. (38) for the T matrix can be solved by means of Fourier 
transformation. However, the solution of the system of linear algebraic equations 
for the 16 components T~ar~(q, iv.,) (the superscript x denotes that H is along the 
x axis) is much more tedious than that for the components T z because now there 
are off-diagonal components of GTa giving rise to many coefficients being different 
from zero. For  brevity we omit the resulting expressions. In this way Johansson 8 
has determined the poles of the components T x. 

One may test the covariance of the T matrix with respect to that rotation 
in spin space corresponding to a rotation of H from the z axis to the x axis. Then, 
the transformation matrix ®~a (which can be obtained by integrating the infini- 
tesimal rotation matrix (,5~,~ - iA~,a), introduced in Section 2) becomes: 

1 1 - 1 1 



Self-Consistent Approximations for Itinerant Ferromagnetism Below the Phase-Transition Point 91 

f 
O o I I 

I I 

= , ' • . . . . . . . . . .  . 0 - - -  , 
) ) t  . . . . . . .  tat 

( a )  

It Ir°t - -  , '  ' " . . . . . . .  0 , ,  , -t- . . . . . . . . . .  

(b) 

Fig. 2. Schematic representation of the T matrix in terms of diagrams of the Abrikosov et al. 3 type 
(left-hand sides) and usual type (right-hand sides) for: (a) magnetization directed along the z axis 
(that is the axis of spin quantization), and (b) magnetization directed along the x axis. Solid lines 
represent matrix Green's functions Gra (the spin indices at the ends of these lines have been omitted); 
in (a) it is diagonal, in (b) it has also off-diagonal components. A box means the undressed four- 
point vertex F ° [Eq. (13)]. A dashed line represents the contact interaction acting only between 
particles having different spin direction. 

In fact, one finds that the components  T x and T z, determined from the corre- 
sponding systems of equations, are related by 

T~r+(q,  iv.,) = O ~ O # , T ~ v ¢ , ( q ,  iv",)E)~ l O ~  1 (43) 

F rom Eq. (43) it follows immediately that the poles of the components  T x are 
identical to those of the components  TL 

The "exchange splitting energy" is given by 

- Z _ _  or Zr+++ r- 2£r+L 

for H directed along the z axis and x axis, respectively. Inserting the expressions 
of T z and G r" or T x and G rx, respectively, into Eq. (39) one finds that the resulting 
two expressions for the exchange splitting energy are identical (the superscripts 
z and x on £ r  and G r denote, of course, the direction of H). Again this result is 
a consequence of the covariance of the particle-hole T-matr ix approximation 
with respect to rotations of H ;  recall that this covariance property is guaranteed 
for any approximat ion constructed in accordance with the conditions 1, 2, and 3 
of Section 2. 

Equations (39)-{41), determining the self-energy part  in the particle-hole 
T-matr ix approximation,  have been given previously by Brinkman and 
Engelsberg. 7 In their explicit evaluation of these equations they inserted, instead 
of the Green 's  function G r containing just this self-energy part  £ r ,  the Har t ree -  
Fock Green 's  functions with energies E~ ~, given in Eq. (16), into Eqs. (39)-(41). 
They have shown that the resulting self-energy parts, denoted here by £+ +(k, o9), 
have a large slope at k = k+ with respect to co at co = 0; this slope diverges like 
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In M as M tends to zero (M is the relative magnetization). This singularity of ~. 
leads to divergencies in the effective mass and the specific heat. In order to illustrate 
the dependence of ~,_+ +_(k, co) on co and M at k = k+_ several curves obtained by 
numerical calculations are shown in Fig. 3. In our numerical calculations only 
that part of ~, arising from the spin-wave part of T ~ [second expression in Eq. (40) 
and that of T5 + +_] has been taken into account; further, the temperature is 
taken to be zero and the Stoner equation [Eq. (19)] has been used to relate the 
magnetization and coupling constant V. 

In order to improve the evaluation of the Eqs. (39)-(41), given by Brinkman 
and Engelsberg 7 and shown in Fig. 3, we assumed that the main contributions to 
the integrals in Eqs. (39) and (41) arise from the immediate vicinities of the Fermi 
surfaces (co = 0, k = k_+ ; we consider here only the case of zero temperature). 
If this assumption is correct one may replace the self-energy parts E r occurring 
in the G r's by two constants that are the values of E r at their respective Fermi 

1.0 

M=0.046 

""'" ".. '\ 0.778 . .  .. ""  

M=0.998 / '~, " ' "  

Fig. 3. Approximate self-energy parts at zero temperature, ~,± ±(k, e~), plotted vs. 09 
for k = k± (Fermi sphere radii) and various values of the relative magnetization M. 
,~ and eJ are measured in units k]/2m. Solid lines: ,~÷+ ; dashed lines: ~ _ _ .  For 
M = 0.998 the curve of ~,+ ÷ is almost identical to the ~o axis. These curves have 
been obtained numerically from the Eqs. (39)-(41), valid for the particle-hole T- 
matrix approximation,  by approximating the G ~, s on the right-hand sides of these 
equations by the Hartree Fock Green's  functions and taking into account only 
the spin-wave part of the T matrix. 
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surfaces. These constants have to be determined self-consistently from Eqs. 
(39)-(41). Then the equilibrium conditions, i.e., 

(2m)-l(k 2 - k2_) = £T__(O~ = O,k = k_) - ZT++ffo = O,k = k+) 

N/fl  = (6n2)-l(k3+ + k 3) 
(44) 

gives a relation between the magnetization M and the coupling constant V 
corresponding to the Stoner equation (19). However, this procedure leads to a 
contradiction to the requirement of the analyticity of the TZ(q, v) in the upper 
half of the complex v plane. One finds for a given M a higher value of the corre- 
sponding V than that following from Eq. (19). In analogy to the investigations of 
the analyticity of the Hartree-Fock susceptibilities in Section 3 it follows that 
the T=pra(q, v), approximated in the way described above, have poles in the upper 
half of the complex v plane. 

From this investigation one might draw the conclusion that any evaluation 
of the system of the T-matrix equations where the self-energy parts on the right- 
hand sides of these equations [Eqs. (39)-(41)] are replaced by constants, as was 
done, for instance, in Ref. 7, are suspect. Thus it seems to be necessary to solve 
the whole set of Eqs. (39)-(41) for the unknowns E r, or G r, and the T-matrix 
self-consistently. 

The next step in the framework of the particle-hole T-matrix approximation 
scheme would be to calculate the correlation function, and thus the susceptibility. 
For this purpose one has to insert into the integral equation, Eq. (7), for L the 
corresponding approximation for the irreducible vertex part F l r .  This is given 
by the expression in Eq. (26) in Ref. 1 containing integrals of products of two 
T matrices. Of course, all G,s occurring in Eq. (7) and Eq. (26) in Ref. 1 become 
Gr,s. However, so far not even the Green's functions G r and the T matrix have 
been calculated in a satisfactory way. 

A P P E N D I X  

In this appendix the existence of zeros of the denominators of the Hartree- 
Fock susceptibilities in Eqs. (22) and (23) is investigated. Performing the sum over 
io~ n one obtains from Eq. (24) 

d3k f[E~(k + q)] -- f[E~(k)] 
Z~(q, iv.,) = j (2n) 3 ~(k )  7 - E ~  + q) + iv., (A1) 

where f denotes the Fermi function. From Eq. (A1) one can easily derive the 
following properties of ;t o with respect to its frequency variable (whenever possible 
the variable q is omitted): 

Im [)~°a(a) + i6)] sgn co _> 0 Z,a(z) = Ze=(-z) (A2) 
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Further, one needs the following statements t° for a function g(z) having the 
property g(z) = g ( - z )  and permitting a spectral representation, i.e., 

g(z) = 2 fo ~ de)'rt co' Imco,2_ g(co' z 2 + i6) (where z = x + iy) 

(A3) 

fo °dco co' Im g(co' + i5) 
Im g(z) = 4 x y  7r (co,2 _ x 2 _ y2)2 + 4 x Z y 2  

These statements are: (a) if Im(g(x + i5)) is positive or negative definite, 
Im (g(z)) can vanish only on the real or imaginary axis of the complex z plane ; 
(b) Im (g(z)) does not change its sign within a quadrant of the complex z plane; 
and (c) g(iy) has an extremum at y = O. 

First, the existence of poles of Zzz(Z) in the upper half of the complex z plane 
is examined ; these poles would be given by the solutions of the following coupled 
equations : 

1 - V 2 R e z ° + ( z )  R e z ° _ ( z )  + V 2 I m z ° + ( z ) I m z ° _ _ ( z )  = 0 (A4) 

Re Z ° +(z) Im Z °_ _(z) + Re ;(o _(z) Im Z ° +(z) = 0 (A5) 

The function Z°~(z) has the properties of g(z) stated above. One may convince 
oneself that all possible solutions z o of Eqs. (A4) and (A5) have to satisfy the 
equations Im (Z+ +(Zo)) = Im (Z--(Zo)) = 0. So the investigation is confined to 
the imaginary axis. Otherwise one is led to a contradiction as can be seen by 
inserting Eq. (A5) into (A4) and using the definiteness (c) of Im (Z,,(z)) .  Since 
Z~,(iY) has a maximum at y = 0 a pole cannot occur in the upper half of the 
complex frequency plane if 

VZZ+ +(q, 0)Z- -(q, 0) < 1 (A6) 

In the special case where T = 0 and e(k) = k e / 2 m  the quantity Z,a(q, 0) has a 
maximum at q = 0. Therefore the critical value of the coupling constant V~r is 
given by 

VcZ m k k_ - 1 = 0  (A7) 
4/~2 + 

where we have used 

m k 
Z_+-+(0,0) = 2~ 2 + 

Taking into account the definitions given in Eqs. (17), (18), and (20), the relation 
in Eq. (27) can easily be derived. 

Instead of examining the occurrence of poles in the transverse susceptibility 
[Eq. (22)] the zeros of an auxiliary function [f(z)]-1 where 

1 1 2 -  V(Z+_ + Z-+) 
. f ( z ) -  1 - Vz+ + 1 - Vz_+ - ( 1  - Vz+_)(1 - Vz_+) (A8) 
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are  invest igated.  Assuming  at  the beginning  tha t  2 - V(Z +_ + Z - + )  # 0 then 
[ f ( z ) ] - a  has  the  p roper t i e s  of  g(z) s ta ted  above.  Just  as before one finds the 
cond i t i on  [ f ( 0 ) ] -  ~ > 0 to  be sufficient to  exclude the poss ib i l i ty  of  poles  in the 
upper  half  plane.  Since this cond i t ion  is equiva lent  to  f (0)  > 0 one finds with 
the he lp  of  the  s y m m e t r y  re la t ion  ~+ _(0) = Z-+(0)  the cri t ical  value of  V: 

1 - V~,Z+_(q, 0) = 0 (A9) 

The same cond i t ion  ensures also tha t  (2 - V(Z+ + + X - - ) )  # 0. F o r  the special  
case where  T = 0 and  e(k) = k2/2m one sees with the he lp  of  the re la t ion  [from 
Eq. (16)] 

k 2_ kZ+ 
EH+F(k) - EH_F(k) - 

2m 2m 

tha t  Eq. (A9) is equiva len t  to 

k2+ k2 6 ~  
2m 2m (k3 - k3-) = 0 (AIO) 

Inser t ing  the  def ini t ions  of  Eqs. (17), (18), and  (20) one ob ta ins  Eq. (19) (the Stoner  
equa t ion)  for V~r. 

R E F E R E N C E S  

1. U. Brandt, W. Pesch, and L. Tewordt, Z. Physik 238, 121 (1970). 
2. G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961); G. Baym, Phys. Rev. 127, 1391 (1962). 
3. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Quantum FieM Theoretical Methods 

in Statistical Physics (Pergamon Press, London, 1965). 
4. R. D. Mattuck, Advan. Phys. 17, 509 (1968). 
5. T. Izyama, D. Kim, and R. Kubo, J. Phys. Soc. Japan 18, 1025 (1963). 
6. P. A. Fedders and P. C. Martin, Phys. Rev. 143, 245 (1966). 
7. W. F. Brinkman and S. Engelsberg, Phys. Rev. 169, 417 (1968). 
8. B. Johansson, J. Phys. C3, 50 (1970). 
9. V. J. Minkiewicz, F. M. Collins, R. Nathans, and G. Shirane, Phys. Rev. 182, 624 (1969). 

10. D. Pines and P. Nozi6res, The Theory of Quantum Liquids, Volume I (W. A. Benjamin, New York, 
1966), p. 206. 

11. B. Johansson and K-F. Berggren, Phys. Rev. 181, 855 (1969). 


