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The electrical resistivity of semimetals in the extreme quantum limit is strongly 
affected by the presence of anomalous charge-density waves at low tempera- 
tures. Anomalous Green's function and perturbation theories of the charge- 
density wave regime are related and extended to calculation of the imaginary 
part of the electron self-energy. The electrical resistivity due to electron-hole 
scattering is calculated. The electron-hole scattering reaches a peak value 
near a scaling temperature Te with a In T decrease at higher temperatures. 
When combined with electron-impurity and electron-phonon scattering 
contributions, the total resistivity behaves in a manner which has been observed 
experimentally in Bi-Sb alloys. 

1. INTRODUCTION 

The term extreme quantum limit has been used extensively to refer 
to semiconductors or semimetals in magnetic fields sufficiently large so 
that he% >> kT, kT¢, where hco c is the Landau level spacing. In this case the 
energy spectrum of the electrons is a quasicontinuous function of a single 
quantum number kz, z LI H. The extreme quantization of the energy depen- 
dence on the remaining quantum numbers means that the dynamics of the 
electron gas may be regarded as quasi-one-dimensional. We will be discussing 
a one-dimensional semimetal with particular regard to the high magnetic 
field regime for bulk solids, although the mathematical model is also 
pertinent to linear molecules or any other quasi-one-dimensional electron 
gas with attractive interactions. For  example, the model we use with equal 
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numbers of electrons and holes displaced in wave-vector space, and with 
only one spin state, is in the absence of an electromagnetic field mathe- 
matically identical to the model of a one-dimensional metal with both 
spins, considered by Bychkov e t  al.  ~ in regard to the possibility of super- 
conductivity in long linear molecules. However, for the most part we will 
discuss semimetals, since in this case electron-hole scattering affects the 
resistivity, and because relevant experimental work has been done for this 
case. 

During the past several years a large body of theoretical work has been 
done on the "excitonic insulator, ''2 a condensate of the electrons of a 
semimetal or semiconductor in the form of an electron crystal in either 
charge or spin density. Paralleling this theory for bulk solids, theories of 
charge-density or spin~lensity waves have been developed for quasi-one- 
dimensional long polyenes? With only one exception to our knowledge, 
the excitonic insulator has not been observed in three-dimensional bulk 
solids, and in particular has not been observed near the condition of zero 
bandgap or band overlap envisaged in the excitonic insulator theory. It 
now appears beyond reasonable doubt that the antiferromagnetic phase of 
chromium is a representation of the three-dimensional excitonic insulator, 4 
however, this is associated with a peculiar and perhaps unique Fermi 
surface topology in which electron and hole sheets are almost perfectly 
"nested." In the ideal nested case, electron and hole sheets are of identical 
shape and a point-to-point correspondence exists according to a single 
translation vector in k space. In this case, anomalous coherent spin or 
charge density waves can occur with maximum amplitude at the Fermi 
energy over the entire Fermi surface. 

As discussed by the author 5 and by Abrikosov, 6 at very large magnetic 
fields the electron crystal phase is more likely to occur than at zero field 
due to the one-dimensional nature of the electron spectrum, where electron 
and hole sheets of a semimetal must be perfectly nested, and because of the 
increased binding energy for the corresponding two-particle problem, 
the exciton. (For arbitrary but attractive interactions, in the infinite magnetic 
field limit the exciton bound state must always occurfl) Recently, experi- 
mental evidence of the quasi-one-dimensional excitonic insulator has been 
obtained by Brandt and Chudinov, 8 and also in Ref. 9 for Bi-Sb alloys in 
extreme quantum limit magnetic fields. The electrical conductivity shows 
anomalous depletion of the electron quasiparticle spectrum at the Fermi 
energy near the zero-bandgap condition, including a region of band overlap 
where the "normal" state would not be a degenerate Fermi liquid. 

It is evidently not possible to calculate the electrical resistivity of a 
semimetal in the extreme quantum limit without including the effects of a 
low-temperature quasicondensate. In Ref. 5 the excitonic insulator in the 
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extreme quantum limit was treated using the Gor 'kov  anomalous Green's 
functions of superconductivity theory, assuming a weak-coupling theory. 
Abrikosov applied the "parquet  algebra" perturbation techniques to a 
one-dimensional model of the semimetal. 6 Near the same critical or scaling 
temperature appearing in the anomalous Green's function theory, the vertex 
function diverges at zero frequency. This divergence, peculiar to the perturba- 
tion theory, can be removed by some renormalization procedure;  however, 
a temperature range of strong coupling near T~ must remain. A similar situa- 
tion occurs for the perturbation theory of the t matrix for electrons in a 
metal with attractive interactions in three dimensions; however, in this 
case, after the renormalization of superconductivity theory the temperature 
region of strong coupling is assumed narrow in accordance with the singular 
nature of the second-order phase transition, as required by the experimental 
results, e.g., the specific heat. In a one-dimensional Fermi liquid, as has been 
discussed extensively in recent years, no phase transition can occur. 1° 
In this case the temperature region of strong coupling must be of con- 
siderable extent. As in the Kondo alloy with magnetic impurities, we expect 
a temperature regime where coupling is strong and where logarithmic 
functions of frequency and temperature enter into the electrical resistivity 
and other effects. In this regime, the equations of Ref. 5 are invalid, e.g., the 
gap equation assuming weak coupling is linear in the interaction. However, 
we will show that when T << T~ the theory becomes weak coupling again, 
as at very high temperatures, and the equations of Ref. 5 are not invalidated 
for this regime. Extending the work by Abrikosov, 6 we calculate the imaginary 
part of the self-energy for electrons or holes in the logarithmic approxima- 
tion and determine the electrical resistivity due to electron-hole scattering. 
The strong-coupling intermediate regime near T~ will be discussed only 
qualitatively, since we do not at present have a mathematical solution for 
the vertex functions or self-energies which is valid in this regime. It will be 
assumed that in one dimension all quantities including the electrical 
resistivity are continuous functions of the temperature. 

2. HIGH-TEMPERATURE PERTURBATION REGIME 

In our model for a one-dimensional metal with only one spin state, 
the bare interaction is taken a s  6 

Hin t = - -  g f @ + (z)~p + (z)~b l(z)~p 2(z) dz (1) 

i.e., an attractive interaction with g positive. ~ l(Z) and ~b2(z ) are the Heisen- 
berg operators for electrons and holes of two different fields, propagating 
in a single dimension z with Fermi velocity + V I.  The apparently artificial 
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notation of two fermion fields for the electron assembly simply eliminates 
the displacement wave vector Q between the two local centers of symmetry 
of two regions in k space characterized by equal but opposite curvature 
of E vs. k near the Fermi energy, i.e., the E vs. k spectrum of the electron 
assembly is "multivalleyed." The wave-vector transform of Hi, t is 

[y,,pa,0(k:, k 2 ; k3, k4)]0 = - g ( 6 ~ 6 ~  - 6~6~)  (2) 

where we have dropped the subscript of k,, and the subscripts c~, fl, 7, 6 
assume values 1 or 2 to denote states of the electron or hole fields. The 
Kroneker delta terms require that the bare interaction act only between 
unlike particles, since the integral of Eq. (1) must vanish if the particles are 
identical, g positive corresponds to the sign of the coulomb interaction. 
The absence of a second spin state corresponds to the high magnetic field 
regime where the Zeeman energy is very large and where only one spin 
state occurs near the Fermi energy. (For a quasi-one-dimensional metal, 
where E vs. kz can be regarded as a single-valley spectrum, the second 
fermion field refers to another spin state as in the linear molecule model of 
Bychkov et al.) 

Before writing the results for dressed vertices obtained in Refs. 1 and 6, 
we will first discuss briefly the origin of the logarithmic functions which 
appear in them. Consider the graph of Fig. 1 representing part of the lowest 
order vertex correction. Using thermal Green's functions for free particles, 
with thermal frequencies 03, = (2n + 1)roT, this contribution is 

g2T  ~ ~ [i03, - el(kf + k) + i~163- : 67(03) 
(On 

,J 

x [2o3 - i03, - ~2(q - k - k~) + ie263-l(dk/2~) (3) 

where el6 and e26 are infinitesimal. The entrance energy is 203 = co 1 + co 2 
and e:(k) = g2(k)  = 8(k) since the electron and hole masses are equal. The 
summation over thermal frequencies can be continued analytically to 
real frequencies using the poles of the Fermi function and the residue 
theorem. Taking q ~ 0 for one of the dominant logarithmic parts of the 
integral (another logarithmic region of integration occurs for q = 2ks), 

67(0) = ( -  g2/4~) I ~ {tanh [e(k)/2T]/[e(k) - co]} dk (4) 
J -oo  

a 

Fig. 1. Par t  of  the  lowest  order  vertex correction.  
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In Refs. 1 and 6 an arbitrary cutoff is imposed at + D with a constant 
density of states through the band. We will retain both the entrance energy 
and finite temperature (which was not done in either of those calculations) 
and use a smooth cutoff according to a Lorentzian density of states function 

n(e) = n(O)D2/(e z + D 2) (5) 

where n(0) = Vy- 1, and D is the half-width of the band, approximately equal 
to the degeneracy energy. With dk  ~ n(e) de the integral can be evaluated 
exactly. 

fie(co) = [ - g Z n ( c o ) / 2 z ]  {Oa[½ + ( D / 2 n T ) ]  - Oa[½ - ( ico /2nr)]}  (6) 

where Oa is the digamma function. Using an approximate expression for 
fhe digamma function in accordance with the logarithmic approximation 
where coefficients near unity are taken equal to unity and constant terms of 
order g2 are dropped, 

6y(co) ~ [-g2n(O)/2r~]  in [D/(ico + ~ T ) l  (7) 

]coL, 7rT << D. The same result is obtained with a flat density of states and 
sharp cutoff when both co and T are retained. The logarithmic functions 
obtained in Refs. 1 and 6 are not dependent on the cutoff procedure as long 
as n(e) falls off rapidly enough at infinity and is analytic in the neighborhood 
of the real axis. When [co[, ~ T  ~ D e -~/g"(°) the lowest order corrections to 
the interaction are equal in magnitude to g. With a similar contribution 
from each higher order term in the parquet perturbation series, the theory 
must enter a strong-coupling regime for arbitrarily small g. 

We will not discuss the various graphs giving dominant logarithmic 
contributions to the vertex corrections in each order g", referring only to 
Refs. 1 and 6. Using the form of Eq. (6) for the logarithmic variable, the 
results for the "symmetric" vertex functions with entrance energies Icoll ~ 
]co2] and exit energies [co'11 ~ Ico~] are 

7~(co) = g2n(O)(x/2Tc)/{1 - [gn(O)/rclx} (8) 
2ky 

~,,~,~(co) = - g / { 1  - [gn(o) /~]x}  

y o (co) = -g{1  - [gn(O)/ZTc]x}/{1 - [gn(O)/~]x} 

The superscripts denote the momentum transfer 0, __+ 2k I from the e fermion 
to the /~ fermion. Here x = {0el½ + (D/2rcT)] - Oe[½ - (ico/2~zT)]}. With 
co = 0, all vertices diverge at 

T~ = (27ED/rc) e-'~/g"~°) (9) 

where ?:E is the Euler constant, 1.78. The denominators of the vertex func- 
tions may be written as In [(co + iTzT)/irtT~]. A pole of the vertex occurs in 



420 E.W.  Fenton 

P 

<2> ct ct 

/3 
Fig. 2. Renormalized self-energy diagram 
summing the dominant self-energy graphs. 

the lower half co plane with co = in(T~ - T)  for T > T~. When this pole 
crosses the real axis into the upper half-plane at T = T~, the electron spectrum 
is unstable if the logarithmic approximation is valid. This is not in fact the 
case since the logarithmic approximation breaks down near T~, as is well 
known in, e.g., the Kondo alloy problem. Viewed as a resonance with 
damping rather than an instability, when T = T~ the resonance energy 
coincides with the Fermi energy where incoming and outgoing states are 
most available. 

We calculate now the imaginary part of the self-energy. Consider the 
diagram of Fig. 2 where the vertices and propagators are dressed. This 
diagram sums all diagrams in the perturbation series for the self-energy 
which can be cut across three lines between each vertex. We can guess 
immediately that this is the dominant contribution to the self-energy 
because opening one internal line to obtain dZ(o9)/do9 yields the graph 
summing the dominant parquet series for the Abrikosov calculation of the 
vertex function. This is expected for the dominant self-energy graph since 
the derivative of the self-energy and the vertex function are related by the 
Ward identity. 11 Closing the third internal line results in integration over k, 
from which we retain the part approximately equal to [ -  in(0)/216[o9 - e(k')] 
sign co, if the self-energy in the dressed propagators is small. With reference 
to our discussion of Fig. 1, at zero temperature the remaining frequency 
integration is of the form 

Z(o9) = [in2(0)/2] sign COlT(co)[ a f In [(co' - Icol)/D] dco' 

,,~ [ -  in(O)~2] (7(o9)) z sign o9 

when [ogl << D. With regard to graphs not included in Fig. 2, it can be verified 
by direct calculation in each order of g~ that graphs such as, e.g., Fig. 3 

/3 /3 

q ~ a 

/3~a 
Fig. 3. A self-energy diagram not included 
in Fig. 2. 
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where internal lines cross, etc., yield powers of the logarithmic variable 
lower than n -  2. In the logarithmic approximation where only highest 
powers of the logarithmic variable are retained in each order, these terms 
can be regarded as negligible. 

Evaluation of Fig. 2 at finite temperature is more difficult since, as 
apparently first discussed by Eliashberg, 12 the analytic continuation of the 
thermal frequencies to real frequency is not simple. Using the Eliashberg 
continuation, we obtain the expression 

do)l do,) 2 f dkl d k  2 Z = ( • ) = - i j  ~n~ ~ ~ -Im Gg=~t(°3l'kt) lm G}et((°2'k2) 

x I m  G~et((_o + (.01 - -  ( / )2 ,  k ~- k 2 - k l )  

x?~(k, k2;k , , k  + kz - kl)y~p(k + k,_ - k l , k l ;  kz,k) 

c% _ com _ ~ _  / tanh - tanh x tanh ~-~ 2-T- 

(10) 

where the total imaginary part for the ~ fermion requires summation over fl, 
i.e., two of the internal lines may be from either the same fermion field or 
from the other fermion field. As is well known, in the usual three-dimension 
calculation this graph is proportional to [092 + (nT)2]/D2.12 For the one- 
dimensional semimetal a dominant region of integration can be found 
where the differences between the frequency arguments (modulus) are 
much less than the frequencies. With Io92[ - (co, col) = A(o, for leo[ << T the 
thermal factors for this logarithmic region become 

zXeoVAa, 2 ~o ] 
lim c o t h x - ~ l ~  s e c h z , /  ~-~] ~ 1 (11) 

Ato--+ 0 

which is the same as would be obtained in the T -- 0 calculation. Consistent 
with the logarithmic approximation where factors near unity are taken as 
unity, we use this factor when [a) I ~ T a n d  when IAgo L ~ ]go1 as well. Taking 
Im Gget(co, k ) ~  - T z • [ ( o -  ~(k)] when the self-energy is small, performing 
the integrations and collecting all factors, ~ve obtain 

Z~(og) = - i n  sign og[n(O)/2n] [17°a(~o)l 2 + [~2~$(0))12] (12) 

The vertices here are the symmetric vertices of Eq. (8) since [o911 ,~ Io921 ~ I~ol 
is required in the dominant region of integration in Eq. (10). Identifying 
the imaginary part of the self-energy with the imaginary part of the diagonal 
t matrix, we see that this result is exactly what would be obtained using the 
optical theorem. 13 
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Both Abrikosov 6 and Bychkov et al. 1 have shown within the logarithmic 
approximation that anomalous quasiaverages occur for the perturbation 
regime which are of the form 

A~ '° ~ a 2kl ~ ate{1 -- b[gn(O)x/~]} -1/'* (13) 

Here x is the same variable as we have used for the vertex functions, and 
the parameters a and b have been included to emphasize that these coefficients 
are arbitrary and undetermined in the logarithmic approximation and, 
moreover, are not necessarily the same for both quasiaverages. The quasi- 
averages are defined by 

f_ f f A~'°(co)= dt [dkdk'/(2zO 2] d zdz ' (T[~ ( z , t ) t p~ ( z ' ,O)J )  
oo  

× e ikz e- ik 'z '  ei~Ott~kk, 

; A2k'(co)= dt [dkdk'/(2zr) 2] dzdz'(T[O,(z, t)~+(z' ,O)]) 
oO 

× e-ikz ei(k'+ 2kl) el,ot3kk, (14) 

For  the semimetal, the annihilation operator for the ~ fermion is charge 
equivalent to the creation operator for the fl fermion. A~ refers to a charge- 
density wave with wave vector Q~, where Q is the displacement between 
the electron and hole distributions as discussed earlier. In the calculation 
by Bychkov et al. the quasiaverages A ° denotes correlation of an electron 
with spin c~ at kz with an electron of opposite spin fi # ~ at - k s .  The second 
quasiaverage A~ ks denotes an Overhauser charge-density wave for either 
semimetal or metal cases, with wave vector in the z direction 2k s. Abrikosov 
has shown for the semimetal with only one spin state, that all other quasi- 
averages which might be associated with, e.g., superconductivity, must 
vanish, and, in addition, that when the electron and hole masses are not 
equal, A a and A 2ks do not vanish for either sign of the bare interaction. 6 
Actually, in the Kroneker delta sense of Eq. (14), all anomalous quasi- 
averages must vanish at finite temperature for a one-dimensional electron 
assembly. 1° However, in a less restricted sense where near T = 0 the 
Kroneker delta is replaced by some highly peaked function, to our knowledge 
there is no "p roo f "  that a damped, anomalous qnasiaverage with finite 
line width cannot occur. The expressions of Eq. (13) diverge at T~, and since 
the magnitude of the anomalous quasiaverage (or the integral over its 
line width) must be finite, the logarithmic approximation breaks down, 
as mentioned earlier. We include this discussion of the anomalous quasi- 
averages in the perturbation regime, however, since in one dimension such 
averages cannot vanish discontinuously as temperature increases at T~, 
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but must become negligible in some asymptotic sense. We impose as a 
physical boundary condition 

AQ(T ,,~ D) ,.~ A2k:(T ~ D) ~, 0 

In this case, since the functional forms of Eq. (13) are more slowly varying 
than the vertex functions or the imaginary part of the self-energy 

AQ(T), AEk:(T) << T when D >> T >> T~ 

In this perturbation regime the energy gap at the Fermi energy, in- 
dicated by the square-root dependence of IAOl 2, 1A2':12 on the frequency, 
can be regarded as negligible and will be ignored when we calculate the 
electrical resistivity of the semimetal for T >> T~. Of course, in contrast to 
the anomalous quasiaverages of superconductivity theory, the charge 
density wave is inert with respect to response to a small static electric field. 

3. L O W  TEMPERATURES 

When Io~l, T << T~, we take as an ansatz the anomalous quasiaverage 
of Ref. 5 and, in addition, a second quasiaverage of the form of A 2k:, which 
was ignored in our earlier paper. As in Ref. 5, the Gor 'kov decoupling scheme 
in the equations of motion for the Heisenberg operators leads to Green's 
functions of the form familiar from superconductivity theory : 

G~(k, o9) = {v~(k)/[co - E(k) + i6]} + {u~(k)/[~ + E(k) - i6]} 

= [o ,  + ~ ( k ) ] / [ , o  ~ - E ~ ( k ) ]  

AQ'°~vO'°tk ~o) ---IA~°'°[2/[co u - E2(k)] 

A2k:F2k:(k CO) = [A2k:12/[¢02 -- EZ(k)] (15) 

2 1 - -  2 where E2(k) = ~2(k) + A 2, IAI 2 = [AQ'°l 2 + IA2~:[ 2, and v~ = u~ = 
½{1 - [e(k)/E(k)]}. For equal electron and hole masses, el(k) = ~2(k) = e(k) 
as discussed earlier, and El l ( k )  = E2z(k ) = E~t3(k ) = E(k). The gap function 
is given by 

IA•'°(k)l 2 = - g r  2 Af'°F~'°(k',ic°.) (16) 
con,k '  

which yields the usual result A~'°(T = 0) ~- 1.7T~. In this weak-coupling 
approximation, [g[ << 1, the quasiaverage A 2k: is zero because the bare 
interaction is zero for scattering by like particles. The gap function of 
Eq. (16) can be represented symbolically by the graph of Fig. 4. Bychkov 
et al. stress that when starting at high temperatures, as T approaches T~ 
graphs of higher order in g such as Fig. 5 must also be considered.1 With 
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Fig. 4. The gap function in the weak- 
coupling approximation. 

internal propagators given by the Go in Eq. (3), these higher order terms are 
comparable to the first-order term when [gn(O)/n] In [iD/(o~ + ircT)] ~ 1. 

Bychkov et al. suggest that for the entire range T < T~, the gap function 
equation (16) is invalid, 1 based on their results for the perturbation regime 
and using the Green's functions for free electrons for the internal propagators 
of, e.g., Fig. 5. For the T << T~ low-temperature regime, we assume that 
anomalous quasiaverages do exist, and in all graphs use the renormalized 
Green's functions of Eq. (15). The results, as will be shown below, are not 
similar to those obtained by Bychkov et al. using the bare propagators 
and cutting off all integrations at a lower limit A. 1 

Consider the imaginary part of the electron self-energy at low tempera- 
tures, which is zero for the theory linear in g: The dominant terms in the 
perturbation expansion are summed as for the high-temperature regime 
(and as for a three-dimensional assembly 12) by the self-energy diagram of 
Fig. 2, and the same analytic continuation of thermal frequencies [Eq. (10)] 
is valid. Consider the dominant region of integration discussed earlier, 
where symmetric vertices were required. The renormalized functions 
d~(k, eJ) are descriptive of a linear combination of two quasiparticles of 

2 2 for T << T~. In this case, in Eq. (10) equal amplitude when u, ~ v~ 

Im GRet(k, o~) = Im ~Ret(k, 09) = --(z/2){6[~o -- E(k)] - 6[~o + E(k)]} 

The symmetric vertices do not depend on the signs of the frequency arguments. 
The integrations over frequency and momenta in Eq. (10) yield a null result 
for this "dominant"  region of integration where the thermal factors are 

G 

F 

Fig. 5. A gap function diagram not 
included in the weak-coupling approxi- 
mation. 
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approximately unity. When T << Tc, there is no dominant region of integra- 
tion in Eq. (10), in contrast to the logarithmic approximation at high temper- 
atures. In this case the diagram of Fig. 2 must be evaluated in a similar 
manner to the three-dimensional calculation by Eliashbergla : 

f de1 d,~26(0) - E 3 q- E 1 - E2) 
2 -sign cosh J ---,--ET 

c o s  c o s  c o s n  

x[X EA1E2] 

- sign 09(1712)/'/(0) e-a/r0([co[ - A) (17) 

where the 0 function is unity when Ic~[ > A and zero otherwise, and 
E i = E(ki). The renormalized quasiparticle energies E(k) have replaced the 
e(k) of the Eliashberg calculation, and the delta function is approximately 
satisfied for the important  part of the integral by I~ol ~ E3. The resulting 
integration is converted to an integration over quasiparticle energy using 
the BCS density of states and is similar to the integral occurring in the 
calculation of ultrasonic attenuation in a bulk superconductor. Physically, 
the result in Eq. (17) means that collisions between quasiparticles are 
exponentially infrequent because the number of excitations across the energy 
gap 2A is exponentially small. 

A similar exponentially small result occurs evaluating, e.g., the vertex 
correction term represented by Fig. 1. In the gap function equation (16), 
in Eq. (17), and in general for T << T~ the bare interaction can be taken as 
the complete interaction. The weak-coupling theory is valid for T << T~, 
and the results of Ref. 5 for that regime are not invalidated by the results 
obtained for the high-temperature perturbation regime in Refs. 1 and 6. 
Similar to the high-temperature regime, however, the anomalous Green's 
function theory becomes invalid as T approaches the strong-coupling 
regime near T~. The low-temperature theory is somewhat more than an 
ansatz, the expression used earlier in this section, since the high-tempera- 
ture perturbation theory indicates that some renormalization procedure 
is required for T << T c, and the renormalization must involve an energy 
gap at the Fermi energy. 

For  a real semimetal complete cancellation of direct and exchange 
interactions between like particles is not expected, and the absence of the 
A 2kl quasiaverage when T << T~ is an artifact of the structureless interaction. 
In a more general model the amplitudes ofA a'° and A 2ks may be comparable 
at T = 0. In the regime T << T~ these amplitudes may be regarded as nearly 
constant. The small temperature dependence can be determined from the 
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gap equation (16), as discussed in Ref. 5; however, in a one-dimensional 
model determination of such small quantities cannot be regarded as accurate 
due to departures from the weak-coupling approximation which increase 
with temperature. 

4. ELECTRICAL RESISTIVITY OF THE SEM1METAL 

The causal electromagnetic linear response function is defined by 

j~(o) = K~(co + ibM(co) (18) 

The electromagnetic response function is given by the current-current 
correlation function according to 

K~(iv) = - e 2 T  ~ (dk/2rO ~ [V(k)G~(k, iw.)F~(k, iw., iw~ - iv)G~(k, ico. iv) 
d con 

- V(k)G~(k, ico.)V(k)G~(k, co.)] 

f iv) /con) ] (19) =- e2T (dk/270 ~ [P~(k,P ico., ico, - - P~(k, 
co n 

where V(k) is the velocity, and PP and P" are paramagnetic and diamagnetic 
parts. The second term in the integrand, the diamagnetic component, is 
obtained from the usual Ne2/m form by using m~ -1 = V2e(k), performing a 
partial integration in k, and then using the Green's function representation 
for the particle number 

N = N 1 = N 2 = T ~ ei~"~Gl,z(k, ico.) = ~ n(k) 
k,o~n k 

N is the dressed electromagnetic vertex. Since the symmetric vertex functions 
do not contain k as an argument, it might be expected that no corrections to 
the electromagnetic vertex occur. However, this is not exactly true since in 
the temperature range where vertex corrections occur, the electron-hole 
vertex does depend on the momentum transfer, as shown in Eq. (8), and 
corrections to the electromagnetic vertex will occur as well. Consistent with 
the parquet calculation of the dressed vertices, the sum of all graphs of the 
electromagnetic vertex in which electron lines do not cross is required, and F 
satisfies the integral equation summing such graphs : 

re(k, ira., ico n - i v )=  V(k) + 1 f (dk,/2=)Dop(ico.)l 2 _ ly~#:(/co,)[ 2] 

x G=(k', ico.)F=(k', ico., ico, - iv)Gp(k', ico, - iv) 
(20) 
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Here the arguments in the integrand are ico, rather than a summation over 
ico',, since, as discussed earlier, in the temperature regime where vertex 
corrections are important the imaginary part of the self-energy is dominated 
by the symmetric vertices, which is also true of the electromagnetic vertex. 

We define the electromagnetic vertex consistent with the logarithmic 
approximation : 

F~(ico., ico. - iv)  = IV I + Im £'~(ico,) f (&(k ) /27c )G~(k ,  ico.) 

x F~(io),, ico, - iv)Gt~(k , leo, - i v ) l  (21) 
A 

where 

Im £;(ico,) = In(0)/2] [Iy°a(ico.)l 2 _ 172~,(ico.)12] (22) 

We will not evaluate F immediately since this requires a knowledge of the 
proper analytic continuation of the summation over thermal frequencies in 
Eq. (19) to real frequencies. We are interested in the dc conductivity defined by 

j(0) = a(co)E((~)[o~=o or j~(0) = lim [K, (co) / ico]E(co)  
a~--* 0 

where the electric field is E(co) = icoA(co).  We require then limo,~ o K,(co) / i co ,  
which can be obtained after the analytic continuation for the self-energy 
graph of Fig. 2 discussed earlier. Analytic continuation of the summation in 
Eq. (19) is complicated by the fact that two cuts of the function occur, the 
cut due to the first Green's function along the real axis, and, for PP, the cut 
from the second Green's function which is displaced from the real axis to 
+ iv. The frequency summation is written as a contour integral in the complex 
plane encompassing the poles of tanhco'/2T at co '= ico,. The contour 
integral is then transformed into an integral of the discontinuities of P along 
the  two cuts. This procedure results in 

lira [K(co)/ ico] = lim [n(O)e2/co] [&(k) /2r~]  do)' tanh (co'/2T) 
~o--* 0 c o c o  m 

x [ P ( k ,  co' + i6,  co' - co - i6)  - P ( k ,  o3' - its, co' - co - its) 

+ P ( k ,  co' + its, co' + o3 + i(5) - P ( k ,  co' - i&  co' + co + its)] 

(23) 

The second and third terms in the square brackets of the integrand do not 
contribute in the limit co ~ 0 due to the fact that the self-energy parts of the 
two Green's functions in the a(k) integrands of Eq. (21) are of the same sign. 
After a change of variable in the first term of Eq. (23), co' ~ co' + co, combining 
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with the fourth term and then differentiating the entire expression which 
results, exclusive of the co-1 factor, the limit is obtained by L'Hospital 's  
rule : 

,:0 ° lim o-,(co) = (Ne2 /2 r  de)' de(k) sech 2 (co'/2T) 

x P~(co' + ia, c o ' -  i6)V; -z (24) 

The order of integration has been reversed from Eq. (23), a procedure which 
can lead to difficulties when the paramagnetic or diamagnetic currents are 
taken individually in the integrand. Here we have reversed the order before 
taking the co ~ 0 limit, and no problems in this regard occur. 

We now require F(co' + i6, c o ' - i 6 )  in Eq. (21). Using the residue 
technique, the integral can be evaluated and the resulting algebraic equation 
solved for F: 

r~(co' + i6, co' - i6) = vy Im Z~(co')/[Im Z~(co') - Im Z;(co')] (25) 

pv(co + i6, co - i~) is obtained directly, substituting in Eq. (19). Performing 
de(k) integration of Eq. (24), we obtain 

a~(O) = (Ne2/mT) de)' sech 2 (CO'/2T)z~(CO') 

z~- 1(o9) = Im 2,(co) - Im X'~(co) 

2k: 2 = n(O)lT~,a,~(co)l 

where 

(26) 

(27) 

using Eqs. (t2) and (22). Not surprisingly, no contribution from the 7°p vertex 
occurs. We have been consistent throughout with the logarithmic calculations 
of the vertex functions and self-energies wherein all momentum values are 
taken as _+ k:, which means that there can be no contribution to the resistivity 
unless a particle is scattered to the opposite Fermi velocity. In Eq. (27) we 
have included only electron-hole scattering, since in this approximation 
two initial momenta (___ k:, +_ ks) may remain the same or be interchanged, 
and with scattering of identical particles the final momenta are indistin- 
guishable from the initial state. This condition arising from the logarithmic 
approximation in one dimension is somewhat more stringent than the usual 
result for three dimensions, that there can be  no electron-electron resistivity 
for equal-mass particles due to conservation of the total momentum (in the 
absence of Umklapp processes). 
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To the accuracy of the logarithmic approximation, the integration in 
Eq. (26) leads to 

tTeh(T ) = a l ( T  ) + o '2(T ) = 2Ne2%h(T)/m (28) 

where Zeh(T ) = z l (T)  = z 2 ( T  ) is given by Eqs. (27) and (8) with co = 0. The 
factor two in Eq. (28) accounts for the two types of charge carriers. If we had 
considered the two-component metal where the indices ,,/3 refer to the spin, 1 
the electrical resistivity must be calculated using a two-component Nambu 
notation for the Green's functions. As might be expected in an electron 
assembly where all collisions must conserve velocity as well as momentum 
(not true for the semimetal where, regarding all charge carriers as electrons, 
one component  can be regarded as having the reverse mass of the other), the 
electrical resistivity resulting from this procedure is zero. 

In contrast to the T 2 "electron-electron" resistivity of bulk solids, the 
electron-hole resistivity in one dimension increases with decreasing tempera- 
ture for T >> T~. Near T~ neither the perturbation nor anomalous Green's 
function theories for the self-energies are valid. When T << T c the typical 
self-energies are proportional to the number of quasiparticle excitations, 
which results in a factor which cancels N(T)  in a¢h(T). Near T = 0 the vertices 
are given by the bare interaction of Eq. (2). As the temperature increases, 
7(T) increases toward the strong-coupling regime near To. At low tempera- 
tures, 0 << T << T~, where N(T)~ e -a/r, the electron-hole resistivity is given 
by 

Peh OC 17(T)I 2 (29) 

which increases with T. For  T~ << T << D, the electron-hole resistivity is 
given by 

Peh = [mn(O)gZ/2Ne2] { 1 - ~n(O)/~z] In (D/~zT)} - 2 (30) 

which decreases with increasing T. Since, as stated in the introduction, we 
assume all physical variables to be continuous in the temperature, the electron- 
hole resistivity reaches a smooth maximum in the strong-coupling regime 
near T c intermediate to the temperature ranges of Eqs. (29) and (30). Near 
T = 0, the total resistance is dominated by impurity scattering in one 
dimension as in three dimensions, since 9 Zimp(T)otT 1/2. Apart from the 
electron-impurity scattering, the term i6 in the argument of the causal 
response function of Eq. (18) ensures that the charge-density wave regime of 
the semimetal is an insulator when N(T)  ~ 0 as T ~ 0. At sufficiently high 
temperatures, scattering by phonons contributes a term in the resistivity 
proportional to T ~, which saturates to a constant value when T ~ T s ~ D, 
the degeneracy energy. 9 In Figs. 6 and 7 we illustrate qualitatively the 
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temperature dependence of the total resistivity for the one-dimensional 
semimetal model considered here. 

5. DISCUSSION 

There is some question as to whether a model theory of a one-dimen- 
sional semimetal is descriptive of a semimetal in the high magnetic field, 
extreme quantum limit. No problem exists for the logarithmic approximation, 
where integrations over the harmonic oscillator functions of the transverse 
coordinates contribute factors of order unity in each order of g~. Since 
contributions to each order which are of lower power in the logarithmic 
variable than the dominant term also contribute such factors, which in the 
logarithmic approximation are taken as unity, qualitatively no new errors 
have been introduced by neglecting the transverse coordinates. A more 
fundamental question concerns the possibility of a phase transition in the 
high magnetic field regime, which cannot occur in the one-dimensional 
model. (Abrikosov has suggested that the poles in the vertex functions of the 
logarithmic approximation do indicate a phase transition in the high-field 
regime, but not in one dimension. 14) A similar question occurs for the 
relation of one-dimensional theories to physical systems in partially finite 
geometry, i.e., physical specimens with two microscopic dimensions and the 
remaining dimension macroscopic. 15 The experimental results on fine 
superconductor wires show that for this case 16 the absence of a phase 
transition is not peculiar to the one-dimensional model. Although the 
opposite could be true for the high-field case, it appears that the absence of a 
phase transition is directly attributable to the extreme quantization of energy 
levels in quantum numbers related to transverse coordinates, and that the 
extreme quantum limit is qualitatively the same whatever the nature of the 
agent responsible for that quantization, i.e., no phase transition occurs. 

Construction of a mathematical solution for the intermediate tempera- 
ture range near T~ will probably not be simple to achieve, since this problem 
is similar in magnitude to the difficult regime near T k for the Kondo alloy. 
By analogy with the Kondo problem, it might be expected that an integral 
equation solution exact to the Gor'kov (Nagaoka) decoupling procedure 
would be possible. If this is true, the anomalous Green's functions of Eq. (15) 
must be generalized so that for finite temperature the constraint k = k' in 
Eq. (14) is abandoned. At finite temperatures, in a one-dimensional electron 
assembly, the anomalous correlations are undoubtedly damped and have 
finite line widths. 

The behavior of the electrical resistivity in Fig. 6 is similar to that 
observed for Bi-Sb alloys in high magnetic fields, e.g., the regime near 50 kG 
of Figs. 8 and 9 in Ref. 9. In particular, the electrical resistivity proceeds 
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Fig. 6. Total resistivity vs. reduced temperature when "Clmp(Wc)<< "~eh(Tc): (1) charge- 
density wave regime where p ~ P~mp(T) ~ ¼Z~m~(T)N-1 eA/T; (2) intermediate-tempera- 
ture range where strong-coupling occurs; (3) T~ << T << D regime where Peh(T) is given 
by Eq. (30) ; (4) high-temperature regime where, in addit ion to peh(T) and PI,,p(T), electron- 
phonon scattering contributes a term proport ional  to T 1. 

continuously from semimetal to "semiconductor" temperature dependence 
as the temperature is lowered. Similar measurements by N. B. Brandt and 
associates have usually been confined to only one or two temperatures, 17 
with the magnetic field sweeping very rapidly in a pulse-field apparatus. 
However, Fig. 17 of Ref. 17 shows quite definitely that the boundary between 
semimetal and apparently semiconductor regions is defined by a critical 
value (H /T)c ,  rather than by some critical field H c. Brandt and Svistova have 
suggested for this figure that the band overlap (which has been increasing at 
low fields) vanishes at He, and bandgaps increasing with H occur at higher 
fields. 17 There can be no appreciable dependence of H~ on temperature in 
this mechanism of the "normal" band structure. On the other hand, since 
the band overlap is approximately proportional to field at lower fields, 
D = a l l ,  these results are consistent with Fig. 6 (or perhaps Fig. 7). The 
scaled temperature decreases a,s D increases with H, and in this case beyond 
a field given by (T /aH)c  = (T/D)~ ,~ e -'ug"(°), the charge~lensity wave 
regime occurs where the electrical resistivitydisplays a semiconductor-type 
dependence. To confirm this interpretation, detailed measurements through 
a range of both temperature and field would be required. 
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Fig. 7. Total resistivity vs. reduced temperature, when %h(T~) << ~irtlp(Tc). In this case a 
peak in the resistivity due to peh(T) occurs near T~. On the high-temperature side of this 
peak, regime 3, and before electron-phonon scattering becomes appreciable, the total 
resistivity is described by Eq. (30). 
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