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Abstract. The temporal evolution of ducted waves in coronal loops (represented by smoothed slabs of 
enhanced gas density embedded within a uniform magnetic field) is studied in the framework of cold 
magnetohydrodynamics by means of numerical simulations. The numerical results show that there is an 
energy leakage from the slab, associated with the propagation of wave packets which exhibit periodic, 
quasi-periodic and decay phases. Even for weak slabs the nonlinearity can play a significant role, leading 
to wave breaking and shifted time signatures in comparison to the corresponding signatures of linear waves. 
The quasi-periodic phase possesses the strongest amplitudes in an event, making this phase the most 
significant for observations. 

I. Introduction 

Impulsively generated coronal linear pulsations were first discussed from a theoretical 
standpoint by Roberts, Edwin, and Benz (1983, 1984). Subsequently, Ren-Yang et aL 

(1990) and Qi-Jun et al. (t990) have provided examples of events with characteristic 
second-order time scales which possess many of the features predicted by the theory in 
Roberts, Edwin, and Benz (1984). Pulsations and oscillations observed by Tapping 
(1978), Harrison (1987), and Pasachoff (1990) would also seem to admit of interpre- 
tations in terms of magnetohydrodynamic waves (see the review by Edwin, 1992). 
Added to this is the long history of short period (1 s) pulsations detected in radio events 
(Krfiger, 1979; Aschwanden, 1987) and there are similar short period oscillations 
reported in microwaves and hard X-rays (Takakura et al., 1983; Kane et al., 1983). 

The theory developed in Roberts, Edwin, and Benz (1984) shows that when a linear 
disturbance is impulsively excited within a high gas density, low Alfvrn speed region, 
such as provided by a coronal loop, then fast MHD waves are guided by the structure 
and exhibit three phases. At a given observation location far from the impulsive source, 
the passage of a fast MHD wave results in first the occurrence of a small amplitude 
regular oscillations (the periodic phase of the event). Then, after a while, the periodic 
phase gives way to larger amplitude, more rapid pulsations (the quasi-periodic phase). 
Finally, the quasi-periodic gives way to a decay phase as the wave packet created by 
the impulsive source passes beyond the observation location. The time scales and 
durations of these phases are predicted by the linear theory of Roberts, Edwin, and Benz 
(see also Murawski and Roberts, 1993b, Paper II) and thus they are valid for small 
amplitude perturbations. 
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In this paper we consider numerically the case of a smoothed density profile. We 
investigate the time scales of a ducted fast magnetosonic waves in a low-fl plasma, and 
determine how leakage from the duct takes place as the nonlinear wave adjusts to its 
natural configuration. We explore how the time scales depend on amplitude and the 
initial location of the disturbance. 

2. Mathematical Model 

A coronal loop is modelled by a cold slab of plasma with gas density profile p = po(X)  

that extends indifinitely in the y - z plane, has width 2a in the x-direction and has the 
z-axis as its central axis. The slab is almost uniform throughout the x-direction except 
for a narrow transition region representing the smeared boundary of the slab. See 
Murawski and Roberts (1993a, Paper I). The slab density is Po in the centre and Pe in 
the far environment. Specifically, we take 

f Po , 
Po(x) = 

lOe + (Po/Pe  - 1 ) p e / c ° s h l 4 (  x - a ) ,  

Ixl ~a~  
(2.1) 

x ~ a .  

A uniform magnetic field B o lies in the z-direction. 
Consider nonlinear oscillations of density p, vector magnetic potential A = [0, A, 0], 

with B = 7 x A, and velocity V = [u, 0, w]. Normalizing p by Po, V by V A (the internal 
Alfv6n speed), x and z by a, A by B o a ,  the cold plasma equations can be written 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

p, + (puL + (pW)z : o ,  

u t + uu  x + wu  Z = - p - l ( A x x  + A z z ) A  x ,  

w t + u w  x + w w  z = - p - l ( A x x  + A z z ) A  z ,  

A t = - ( w A  Z + U A x ) .  

These equations form the subject of our numerical analysis presented in the next section. 

3. Numerical Method and Results 

The numerical code utilizes the fast Fourier transform method in space and the modified 
Euler method in time: 

A t  
g* = gn + - -  G n , (3. la) 

2 

gn+l = gn + A t G *  , (3.1b) 

where the system of Equations (2.2)-(2.5) cast in the form 

gt = G ( g ,  gx ,  gz ,  gxx ,  g z z ) .  (3.2) 
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The space derivatives are computed spectrally, e.g., g~ = F- lirnFgn, where F and F -  

denote Fourier and inverse Fourier operators, and i and m are the imaginary unit and 

the Fourier mode number, respectively. The nonlinear terms are integrated in a configu- 
ration space. The advantage of the fast Fourier transform method is ease of coding and 
high accuracy. However, a disadvantage of the method is the periodicity imposed on 
the solutions. A similar method was used by Murawski and Edwin (1992) to solve the 

Zakharov-Kuzne tsov  equation and Murawski and Roberts (1993a, b, c, Papers I - I I I )  

for solving M H D  equations. For both the x- and z-directions, 128 Fourier modes were 
used with the simulation region defined by - 32 _< x < 32, - 32 _< z < 32. The temporal 

increment was chosen as small as possible to guarantee numerical accuracy. Standard 
numerical tests have been performed doubling the number of Fourier modes and halving 

the time step until no significant changes appeared. Additionally, numerically obtained 
results were checked by calculation of the integrals of motion, the mass M and the energy 
E: 

M= S f p d x d z ,  E= ; f[p(u2+w2)+A2x+A~]dxdz. 
- ~  - ~  o~ - ~  ( 3 . 3 )  

Errors in the calculations were less than 2~o. 
An initial perturbation of the type 

f(x, z, t = O) = fo (3.4) 
cosh2(x - Xo)cosh2(z - Zo) 

was considered. (Here f represents a variable as p, u, w, A.) To examine numerically 
obtained results we also calculated the energy ratio e in the unperturbed slab (between 
- 1 < x _< 1 and - 32 _ z < 32) defined as follows: 

e ( t  >__ 0 )  
e - - -  , ( 3 . 5 )  

e(t = O) 

where 

3 2  1 

- - 3 2  1 

Although e(t) does not represent the total energy of the wave, because the energy of the 
outskirts is not included, it is closely associated with that wave energy and is convenient 
for computation. 

Roberts, Edwin, and Benz (1984) argue that distinctive signatures, produced by a 
solar flare, local M H D  instability or reconnection events, consist of three phases with 

the largest amplitudes occurring in the quasi-periodic phase (see also Paper II). This 
analysis has been carried out analytically for a mode of the system (Roberts, Edwin, and 

Benz, 1984) or numerically for a combination of modes (Paper II). Both approaches 
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have been made for linear waves and thus they are valid for small amplitude dis- 
turbances. 

Typical gas density profiles of nonlinear waves are shown in Figure 1. The maximum 

of the profile grows in time for all cases we have explored and moves very slowly in time. 

It seems that initially humps accelerate, only to decelerate at later times. This effect is, 
however, very small. A plateau at the hump front and a valley at the trailing edges are 
noticeable at later times (see Figure l(b)). Adjustment of the initial profile is also through 
pushing up very small amplitude impulses along the slab. 

Whereas the gas density adjustment is on very small time scales, the time evolution 

of the perpendicular velocity u is quite dramatic (see Figure 2). At an early stage a valley 
in the middle of the hump is created (see Figure 2(b)) and some ripples start to propagate 

almost symmetrically outside the initial pulse location. This symmetry is progressively 
broken by the inhomogeneity in the Alfv6n speed and in consequence trapped oscil- 

lations in the slab are apparent (see Figure 2(c)). The trapped oscillations propagate 
along the central axis of the slab slower than those outside the slab, and are characterized 

by a hump in the wavefront which is followed by a valley in the rear. 

Consider the energy in the disturbance. Initially, the energy is distributed locally 

having two maxima at x -~ + ~, z = 0 and a minimum at x = z = 0. It then evolves in 
time in a similar way as in the linear case already discussed (Paper II) with some 
discernible ripples corresponding to outwardly propagating waves and trapped oscil- 
lations. A part of the plasma energy remains in the slab. For example, in the case of 

an initial disturbance with Po = 0.1, u o = w o = A o = 0.05 less than 0.01 ~ of the slab 
energy was leaked from the slab (see Figure 3). For smaller amplitude waves (e.g., 

#o = 0.1, u o = w o = A o = 0.025), this percentage is even smaller. For larger amplitude 

perturbations (e.g., Po = Uo = wo = Ao = 0.2) the u profile is asymmetric about the plane 
x = 0 and wave breaking at t < 5 occurs. The transverse velocity u, calculated at the 

point x = 0, z = 8, as a function of time is presented in Figure 4. It is clear that the three 

phases determined by Roberts, Edwin, and Benz (1983, 1984) and Murawski and 
Roberts (t993b, Paper II)  can be distinguished, although the periodic phase is repre- 
sented by a straight horizontal line because perturbations in this phase are so small. The 
largest amplitude quasi-periodic phase lasts for about 8 Alfv6n transit times. Assuming 

that in the corona the Alfvdn speed V A = 103 km s - ~ and the loop width 2a = 1500 km 
we find that this gives a duration of 6 s. Narrower loops give even smaller time scales. 

There is also a time scale, of 1-2 s associated with a single pulse. 
It has been already stated by Roberts, Edwin, and Benz and confirmed numerically 

by Murawski and Roberts (1993b, Paper II) that slabs with smaller density ratio Po/Pe 
lead to shorter duration times of the quasi-periodic phase. Similarly, this time can be 

also modified by smoother density profiles (Edwin and Roberts, 1988 and Paper II). 
It is worthwhile to note that whereas the disturbed magnetic potential A evolves in 

time in a manner that is quite similarly to that in the perpendicular velocity u, the parallel 
velocity w is almost unchanged in time. However, w(x = 0, z = 8) shows very small 
amplitude ripples arising from the initial profile as a consequence of the wave adjust- 
ment. 
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Fig. 1. Impuls ive ly  genera ted  waves  p ropaga t ing  in a s m o o t h e d  s lab (with its c ross-sec t ion  given 

by p o ( x )  = Po for Ixl -< a and  p o ( x )  = Pe + (Po/Pe - l ) P e / c o s h 1 4 (  x - a ) ,  for x >  a), wi th  the gas  densi ty  
ra t io  Po/Pe = 5. (a) The  ini t ial  profile (t = 0); (b) the profile a t  t = 14. The  ini t ial  profile (a) is 

A ( x ,  z ,  t = O) = A o / c o s h 2 ( x  - X o ) / c o s h 2 ( z  - Zo)  with  x o = z o = 0, Po = 0. l ,  u o = w o = A o = 0.05. Time is 
in uni ts  of  the Alfv6n t rans i t  t ime,  a / V A .  Note  the a symmet ry  in z of  the gas  densi ty  profile at  t = 14 

(case (b)). 
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Fig. 2. The evolution of the transverse velocity u for the pulse generated as in Figure 1. (a) The initial profile 
t = 0; (b) the profile at t = 2; (c) the profile at t = 14. The initial u profile splits into outwardly propagating 

waves and trapped oscillations. 
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Fig. 3. The slab energy ratio as a function of time. Some of the initial energy is carried away from the slab 
by outwardly propagating ripples. For smaller amplitude waves there is less energy leaked from the slab. 
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Fig. 4. The  t ime s ignature  of  waves  descr ibed in Figure 2 wi th  p ronounced  quasi -per iodic  phase  las t ing 

from t ~ 4 unt i l  t -~ 12. The  per iodic  phase  is represen ted  here  by the s t ra ight  hor izonta l  l ine for t < 4. In  
fact, very small  ampl i tude  per iodic  osci l la t ions are p resen t  for t < 4. 
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The t ime s ignature  of  waves  init ial ly genera ted  by a pulse  loca ted  at  x o = 3, z o = 0 and of ampl i tude  

Po = 0. t ,  u o = w o = A o = 0.05. Note  the ex tended  quasi -per iodic  phase.  
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Quite different time signatures characterize waves generated by an impulse located 

outside the slab. For  example, the time dependence o fu(x  = 0, z = 8) for a pulse located 

at x = 3, z = 0 shows an extended quasi-periodic phase with a duration time equal to 

about 10 Atfv6n times (Figure 5), which corresponds to about 7 s. The single pulse 

time scale is of  the order of  1 s. 
Two different amplitude pulses (the smaller amplitude pulse leading the larger ampli- 

tude one), initially located at x = ,  z = + 2, are presented in Figure 6. They disperse in 
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Fig. 6. The time development of trapped waves (propagating along the axis x = 0) such that 
f ( x ,  z, t = O) = fo /ch2x/eosh2(z  - 2) + 2fo/coshZx/eh2(z + 2) (where f represents a variable as p, u, w ,A) ,  

with Po = 0.05 and u o = w o = A o = 0.025. Initially there are two pulses with the larger one following the 
smaller one. 

a similar way to a single pulse and undergo nonlinear interactions leading to complicated 

time signatures which depend on the location of  the detection point. One example is 

presented in Figure 7 (which is made by intersecting Figure 6 by a line z = 8) for 

u ( x  = 0, z = 8) which shows that the pulses have not yet undergone an interaction and 

still the smaller pulse is leading the larger one. The quasi-periodic phase lasts for about 

12 Alfv6n times which correspond to 9 s. It contains two maxima associated with two 
pulses propagating along the slab. It is interesting to note that a similar event was 

observed by Kurths and Karlick) (1989). 
In comparison to linear results, the time signatures are shifted due to nonlinearity 

which causes waves with larger amplitude to propagate faster. For  example, in the case 

of  Po = 0.1, u o = Wo = Ao = 0.05 the quasi-periodic phase starts at t ~ 5 (see Figure 4) 
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Fig. 7. The time signature of waves initially generated by the two pulses described in Figure 6. Note the 

complex quasi-periodic phase due to the presence of two pulses. 

instead of at t = 8 as for the linear perturbations (Roberts, Edwin, and Benz, 1984 
and Paper II). 

4. Summary 

Impulsively generated fast waves in a smoothed slab possess distinctive temporal 
signatures consisting of the three phases determined by Roberts, Edwin, and Benz 
(1983, 1984). Numerical simulations, presented here, give a broad agreement with the 
linear analysis but also provide some new features. First of all, for small amplitude 
waves the results are similar to those ones already obtained numerically on the basis 
of the linear theory (Paper II). Waves of larger amplitude propagate faster, due to the 
nonlinear effects, and thus all temporal signatures appear earlier than in the linear 
theory. Time signatures can be complex for waves either excited outside the coronal 
structure or in the case of a multi-series of nonlinearly interacting impulses generated 
at different places and times. The results prove also that large amplitude waves leak 
more energy from a slab than small amplitude waves. 
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