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We present the results of  a series of  experiments on the mobility of  negative ions 
trapped on quantized vortex lines in super)quid helium. Trapped-ion mobilities were 
measured as a function of temperature, pressure, and He 3 concentration. Some of  
the experimental data have been previously reported. 1,2 The temperature and pressure 
dependence of trapped-ion mobilities is qualitatively different than that of  free ions. 
The He 3 data strongly suggest that the negative ion bubble does not become deformed 
on the vortex line. We Present a model for a vortex line having a central "core" of 
normal )quid extending over a distance of several angstroms surrounded by a "tail," 
a region of  excess roton density whose momenta are predominantly aligned opposite 
to the direction of circulation of  the superfluid. This model is used to calculate the 
drag on a negative ion trapped on a vortex line. The model appears to account for 
the experimental results satisfactorily. 

1. I N T R O D U C T I O N  

Quantized vortex lines can be defined as singular lines in superfluid helium 
about  which the circulation is quantized, that is, about  which 

where the Vs is the superfluid velocity, h is Planck's  constant, m is the mass of a 
helium atom, and l is an integer. We need only be concerned here with singly 
quantized lines having I equal 1. When a bucket of helium II is set into rotation, 
solid body rotation, forbidden on quantum-mechanical  grounds, is approximated 
on the average by an almost uniform distribution of vortex lines aligned along the 
axis of ro ta t ion)  

Equation (1) is obviously not by itself sufficient to describe all the properties 
of vortex lines since it leads to unphysically large velocities in the immediate 
vicinity of the vortex line. In an at tempt  to understand this critical region better, 
we have investigated the mobility of negative ions localized along vortex lines as 
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a function of temperature, pressure, and He 3 impurities. These ions are trapped 
on the lines by virtue of a hydrodynamic potential well they experience in the 
vicinity of the lines as discussed by Donnelly and Roberts 4 and Parks and 
Donnelly. s Measurements of trapped-ion mobilities were first made by Douglass 6 
and Domingo and Donnelly. 7 The mobility # and transit time ~ used throughout 
this paper are defined by 

v L 
# - E - E T  ( 2 )  

where E is the electric field, v is the velocity of the ion, and L is the length of the 
drift space. 

2. EXPERIMENTAL APPARATUS AND TECHNIQUES 

The experimental cell and associated electronics are shown in Fig. 1 and a 
scale drawing of the cell is shown in Fig. 2. There are two regions in the cell, the 
drift space between G3 and G4 and the storage space between R and G2. These 
two regions are separated by the gating grids G2 and G3, which are "open"  
during a pulse and "closed" between pulses. Ions are produced at S by means of 
an Am 241 e source of strength 190 #Ci and separated by means of a field between 
S and G1. Negative ions are then pulled towards collector C2 by an appropriate 
potential. The bottom gating grid G2 is always at a lower (less negative) potential 
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Fig. 1. Schematic diagram of the apparatus for measuring trapped-ion mobilities. The voltage conditions 
shown were used to obtain most of the data in Figs. 4-7. 
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than any other electrode in the storage region. Between pulses one has a con- 
tinuous charge density in the storage region that is cut off sharply at G2. During 
a pulse, G2 is raised to a potential above G3, thus "opening" the gate. Simul- 
taneously a pulse applied to C2 improves the pulse characteristics by making 
GI~ R, and C2 equipotential, so that all ions are forced through G2. The ions 
then enter the drift space, and, experiencing the field between G 3  and G4, are 
collected at C1. C1 is shielded from the effects of image charges by means of the 
Frisch grid G4. The field between G2 and G3 is large, so that the transit time 
through the gating grid is small. The pulse begins to record as soon as it crosses 
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Fig. 2. Scale drawing of the experimental cell. 
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G4 and hence transit times are independent of the potential between G4 and C1. 
Accordingly the drift space is defined as the distance between G3 and G4 and is 
4.93 cm. ~ Guard rings on a resistive chain are provided to establish a uniform field 
in the drift region. 

The ion current arriving at C1 is detected with a Keithley model 417 high- 
speed electrometer whose output is a voltage proportional to the input current. 
This output is fed into a Hewlett Packard 2212A voltage-to-frequency converter, 
and the trains of pulses from it are fed into an RIDL 400-channei analyzer operated 
in the t im~sequence-storage mode. Tektronix 161 pulse generators are used to 
provide pulses to G2 and C2, while at the same instance providing a trigger pulse 
to initiate the storage sequence into the analyzer. One storage sequence provides 
the RIDL memory with the time dependence of the current collected at C1. 
This process is repeated many times to improve the signal-to-noise ratio. 

The pulse technique described above allowed us to detect the time of flight of 
free and trapped ions simultaneously. Typical examples of the output of the 
signal aver/tger are shown in Fig. 3 taken with moderate and maximum damping 
of the electrometer. Another example, at a lower temperature where the ion- 
trapping cross section has fallen sharply,+ is shown in Fig. 4. Since arrival times 
were independent of damping within experimental resolution, we generally 
preferred to use maximum damping where possible for reduction of noise. 

A series of subsidiary experiments were conducted to find a reliable pulsing 
technique since, under certain conditions of pulsing, anomalous times of flight 
could be recorded. Care had to be taken to assure a relatively sharp cutoff of 
charge density at G2 between pulses. The conditions used in this experiment 
above I°K are shown on Fig. 1. A slightly modified pulse technique enhancing 
the trapped pulse was used below I°K. One can see from Figs. 3 and 4 that the 
trapped-ion pulse is considerably narrower than the free-ion pulse, because the 
potential aroUnd G2 forms a well and the trapped ions are constrained on the line 
and cannot discharge on the grid wires. An investigation of the field dependence 
of this effect indicated that this bunching introduces negligible uncertainty in the 
transi't time: 

.The experimental cell is contained in a He 3 refrigerator, which, together with 
thel low-ICe, el electronics, is mounted on the University of Oregon 54-in. rotating 
table. Th~ externally pressurized bearing on this table ensures exceptionally 
smooth a~d precise rotations. Speeds up to 60 rpm were used. Electrical com- 
munication to and from the rotating system was accomplished by means of 
mercnry slip:rings. The outer helium bath was pumped on through a concentric 
rotating ~eal. ; 

Thefield between S and G1 was varied to accomplish an order-of-magnitude 
variation ofion current. No effect on free- or trapped-ion transit time was observed, 
indicating that space-charge effects on the electric field were not important. 
The angular velocity was varied by almost a factor of 2 with no observable change 
in transit times, indicating that we are truly dealing with a single vortex line 

tTh i s  dra~_atic decrease in ion-trapping cross section at low temperatures was first reported by Tanner. s 
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phenomenon rather than a collective vortex density effect. It was found that we 
could increase the relative amplitude of the trapped-ion pulse by increasing the 
time interval between pulses. This enhanced charging of the lines in the storage 
region had no effect on transit times. 

Ion transit times could, in general, be resolved to within a few milliseconds. 
When the He 3 refrigerator was used, the additional noise introduced by mechanical 
vibrations necessitated a Krohn-Hi t e  330B bandpass filter with a high-frequency 
cut at 100 Hz between the electrometer and the voltage-to-frequency converter. 
The effect of the filter was calibrated empirically so that overall accuracy of ion 
transit-time measurement is considered to be better than _+ 1% plus or minus 
2 msec. 

Temperatures were measured and regulated using an ac resistance bridge and 
germanium resistor. The germanium resistor was calibrated against He 4 vapor 
pressure down to 1.1°K, and was least-squares fitted to a function of the form 
R = A T %  c/r on an IBM 360 computer,  and extrapolated to 0.7°K. Temperature 
measurements are considered reliable to 2 mdeg. Pressures were measured with 
a Heise bourdon gauge and are accurate to 1%. 

3. T E M P E R A T U R E  D E P E N D E N C E  

Free- and trapped-ion mobilities are shown in Fig. 5 as a function of tem- 
perature from 1.7 to 0.69°K. Above 1.7°K, ions are thermally excited out of the 
vortex lines in times short compared to transit times. Our  earlier results I have 
been extended to 0.69°K below which we begin to see vortex-ring-like behavior. 
Douglass 9 has reported a dramatic  increase in escape probabili ty for negative 
ions at this temperature but offers no explanation for this effect. The free-ion 
mobilities are in substantial agreement with the mobility data of Reif and Meyer. ~ o 
The curve corresponds approximately to exp - A / k T  with A/K = 7.97 __+ 0.16°K 
compared to Reif and Meyer 's  value of 8.1°K. Free- and trapped-ion mobilities 
are nearly independent of electric field having a slight rise, ~ 10% in both, at low 
fields. This establishes that in the range 1.7 to 0.7°K trapped-ion motion is a true 
mobility phenomenon. 

Douglass 9 has published measurements at the vapor pressure of trapped-ion 
mobilities that extend to 0.8°K. His results, which have an accuracy of roughly 
-- 10%, are in satisfactory agreement with ours. 

4. P R E S S U R E  D E P E N D E N C E  

Free- and trapped-ion mobilities are shown as a function of pressure in 
Fig. 6 for various temperatures. The application of pressure has two effects: 
the decrease in the radius of the ion 12,12 and the change in the parameters  of the 
excitation spectrum 13 causing an increase in the roton density. These effects 
combine for free ions to produce a mobility that first increases and then decreases 
with increasing pressure with a maximum at about  5 atm. This effect was first 
observed by Meyer and Reif. 14 



296 Will iam I. Glaberson 

1.0 

QI 

v 

QOI 

I i I 

c, 
o \  0~\  

- o  o~\  

_- . • " ' - , . . ,  ,. 
- -  O •  • 

O o 

i i I I I 

t t'-*-.., 4 T T 
-t" -..t 

• . . T  F 

"'~ "~"~O...,~ o O 0  • 0 0 0 C O  

I I I I I I I I 
Q6 07 I38 Q9 1.0 I.I 1.2 13 1.4 

(OK-I 

Fig. 5. Temperature dependence of free and trapped-ion transit times at a field of 30 V/cm. The 
dashed line corresponds to Eq. (23). 

Trapped-ion mobilities demonstrate three major qualitative characteristics. 
First, the effect of a smaller ion radius is to decrease the temperature at which 
the ion is thermally excited out of the vortex well. 3'9 At a given temperature, then, 
the ion remains trapped only up to some critical pressures. At 1.6°K this pressure 
is below 3 atm, while at 1.0°K, the ion remains trapped to within 1% of the freezing 
pressure. Second, the increase in mobility at low pressures observed for free ions 
is absent or greatly reduced for trapped ions, indicating that trapped-ion mobilities 
are probably less sensitive to ion radii. The low-pressure data normalized to zero 
pressure mobilities are shown on an expanded pressure scale in Fig. 7. Third, the 
magnitude of the increase in inverse mobility at high pressures is much larger for 
trapped ions than for free ions. The last two characteristics indicate that the 
increased transit times experienced by trapped ions cannot be simply a pressure- 
independent additive retardation. 

Additional experimental considerations in the pressure experiments include 
the use of 30-mil stainless steel capillary tubing between the experimental cell 
and the room-temperature plumbing (connected in series, of course, with the 
capillary used customarily in He 3 refrigerators) to minimize heat flux from the 
helium at the boiling point at the gas-liquid interface, and recalibration of our 
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germanium resistance thermometer under pressure. The latter consideration 
proved inconsequential. 

5. He 3 IMPURITIES 

The effect of He 3 on the mobility:of free and trapped ions was investigated 
for various He 3 concentrations from 0-to 2%. It was found that the excess transit 
times due to He 3 experienced by the ions were roughly proportional to the He 3 
concentration as would be expected for an independent scattering mechanism. 
The mobility of free and trapped ions in a 2% He 3 solution is shown in Fig. 8. 
The solid lines are the free- and trapped-ion mobilities in pure He 4 and the dashed 
lines correspond to mobilities obeying 

1 1 
- + 1.73 (3) 

for both free and trapped ions where/~4 is the mobility in pure He 4. We can see 
that to fair accuracy, except perhaps at the highest temperatures, the excess transit 
time due to the He 3 is temperature-independent and, more important, is the s a m e  

for both free and trapped ions. This implies that, unless there is an excess con- 
centration of He 3 atoms on vortex lines, the ion He 3 cross section is the same 
(within ~ 10%) for free and trapped ions. This in turn suggests that the negative 
ion does not become very deformed when it is trapped on vortex lines. 

Additional experimental considerations involve heat-flush problems and 
thermometry. In the original apparatus the temperature regulator heater was 
located in the experimental can. It was found that measured mobilities were 
somewhat dependent on  the magnitude of the heater power-- the  higher the 
power, the higher the mobility. We interpreted this as a heat-flush effect, the He 3 
atoms being driven toward the walls of the can by the normal fluid. Placing the 
heater in the outer He 4 bath eliminated this problem. Our germanium thermom- 
eter was operated in a power-sensitive region so that the presence of He 3 atoms 
affected the power, dissipation, and, hence, the apparent temperature. Recalibra- 
tion of the thermometer indicated a temperature correction of the order of 5 mdeg 
for the 2% solution. 

6. VORTEX LINE M O D E L  

We attempt to account for the measured trapped-ion mobilities by recourse 
to a Landau excitation model applied to the vortex lines. We take excitation- 
excitation interactions into account and discuss the effect of localization of the 
excitations on the line. In this discfission we consider only roton excitations 
since, in the temperature region of interest, mobilities are roton-limited as 
evidenced by the nearly exponential dependence of free-ion mobilities on 
temperature. A preliminary discussion of this model has been previously 
reported. 2 
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Rotons can be thought of as excitations of the superfluid with an excitation 
spectrum given by 

( p  - po )  ~ e(P) = A + (4) 
2#o 

Consider a gas of rotons having an average velocity AV with respect to the frame 
in which the superfluid is at rest and a particular roton in the gas having 
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momentum P in the superfluid rest frame. The energy of this roton as seen from 
the superfluid frame is e(P) (the energy measured in the neutron experiments). 
The energy of this roton in the roton gas rest frame is then 

E(P) = e(P) - AV. P (5) 

The number of rotons per unit phase space is given by 

n(P) = h3 {exp [E(P)/KT] - 1}-1 (6) 

where the energy in the exponential is the energy as seen from the excitation gas 
rest frame.15 We then have 

, ( p )  = 1 (v. v ,l _ 1 } - '  (7) 
h 3 

or, since in our situation the rotons are fixed in the lab (rotating) frame, 
1 ( P -  P0) 2 Y 1 --[A+--+PVcosO~ 

Nr(V, T) = J ~ { e  KTL 2,,0 j _ 1}-ld3p 
1 [-. (P-P0/2 _.~ 

2~KT (co I- 1 - e Kr [~+~+~vJ -~  
-- h3V Jo P ln - ~ j d P  (8) 

1 e 

where Nr is the number of rotons per unit volume. For small velocities where 

PoV ~ A  

equation (8) can be approximated by  

KT /po V/47rpo2 e amr 
N~(V, T) = p ~  sinh I ~  ] h3 (2laorrKr) 1/2 (9) 

This approximation involves neglecting the 1 in the Bose distribution function 
of Eq. (8). For large velocities, the approximation is no longer justified and Eq. (8) 
must be numerically integrated. One obvious feature of the exact integral is the 
existence of a Landau critical velocity or a velocity where rotons can exist with 
zero energy--that  is, where 

[ (P - P°)2 p v l  = o (10) 
A + 2po rain 

It is interesting to note that, as the velocity is increased, Nr(V, T) remains finite 
as the critical velocity is reached although it approaches its "critical" value with 
infinite slope. The integral reduces asymptotically for V < V critical to 

N~(T,V)=8~KT(P°+P°V)IA-h3 V B tan-  I ( A ) ]  (11) 

where 

A = (#~)V 2 + 2poPoV + 2goKT-  2#0A) 1/2 
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and 
B = (2po A - -  ] A 2 V  2 - -  2poPoV) w2 

W e  now consider a calculation of the normal fluid density p,. When 
IV, - Vsl = co is nonzero, the total mass current can be written 

J = pYs + p,(Y. - Ys) (12) 

where the second term is the momentum density associated with the excitations. 
We then have 

f 
1 F (P Po) 2 ] 

P . ( V . -  Vs)=  J Vh 3 t egrLa+ T P.(V.-V.,j__ 1} ~ d3p (13) 

4=pge-A/~r 
(2#o~zKT) 1/2 (14) h 3 

p, = C + D (15) 

which for small co reduces to 

eg 
P" - 3KT 

For large co, Eq. (12) becomes 

where 
t r (e-Po) ~ 1 } 

C = ~ 5  ~ P A /KT+ 2poKT ] In - ±[a+(e_e0)2_e~] dP 
1 e KrL 2~o J 

and 
u 110092 

= ~ - ( 2 1 , ~ K ) ' / e - ~ T . = ,  u 3/~ 

/u,>,l [-,,o 3,0 ,o,'o q 
x s i n h l ~ -  l ~ - ( k - ½ / l o c o  2 ) - ~ - n  + KT J 

[Upocol[I'2co ~ o c o r A _ ~ o ~ 2  t 3,oco] 
+ cosh t KT ] [ _ ~  KT" 2u J 

C and D are about  equal and opposite in sign everywhere except near the critical 
velocity, where C dominates. 

A problem with the above analysis is that the excitation spectrum is assumed 
independent of the roton density in that, for example, A was assumed independent 
of the velocity. The neutron data of Yarnell et al. 16 indicated a A that was definitely 
temperature-dependent, A decreasing with increasing temperature. We interpret 
this temperature dependence as a manifestation of a ro ton- ro ton  attractive 
interaction and use an empirical formula of Bendt et al. w 

A = A0 - 0.7383 x 10-37N (16) 

to obtain the magnitude of this interaction, at least to first order. We must then 
solve Eqs. (10) and (16) simultaneously to obtain roton densities. We note at this 
point that the ro ton-ro ton  interaction assumed was for completely unpolarized 
rotons. Near the crticial velocity, the rotons are highly polarized in that the vast 
majority of them have momentum aligned along a direction close to that of - V .  
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In the absence of any other assumption, we assume that Eq. (16) applies to these 
rotons as well. An immediate implication of the roton interaction expression is a 
rather strongly temperature-dependent critical velocity equal to 58 m/sec at 
0.8°K and 37 m/sec at 1.6°K. 

The velocity of the superfluid in the vicinity of an isolated vortex line varies 
inversely with R, the distance from the line, Equations (5) and (7) imply that most 
of the rotons at small R have energies less than A so that they are in effect bound 
to the vortex line. The statistical mechanics ought properly be applied to the 
eigenfunctions of the system and not to plane wave rotons whose excitation 
spectrum was given in Eq. (4). We now attempt to estimate the excitation spectrum 
for localized roton wave packets. 

Rotons, whose density is sought at R, a re - -on  the average--  localized to 
within a distance slightly larger than R from the vortex line, because the average 
energy of these rotons must be slightly larger than the minimum energy allowed 
at R. A roton wave packet confined to a dimension of order R must contain a 
spread in momenta of order h/R by the uncertainty principle. Because of the 
particular shape of the excitation spectrum, the spread in momentum leads t o a n  
increase in energy proportional t o  1/R 2 or more specifically of order 

h 2 
AE ~ 8kloR2 (17) 

We thus assume a roton excitation spectrum given by 

( P  - -  ]90) 2 h 2 
e(P) = A + + - -  (18) 

so that equation (8) becomes 

2r tKT  (~o 
Nr(T, V) - h3 V .)o P I n  

2po 8 ~ o  R 2  

1 V (P Po) 2 p h 2 7"1 
1 - e - K r k a + ~  + v+s~00R2J~ 

(19) 

with a corresponding change for Eq. (15). 
Equation (19) has been numerically integrated and solved simultaneously 

with Eq. (16) by iteration on an IBM 360 computer. The results for various tem- 
peratures are shown in Fig. 9 and for various pressures in Fig. 10 plotted as a 
function of distance from the vortex line. The pressure calculations utilized the 
variation of the excitation parameters with pressure as inferred from the neutron 
scattering experiments.1 o The following formulas were used : 

/~o ~ #o (1.0 - 0.0217 P) 

Po --+ Po (1.0 + 0.0029 P) (20) 

Ao ~ Ao (1.0 - 0.0075 P) 

where P is the applied pressure in atmospheres and #o = 0.16M(He4), 
Po/h = 1.91 A -a, and Ao/K = 8.68°K. For  comparison, the calculation was 
repeated with the localization term, Eq. (17), deleted; the results are shown in 
Fig. 11. We can see that the effect of the localization term is to decrease the critical 
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radius but otherwise to effect no major qualitative change. Indeed, a justification 
for incorporating an uncertainty-principle correction to the excitation spectrum 
is that  it has only a small effect on the calculation. The quantity Ps/P (taken equal 
to 1 - p,/p), the roton energy gap equal to the minimum value of 

(P - P°)2 PV + 
A + 2#0 8#~R z ' 

and the roton density Nr at T = 1.6°K are shown as a function of R in Fig. 12. 
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Fig. 12. The va r i a t ion  of var ious  quant i t i es  with dis tance  from the vortex 
t ime  at  T - 1.6°K. The upper  g raph  is the ro ton  densi ty  reproduced  from 
Fig. 8. The midd le  g raph  is the ro ton  energy gap  or the m i n i m u m  value 
of the quan t i ty  [A + (P P0)2/2#o - PV + h2/8#oR2]. The lower  g raph  
is the superf luid densi ty  f ract ion Ps/P t aken  as 1 - p./p. 
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In this model, then, a vortex can be thought of as consisting of two regions : 
a central normal core whose radius is temperature- and pressure-dependent, and a 
"tail" in which the roton density (and also p,) increases as the critical radius is 
approached. The calculation just outlined has a number of problems, some of 
which were already mentioned. (1) We assumed the roton interaction given by 
Eq. (16), which may not be valid for polarized rotons. (2) The quasiparticle concept 
will break down when used to describe particles whose uncertainty of energy due 
to high collision rates for high densities is of the same order as their energy. 
(3) The localization energy is uncertain in the absence of roton eigenfunctions. 
Substantially greater localization energy than we have used will change our 
results qualitatively. (4) The nature of the core material is not specified ; we assume 
it may be like He I with a density equal to the bulk density. (5) The variation of Ps 
near the core, which was shown in Fig. 11, is least accurately determined. A small 
amount  of superftuid in the core would significantly affeet vortex energy calcula- 
tions. (6) One ought to use the local pressure rather than the applied pressure in 
determining the Landau excitation spectrum parameters. The Bernoulli pressure 
at the critical velocity is small compared to the range of pressures considered and 
was omitted. 

7. MOBILITY CALCULATION 

We now proceed to calculate negative ion transit times on this model. The 
trapped ion, whose diameter is the size of the abscissa scales of Figs. 9 to 12, 
will experience a transit time longer than that of the free ion because of the localized 
excitations near the vortex line. These break up into two contributions: one due 
to the core and one due to the tail. The rotons in the tail--except very near the 
critical radius---comprise a dilute gas and the analysis of Meyer and Reif 14 is 
expected to be valid. At a given temperature, the drag is then proportional to the 
number of density of rotons and we can write 

R Ri(P) 2rcRN~(P, T, R) dR 
c(P,T) 

ITtrapped, tail(P, T) 
nR~(P = O)N~(P = O, R = o% T) "cfr~(P 

O, T) (21) 

where Ri(P), the ion radius, is taken from Zipfel and Sanders lz and rrree is 
determined experimentally. 

The above analysis cannot be carried over to the drag induced by the core 
since the core medium has a high density and behaves "viscously" rather than 
"molecularly." We compute this viscous effect by assuming that the velocity 
distribution of the core medium near the surface of the ion in the forward core 
region is approximately the same as would occur for a sphere moving through 
an infinite viscous medium. We then proceed with the drag calculation in a manner 
similar to that of Stokes (see Landau and Lifshitz is) but doing the force integral 
only over the forward core region. We obtain for Rc ~ Ri 

Fcore = 37Z~lU __R~ (22) 
Ri 
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where t/is the viscosity and u the velocity of the ion. Since this drag force is pro- 
portional to the ion velocity, we can write 

"Ctrapped : -  "Ctrapped, tail + ~Ctrapped . . . . .  (23) 

where 
R~(P, 

"Ctrapped ..... (P, T) = ~ L T)rl(P, T) (24) 
ee Ri(P) 

and where e is the electric field and L is the drift length in the experimental cell. 
We now assume that the thermodynamic properties of the core medium are the 
same as that of He | were it at temperature T. (The analogue is true, for example, 
for superconductors when the critical magnetic field is exceeded.) The value of t/ 
(at a given bulk density) is then taken from the He I data ofTjerkstra 19 extrapolated 
to low temperatures with the 2 point anomaly ignored. 

Equation (23) is shown as the dashed lines in Figs. 5 and 6. There is excellent 
qualitative agreement and fair quantitative agreement, which is gratifying in an 
analysis having no adjustable parameters. Note in particular that both the 
theoretical and experimental trapped ion arrival times exhibit no initial decrease 
with pressure and exhibit large change from 0 to 25 atm (much larger than the 
corresponding change for free ions). This last effect can be largely attributed to 
the strong dependence of q on pressure. 

Ttrapped,tail dominates the drag at high temperatures and low pressures, 
whereas "Ctrappe a . . . . .  dominates the drag at low temperatures and high pressures. The 
range of experimental parameters investighted thus provides a fair test of Ztrappea,core 
and "Ctrapped,tail separately. 

There are several points that ought to be mentioned with regard to the transit 
time calculations. One is that the viscous drag was calculated for the velocity field 
around a hard sphere and not a hollow bubble. It is not clear what boundary 
conditions apply to a bubble not too much larger than atomic dimensions. 
Slipping boundary conditions on the bubble would result in a factor of two 
increase in "(trapped . . . . .  . The second point is that the Meyer and Reif 14 mobility 
calculation for the free ion utilized a "persistence f ac to r " f  related to the probability 
of a particular roton polarization. The rotons near a vortex line have a higher 
probability of being polarized perpendicularly to the ion momentum than the 
rotons encountered by a free ion so that the persistence factor ought to be increased. 
This would lead to an increase of order but less than 50% in Ttrapped,tail at the 
lowest temperature the effect decreasing with increasing temperature. Another 
uncertainty, difficult to assess, is introduced into the calculation by the rather 
long extrapolation of the He I viscosity data. 

8. DISCUSSION 

The vortex line model discussed in this paper has several important con- 
sequences. The calculation of mutual friction is depends on the variation of Nr 
near the vortex line as well as the nature of the vortex core, and should be 
reconsidered. The excess roton density in the vortex tail and the "He  I"  of the 
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vortex core contribute to the entropy of the vortex line and hence will effect 
vortex ring nucleation models. 21 Roberts and Donnelly 22 have shown that the 
expressions for the velocity and energy of vortex rings depend on the entropy 
associated with the vortex line and should be affected. The entropy associated 
with vortex lines would only negligibly affect the thermodynamics of a quantity 
of liquid helium. Adiabatically rotating a bucket of helium at 1 mdeg°K to 
100 rad/sec would reduce the temperature by about 1%. 

Douglass 9 has calculated the drag on the ion owing to vortex waves and 
shows that this contribution is important only at the lowest temperatures. The 
data of Fig. 5, which extends to 0.69°K, can be explained without reference to 
vortex wave drag. Douglass has made some interesting comments on the role of 
trapped roton states without developing a detailed model. 

The problem of the vortex core has been discussed previously from a many- 
body approach, 23'24 but the present analysis has the attractive feature of explicitly 
incorporating the observed bulk roton excitation spectrum. There are obviously 
significant uncertainties in both our vortex model and the transit time calculations. 
Since the calculation breaks down as the "critical radius" is approached, nothing 
can be said about the existence of a sharp critical radius. We can, however, say 
that the excitation density increases markedly near this radiust  and it thus 
represents the scale over which the superfluidity breaks down. In the spirit of 
these last statements, we believe that our model adequately accounts for our 
observed trapped ion transit times. 

ACKNOWLEDGMENTS 

The author wishes to express his appreciation and thanks for the guidance 
and assistance of Professor Russell J. Donnelly in this research. He also thanks 
Mr. Donald M. Strayer for invaluable aid in the experimental work; Professors 
H. E. Hall, W. F. Vinen, and P. H. Roberts for many useful discussions; and 
Mr. J. V. Radostitz and Mr. W. R. Hackleman for technical and design assistance. 
This research was supported by the National Science Foundation under Grants 
NSF-GP-6473 and NSF-GP-6482, and by the Air Force Office of Scientific 
Research under a Grant  AF-AFOSR-785-65. During the course of this research, 
the author held a Fannie and John Hertz Foundation Fellowship. 

REFERENCES 

1. W. I. Glaberson, D. M. Strayer, and R. J. Donnel[y, Phys. Rev. Letters 20, 1428 (1968). 
2. W. I. Glaberson, D. M. Strayer, and R. J. Donnelly, Phys. Rev. Letters 21, 1740 (1968). 
3. R.J. Donnelly, W. I. Glaberson, and P. E. Parks, Experimental SuperI=iuidity (University of Chicago 

Press, Chicago, Illinois, 1967). 
4. R. J. Donnelly and P. H. Roberts (to be published). 
5. P. E. Parks and R. J. Donnelly, Phys. Rev. Letters 16, 45 (1966). 

~'The critical radius in this model varies approximately as r~ = 3 . 2 / , f ~ , -  T A. It is interesting to note 
that Ginsburg and Pitaevskii, 25 using an entirely different approach, obtained a vortex core radius 
obeying the similar relation l = 4 . 0 / T z ,  f ~ -  T A.. 



Trapped-Ion Motion in Helium II 311 

6. R. L. Douglass, Phys. Rev. Letters 13, 791 (1964). 
7. J. J. Domingo and R. J. Donnelly, Bull. Am. Phys. Soc. 11,479 (1966). 
8. D. J. Tanner, Phys. Rev. 152, 121 (1966). 
9. R. L. Douglass, Phys. Rev. 174, 255 (1968). 

10. F. Reif and L. Meyer, Phys. Rev. 119, 1164 (1960). 
11. B. E. Springett, Phys. Rev. 155, 139 (1967). 
12. C. Zipfel and T. M. Sanders, Jr., Proceedings of the Eleventh International Conference on Low Tem- 

perature Physics, to be published ; and private communication. 
13. D. G. Henshaw and A. D. B. Woods, Proceedings of the Seventh International Cotference on Low 

Temperature Physics (University of Toronto Press, Toronto, 1961), p. 539. 
14. L. Meyer and F. Reif, Phys. Rev. 123, 727 (1961). 
15. R. P. Feynman, Phys. Rev. 94, 262 (1954). 
16. J. L. Yarnell, G. P. Arnold, P. J. Bendt, and E. C. Kerr, Phys. Rev. 113, 1379 (1959). 
17. P. J. Bendt, R. D, Cowan, and J. L. Yarnell, Phys. Rev. 113, 1386 (1959). 
18. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley Publishing Co., Inc., Reading, 

Mass., 1959), pp. 67-70. 
19. H. H. Tjerkstra, Physica 17, 853 (1952). 
20. H. E. Hall, Phil. Mag. Suppl. 9, 89 (1960). 
21. S. V. Iordanskii, Zh. Eksperim. i Teor. Fiz. 48, 708 (1965); Soviet Phys. JETP 21,467 (1965). 
22. H. Roberts and R. J. Donnelly (to be published). 
23. E. P. Gross, Nuovo Cimento 20, 454 (1961). 
24. A. L. Fetter, Phys. Rev. 138, A709 (1965). 
25. V. L. Ginsburg and L. P. Pitaevskii, Soviet Phys.--JETP 7, 858 (1958). 


