
COSMOLOGICAL MODELS IN CERTAIN SCALAR-TENSOR 

THEORIES 

SHRI RAM and J.K. SINGH 
Department of Applied Mathematics, Institute of  Technology, Banaras, Hindu Universi~, Varanasi, 

India 

(Received 2 August, 1995; accepted 19 September 1995) 

Abstract. Exact solutions of Einstein field equations are obtained in the scalar-tensor theories devel- 
oped by Saez and Ballester (1985) and Lau and Prokhovnik (1986) when the line-element has the 
form 

ds 2 = exp(2h)dt 2 - exp(2A)(dz  2 + dy 2) - exp(2/3)dz 2 

where h, A and/3 are functions oft only. The solutions are spatially homogeneous, locally rotationally 
symmetric and admit a Bianchi I group of motions on hypersurfaces t = constant. The dynamical 
behaviours of these models have also been discussed. 

1. Introduction 

The cosmological problem within the framework of general relativity consists in 
finding a model of the physical universe which correctly predicts the result of 
astronomical observations and which is determined by those physical laws which 
describe the behaviour of matter on scales upto those of clusters of galaxies. It is 
held that the long-range forces in the universe are produced by scalar fields. Scalar- 
tensor theories of gravitation have become a focal point of interest in many areas of 
gravitational physics and cosmology. They provide the most natural generalizations 
of general relativity and thus provide a convenient set of representations for the 
observational limits on possible deviations from general relativity. The most widely 
accepted and possibly the best motivated theory in which a scalar field shares the 
stage of gravitation is that of Brans and Dicke (Brans and Dicke, 1961). The 
role of the scalar field in the Brans-Dicke theory is confined to its effects on 
gravitational field equations and the scalar field has the dimension of the inverse 
of the gravitational constant. Scalar-tensor theories of gravitation of the other type 
involving a dimensionless scalar field have also been extensively studied by fairly 
a large number of workers (Bergmann, 1968; Nordvedt, 1970; Wagoner, 1970 
etc.). 

Saez and Ballester (1985) have proposed a theory in which the metric is cou- 
pled with a dimensionless scalar field in a simple manner. This coupling gives 
a satisfactory description of weak fields. In spite of the dimensionless character 
of the scalar field, an antigravity regime appears. This theory suggests a possible 
way to solve the missing matter problem in non-flat FRW cosmologies. Singh 
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and Agrawal (1991a) have investigated models of Bianchi types I, III, V, VI0 and 
Kantowski-Sachs models in this theory. 

Lau and Prokhounik (1986) have proposed a scalar-tensor theory in terms of an 
action principle. This theory is a generalization of Lau's (1985) theory. Lau (1985) 
proposed, as a natural consequence of the Dirac's large number hypothesis, the field 
equations with time-dependent cosmological term A and the gravitational constant 
G. Any variation of the Newtonian gravitational constant with time may produce 
unusual physical effects if the black holes are formed in the very early Universe 
(Barrow, 1992). The implication of time-varying A and G is important when the 
history and evolution of the Universe is considered, particularly in its early stages. 
Maharaj and Beesham (1988) have pointed out an error in the equations obtained 
by Lau and Prokhounik (1986) and obtained a vacuum solution to the generalized 
field equations for the Robertson-Walker space-time. Singh and Agrawal (1991b) 
have obtained the vacuum Bianchi type I, III, V, VI0 and Kantowski-Sachs model 
in this theory. 

In this paper we obtain exact solutions of Einstein field equations in the scalar- 
tensor theories developed by Saez and Ballester (1985) and Lau and Prakhovnik 
(1986) when the line-element has the form 

ds 2 = e x p ( 2 h ) d t  2 - exp(2A) (dx  2 + @2)  _ e x p ( 2 / 3 ) d z  z (1.1) 

where h, A and/3 are functions of the time variable t only. Carminati and Macin- 
tosh (t 980) considered the line-element (1.1) and solved completely the Einstein- 
Maxwell field equations. The form (1.1) is  found by transforming the locally 
rotationally symmetric Bianchi type I metric 

ds 2 = dt 2 - exp(2A) (dx  2 + @2)  _ e x p ( 2 B ) d z  2 (1.2) 

and by redefining the t coordinate. There is a freedom to choose h equal to any 
function of A and B. The metric (1.1) is spatially homogeneous, locally rotationally 
symmetric and admits a Bianchi I group of motions on hypersufface t = constant 
(Cahen and Defrise, 1968). We also discuss the physical features of the solutions. 

2. Models in Saez and Ballester Theory 

The field equations in the scalar-tensor theory developed by Saez and Ballester 
(1985) are 

1 R (¢,~¢,~ 1 ,~\ 
R ~  - ~ g ~  - ~ 0  ~ - -~g~¢,~O ) 

= - K T . . .  (2.1) 

The scalar field 05 satisfies the equation 
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2¢'~¢i~ + nCn- l¢ ,~¢  '~ = 0, (2.2) 

where n is an arbitrary exponent and co is a dimensionless coupling constant. For 
a perfect fluid the energy-momentum tensor Tu~ is of the form 

T#~, = (p + p ) u # u u  - Pgu,," (2.3) 

As the consequence of the field equations (2. t) and (2.2), the equations of motion 
a r e  

T~ ~ = 0. (2.4) 

Here a comma and a semicolon denote ordinary and covariant differentiation 
respectively. 

In comoving coordinates, the field equations (2.1), (2.2) and (2.4) for the metric 
(1.1) lead to 

1 n '2  f4 -{- d 2 -}- B "4- j~2 4- AJ~ - JT,(A -t- J~) = - K p e  2h 3- ~co¢ ¢ , (2.5) 

1 n '2  2Jt + 3e~ 2 -- 2Ah = - K p e  2h + ~co¢ ¢ , (2.6) 

1 n ' 2  A 2 + 2 A B  = K p ¢  2h - ~ c o ¢  q5 , (2.7) 

/b "2 + ¢(2A + / )  - tz) + ~-~¢ = 0, (2.8) 

/5 + (p + p) (2Jl + 1!)) = 0. (2.9) 

Here a dot denotes differentiation with respect to t. Thus, we have five equations 
to determine seven unknowns A, B, h, p, p, ¢ and co. To obtain physically realistic 
solutions of the Equations (2.5)-(2.9), we need two more relations connecting the 
field variables A, B, h, p, p, ¢ and co. 

2.1. h =  2 A  

In this case field equations (2.5)-(2.9) reduce to 

1 n ' 2  fit -- A 2 q- B q- ]~2 _ AJ~ = -I4~pe 4A q- ~co~ ~ , 

1 n ' 2  2 f t  - A 2 = - K p e  4A + -~co¢ ¢ , 

1 n ' 2  A 2 q- 2fir3 = I£fl  4A - ~co~ ~ , 

(2.10) 

(2.1I) 

(2.12) 
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T/, "2 + + 77  = 0, (2.13) 

+ (p + p) (2A + / ) )  = 0. (2.14) 

Adding (2.10), (2.11) and (2.12), we obtain 

--  A 2 -I- B ~- j~2 _}_ A J ~  = [<f(I 9 --  2p)e 4A + ~&~n~2. (2.15) 3]t 

A linear combination of Equations (2.10)-(2.12) and (2.15) provides 

2f t  + 2 A B  = I ( ( p  - p)e 4A, (2.16) 

J~i -l- -B -}- f~2 _~ A J ~  ~- K ( p  - p)e 4A, (2.17) 

3A + B + B2 + 3Af3 = 2 K ( ,  - - p ) e  4A, (2.18) 

3f~ - 2A 2 + B + j~2 _ A J ~  = - - 2 K p e  4A + co+n~ 2. (2.19) 

It is difficult to solve these equations in general. So we consider some cases of 
physical interest. 

2.1.1. Case L" Vacuum (p = p = O) 
Equations (2.16)-(2.18) give the solutions 

exp(A) = 8(c~t + fl)71c~, 

exp(B) = o~ +/3,  

exp(h) = {~5(oet +/3)7/~}2, (2.20) 

where c~,/3, 7 and 6 are integration constants. The Equation (2.13) finally gives 

exp{& (n/2)+l } = ~ 4 ( o ~ t  q- /3)  'rr~3 , (2.21) 

where 

n 1) rrzt (r~/2)+l m3 = (3 + ~ and m 4 = 7/~ 2 and m l , m 2  (2.22) 

being integration constants. The Equation (2.19) gives a relation between the 
constants viz. 

wm 2 + 27(7 + 2c~) = 0, (2.23) 

which gives the value of the coupling constant co. Without loss of any generality 
we can take 6 = 1. 

2.1.2. Case II: Stiff-matter (p = p) 
In the presence of stiff-matter, Equations (2.16)-(2,18) and (2.13) have the same 
solutions as given by (2.20) and (2.21). Equation (2.14) yields 
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#1 
P = P = (O0~ or- f l ) ( 4 7 / ° 0 + 2  ' ( 2 . 2 4 )  

where #1 is an integration constant. The Equation (2.19) gives the constraint 
relation 

corn 2 = 2K#1 - 27(7 + 2o~). (2.25) 

The metric of the solutions can be written in the form 

ds 2 = (c~t + fl)47/~dt, 2 - (ctt + f l )27/a(dx2 + dy 2) - (c~t + f l)2dz2.  (2.26) 

The physical and kinematical quantities for the model (2.26) have the following 
expressions: 

Spatial volume 

expansion scalar 

shear scalar 

Hubble parameter 

and 

deceleration parameter 

V 3 = (od; -}- f l )  (27/°~)q-1 , 

0 = (27 + c~)/(c~t + fl)(2--/ /oe)+l,  

= (,.}/ _ Og) /V/3(O~ jr_ f l ) (27/c~)+1,  

= (2,r + o~)/3(o~t + 9), 

o- 

H 

q = 2 ( o ~ - 7 ) / ( o ~ + 2 7 ) .  

The solution is singular at t = -fl/o~. 

2.2. h = B  

In this case the field Equations (2.5)-(2.9) reduce to 

1 n ' 2  + d 2 + [~ = - K p e  2B + ~ ¢  ¢ ,  

1 n ' 2  2Ji_ + 322 - -  22 t )  = - K p e  2B + -~w¢ ¢ , 

1 n '2  A 2 + 2AB = Kp~ 2B - ~ ¢  ¢ ,  

TL "2 

/5 + (p + p )  (2A + / 3 )  = 0. 

Adding Equations (2.28)-(2.30), we obtain 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 
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1 "2 ,~ 3_A + 5A 2 + B = K ( p  - 2p)e 2B + ~co¢ q5 . (2.33) 

A linear combination of Equations (2.28)-(2.30) and (2.33) provides 

2A + 4Jl 2 = K ( p  - p)e 2B, (2.34) 

+ 2A 2 + B + 2A/) = K(p - p)e 2B, 

3A + 6A 2 + / ~  + 2A/~ = 2 K ( p  - p)e 2B, 

(2.35) 

(2.36) 

3A + 4A 2 + B - 2A/) = - 2 / £ p e  2B q- co95n~ 2. (2.37) 

It is again difficult to solve these equations in general. So we consider some 
cases of physical interest. 

2.2.1. Case I: Vacuum (p = p = O) 
Equations (2.34)-(2.36) give the solutions 

1 
exp(A) = (at + b)~, 

exp(h) = exp(B) = d(a~ + b) c/a, (2.38) 

where a, b, c and d are integration constants. Without loss of any generality 'd' can 
be taken as unity. 

The Equation (2.31) finally gives 

exp{q5 (n/2)+l } = g4(at -k b) e3, (2.39) 

= n ~- = p(n/2)+l where g3 (3 + 1) e~ and g4 ~2 and gl, g2 being integration constants. 
The Equation (2.37) yields a relation between the constants, 

2wg 2 + a(a + 4c) = 0, (2.40) 

which gives the value of coupling constant. 

2.2.2. Case IL" Stiff-matter (p = p) 
In the presence of stiff-matter, Equations (2.34)-(2.36) and Equation (2.31) have 
the same solutions as given by (2.38) and (2.39). The Equation (2.32) yields 

#2 
P = P = (at + b)2(c/a) +2' (2.41) 

where #2 is an integration constant. The Equation (2.37) gives a constraint rela- 
tion 

2cog 2 = 4K/z2 - a(a + 4c). (2.42) 
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The metric of the solutions can be written in the form 

ds 2 = (at + b)2C/adt 2 - (at + b)(dz 2 + @2) _ (at + b)2C/adz 2. (2.43) 

For the model (2.43), the physical and kinematical quantities have the expres- 
sions: 

V 3 = (at + D) (c/a)+l, 

0 = (a + c) / (a t  + b) (c/a)+l, 

= ( a -  2c)/2V/3(at  + b) (¢/a)+l, 

H = (~ + ~)/3(~t  + b), 

and 

q = (2a - c) / (a  + c). (2.44) 

The solution is singular at t = - b / a .  

3. Models in Lau and Prokhovnik Theory 

The field equations in the scalar-tensor theory proposed by Lau and Prokhovnik 
(1986) are 

1/~ 
R . ~  - ~ 9 ~  + Ag~,~ = - 8 ~ c a T ~  - % ,~ ,~ ,  (3.1) 

where G is the gravitation constant and A a new cosmological term related to the 
gravitational term A by 

1 t,~ 1 = A - ~g ~ , . ~ , . .  (3.2) 

The scalar field ~ satisfies the equation 

" #u 1 : 4 4 2 2  871-GL m 0, (3.3) 

L.~ being the mass Lagrangian density including all non-gravitational fields. In 
vacuum L.~ = O, T#~ = 0 and so G can be chosen arbitrary. For spatially homo- 
geneous space-times 

= ~(t) ,  A = A(~), G = G(@. (3.4) 

For the metric (1.1) the field equations in vacuum reduce to 

)i + A 2 + / )  + i) 2 + AB - h(A + t)) = A~ 2h, (3.5) 
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2Ji + 3A 2 - 2AJz = Ae 2h, 

f l  2 + 2AB = Ae  2h -Jr- 4 2, 

24@ + 42(2A + / )  - 2J~) + [Ae 2h = O. 

(3.6) 

(3.7) 

(3.8) 

Thus, we have four equations to determine five unknowns A, B, h, A and ~. To 
obtain physically realistic solutions of the Equations (3.5)-(3.8), we need two more 
relations connecting the field variables A, B, h, A and ~b. 

3.1. A =  2 A  

In this case the field equations (3.5)-(3.8) reduce to 

j~ _ A2 _}_ 1) _}_/)2 _ A]~ = Ae 4A, (3.9) 

2 f t  - Jt 2 = A e  4A, (3.10) 

A2 3_ 22~/~ = Ae 4A q- 42, (3.11) 

2 4 ~  + 42( /~  - 2A) + Ae 4A = 0. (3.12) 

Adding Equations (3.9)-(3.11), we obtain 

3Ji - A2 _.}_ 1) jr_ j~2 q_ A / )  = 3Ae4A q_ 42.  (3.13) 

For tractability of the equations we assume a relation between A and % viz., 
1 = - 142 e-2h. Note that the condition A = - 142 is an arbitrary relation without 
any physical justification. A linear combination of Equations (3.9)-(3.11) and 
(3.13) and transformation of Equation (3.12) provide 

2Jt + 2A/3 = 0, 

) i +  1) +/~2 + AJ9 = o, 

3A + 1) + 1) 2 n t- 3A/) = 0, 

3Ji - 2A 2 + 1) + 1)2 _ A/~ = - 4 2 ,  

4 4  q- 42/~  = 0. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The Equations (3.14)-(3.16) have the same solutions as given by (2.20). The 
Equation (3.18) yields 

exp(~b) = A2(o~t +/~)/~1/O~ (3.19a) 
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where Al and A2 are integration constants. Now using Equation (3.17), we obtain 
a relation between constants, viz., 

A 2 = 2~y(5 + 2oz). (3.19b) 

The kinematical quantities for this model have the same expressions as given by 
(2.27). 

3.2. h = B  

In this case the field equations (3.5)-(3.8) reduce to 

j~ ÷ A2 ÷ j~ • AeZB, (3.20) 

2A + 3A 2 -- 2et/) = Ae 2B, (3.21) 

~Ji 2 ÷ 2Jt/) = Ae 2B @ @2 (3.22) 

2 ~  + ~2(2A - / ) )  + [Ae 2B = 0. (3.23) 

Adding Equations (3.20)-(3.22), we obtain 

3it  + 5A 2 + / )  = 3Ae 2B + ~2. (3.24) 

A linear combination of Equations (3.20)-(3.22) and (3.24) and transformation of 
Equation (3.23), by putting A = - l @ 2 e - 2 h  provide 

2it  + 4A 2 = 0, 

+ 2Jl 2 + B + 2A/) = 0, 

3J[ + 6Jl 2 + / )  + 2A/) = 0, 

3)i + 4A 2 + / )  - 2A/) = _~2 ,  

@~ ÷ 2@ 2A = 0. 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(2.29) 

The Equations (3.25)-(3.27) have the same solutions as given by (2.38). The 
Equation (3.29) finally gives 

exp(~) = ~2(at ÷ b) ~*/a, (3.30) 

where ~l and {2 being integration constants. The Equation (3.28) gives a constraint 
relation 

2~ 2 = a(a + 4c). (3.31) 
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The kinematical  quantities for this model  have the same expressions as given 
by (2.44).  

4. Discuss ion  

For all models,  expansion scalar 0 and shear scalar o- tend to zero as t ---+ oc if 
7,  oz > 0 and c, a > 0. The ratio o-/0 tends to a constant as t ---+ e~. These models  
do not admit rotation and acceleration. 

The scalar field ~b, for the models in Saez and Ballester theory and the scalar 
field ~ ,  for the models in Lau and Prokhovnik theory are monotonical ly increasing 
towards infinity as t --+ oc. The magnitude of  A tends to zero as t --+ ec. 

The mass energy density p and pressure p for the models in Saez and Ballester 
theory are infinite at singularities and are monotonically decreasing towards zero 
as ~ ---~ oo. 

Though the metric (1.1) is of  Bianchi type I the solutions are different than that 
of  Singh and Agrawal (1991a, 1991b). Some of  the solutions in the two scalar- 
tensor theories seen to be very similar. It is due to the fact that some of  the field 
equations of  both theories are identical when the metric (1.1) and the condition 
1 = - -  l ~ 2 e - 2 h  are assumed. 

References  

Barrow, J,D.: 1992, Phys. Rev. D 46, 3227. 
Bergmann, EG.: 1968, Int. J. Theor. Phys. 1, 25. 
Brans, C. and Dicke, R.H.: 1961, Phys. Rev. 124, 925. 
Cahen, M. and Defrise, L.: 1968, Comm. Math. Phys. 11, 56. 
Carminati, J. and McIntosh, C.B.G.: 1980, J. Phys. A.: Math. Gen. 13, 963. 
Lau, Y.K.: 1985, Australian J. Phys. 38, 547. 
Lau, Y.K. and Prokhovnik, S.J.: 1986, Australian J. Phys. 39, 339. 
Maharaj, S.D. and Beesham, A.: 1988, J. Astrophys. Astron. India 9, 67. 
Nordvedt, K.: 1970, Astrophys, J. 161, 1059. 
Saez, D.: 1985, A simple coupling with cosmological implications, preprint. 
Saez, D. and Ballester, V J.: 1985, Phys. Lett. A 113,467. 
Singh, T. and Agrawal, A.K.: 1991a, Astrophys. Space Sci. 182, 289. 
Singh, T. and Agrawal, A.K.: 1991b, Astrophys. Space Sci. 179, 223. 
Wagoner, R.V.: 1970, Phys. Rev. D 1, 3209. 


