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Abstract. In this paper we present a method of obtaining varieties of new classes of exact solutions 
representing static balls of perfect fluid in general relativity. A number of previously known classes of 
solutions has been rediscovered in the process. The method indicates the possibility of constructing 
a plethora of new physically significant models of relativistic stellar interiors with equations of state 
fairly applicable to the case of extremely compressed stars. To emphasize our point we have derived 
two new classes of solutions and discussed their physical importance. From the solutions of these 
classes we have constructed three causal interiors out of which in two models the outward march of 
pressure, density, pressure-density ratio and the adiabatic sound speed is monotonically decreasing. 

1. Introduction 

There have been a few attempts to obtain parametric classes of  exact  solutions 
of  Einstein's field equations describing the interior field of  perfect  fluid balls in 
equilibrium (Tolman, 1939; Wyman,  1949; Kuchowicz,  1968, 1970; Pant and Sah 
1982, 1985; Pant and Pant, 1993, 1993a,b). The importance o f a  parametric class of  
solutions over  an ordinary solution lies in the flexibility of  the associated parameter  
which brings out various models of  relativistic star with physically realizable fluid 
properties. Moreover,  given a class of  solutions, by imposing realistic conditions 

on the parameter orte may weed our unphysical as weil as insignificant solutions. 
For  instance, not all solutions in a class would correspond to causal models and 
therefore the causality principle shall limit the range of  the associated parameter. 

Methods have been suggested to obtain classes of  solutions but the scope of  
such attempts is limited to generalize known particular solutions (Leibovitz, 1969; 
Goldman, 1978, Matese and Whitman, 1980; Whitman, 1983). In this paper we 
present a method of  integrating Einstein's field equations which results into a 
plethora of  parametric classes of  physically sound solutions. The paper indicates 
as to how a host of  new possibilities may emerge for the meaningful integration of  

the field equations. 

2. Field Equations and Method of Integration 

In canonical coordinates the metric of  a static, spherically symmetric field is 

ds 2 = - e ~(r) dr  2 - r2(d02 + sin 2 0 d~b 2) + c 2 e ~'(r) dt 2. 
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It follows that the field equations of general relativity for a ball of perfect fluid with 
pressure p(r) and density p(r) are (Tolman, 1939) 

c 4 P = drr + ~ r 2'  

c 2 P =  dr r2 + r 2  , (3) 

d ( e - A - l )  d ( e - A d u )  -A-ud  (eUdu~ 
dr r ff + d r r  2r drr + e d r r \ 2 r d r /  =0"  (4) 

By allowing one of the two field variables A and u as some known function of r 
the equation (4) transforms into a form which on integration determines the metric 
(1) completely, the fluid parameters are then calculated from (2) and (3). 

By subjecting (4) to the transformation 

U = r  me tau~2, V =  e -A, (5) 

m being a non-zero arbitrary constant, we obtain a linear differential equation in 
V: 

dV 2 { d  (r3U1-'/'~~ ( 2taU ~ } V _ 2taU 
dr d r  l ° g \  d-Ü-~/dr / - - r 2 d U / d r ]  r2dU/dr" (6) 

Integration yields 

[r6U2(l-l/m) ] 
e-A---- V - -  L ~ . j ×  

x A - 2  - - - - U  ~- ± / )ef[4mU/rZ(dU/dr)]drdr X 
r 8 dr 

× e- f [4mU/r2(dU/dr)] dr (7) 

where A is another arbitrary constant. Out aim is to explore the possibilities of 
choosing U such that the right hand side of (7) becomes integrable. A set of 

possibilities arises if one assumes for ef  [4mU/r2(dU/dr)] dr some algebraic function 
of r, U and dU/dr .  In this paper we assume 

ef[4mU/r2(dU/dr)]dr = l(dU'~ n 
r \ dr / ' (8) 

1 and n being arbitrary constants. Equation (8) resuits into a second order homo- 
geneous equation in U: 

2d2U Ir dU - 4 taU = 0. (9) nr ~ + dr 
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The solution is 

U ~~" c1T2(a+b)+m "~ c2 r2(a-b)+m, (10) 

where cl and e2 are arbitrary constants and 

i ( n  - + ( 2 m -  1 ) n + l  b = /)2 16mn, (11) 

a = 4n ' 4n 

provided n ~ 0. 

Equation (7) takes the form 

r 8+n-l-2(a-b+~)(n+2) (A - 2I) 

(12) 

[ ~] (Clr4b +c2)2[-l+(1/m)] 2(a-k-b-k-m)2 c'r4b + 2 (a - -  b-k--~--)¢2 
n+2 » 

(13) 

where 

I ~ m f r l-9-n+2(a-b+(m/2))(n+(2/m)) (¢lr 4b + c2) -l+(2/m) × 

i in+, T/Z~ 4b (a òq- 2 ) c 2 J  x 2 ( a + b + - ~ ) c l r  + 2  - dr. (14) 

Also from (5) and (10) 

[ q 2/m 
e ~' = clr 2(a+b) q- c2r2(a-b)J • (15) 

We note that the expressions for the field variables given by (13) and (15) contain 
six arbitrary constants out of which three constants namely, cl, c2 and A are to be 
evaluated by the conditions resulting from the junction of (2.1) with the vacuum 
Schwarzschild's metric. Further, we shali see that the integration of (14) is possible 
if two conditions are imposed on the remaining three constants, namely l, m and 
n. Since this can be affected in vailous ways we are able to derive varieties of one 
parameter classes of solutions. 

The integrability requirement of (14) gives rise to the following possibilities : 
(i) Each of the exponents (2 /m)  - 1 and n + 1 takes nonnegative integral values. 

In such cases the integrand reduces to a power seiles with finite terms. We 
thus obtain a variety of classes of solutions with I as parameter. 
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TABLE I 
Derivation of some known classes of solutions 

Serial No. Assumptions Resulting classes of solutions 

1 b = 0 Tolman's Class-usually referred as 
Tolman's V Solution (Tolman, 1939) 

Wyman's Class (Wyman, 1949) 

Kuchowicz's Class (Kuchowicz, 1970) 

Pant and Sah Class (Pant and Sah, 1982) 

Pant and Pant Class (Pant and Pant, 1993) 

Pant and Pant Class (Pant and Pant, 1993a) 
Pant and Pant Class (Pant and Pant, 1993b) 

2 m = l , a = l  

3 r a =  1, n =  -2  

4 m = 2 ,  n = - - I  

5 m = 2, a = Ib[ 

6 a = Ibl 
7 m = 2 ,  

1 = -.(.-3)+2(,~+3),/:g 
n-]-I 

(ii) One of  the exponents ( 2 / m )  - 1 and n + 1 is allowed to take nonnegative 
integral values and the exponent  / - n - 9 + 2(a  - b + ( m / 2 ) ) ( n  + (2 / r a ) )  
is subjected to the following condition: 

(~+~) 4b~ ~, l - n - 9 + 2 ( a - b + - ~ )  = - 

a being a positive integer. 

In such cases the integrand in the right hand side of  (14) is transformed into 
an exact differential equation and the result is a variety of  parametric classes of  
solutions. 

Some of  the classes of  solutions already known are rediscovered following the 
procedure discussed above (cf. Table I). 

3. Non-Singular Solutions 

A solution which does not give rise to singularity in the metric (1) may be called 

nonsingular. Nonsingular solutions may be applied to construct models of  a rela- 
tivistic star if the pressure and density are monotonic decreasing positive functions 
in the region 0 <_ r < rb where rb denotes the boundary of  the star, and the prin- 
ciple of  causality is obeyed. Such solutions may have infinite central density (Po), 
as well. In view of  (15), the requirement that e ~'° be nonsingular implies that 

a _> Ibl. (16) 

For a = [b[ we obtain a solution with 

e ~'° = constant 
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in each class. A discussion on the family of such solutions has been given by Pant 
and Pant (1993b). 

For a > Ibl, we obtain solutions with e v° = 0, which are referred as those with 
quasistatic character (Tolman, 1939). 

Solutions obtained under the assumption (15), in general, correspond to infinite 
central density. In particular, for a = Ibl = ½, one obtains a class of solutions 
with finite central density. Examples are Tolman's IV solution and the Wyman-  
Adler solution (Adler, 1974). A detailed study of this class of solutions is given by 
Durgapal (1982). 

Zel'dovich and Novikov (1971 ) comment that for solutions with finite mass and 
Po = ec, the curvature at the centre is infinite and e ~° ¢ 1. One can easily verify 
that this is not absolutely true as there exist finite mass solutions with Po = ec and 
e ~° = 1 (e.g. solutions derived by Pant and Pant (1993), (1993a)). 

Following the process outlined in the foregoing section one can easily derive 
a multitude of classes of nonsingular solutions. To demonstrate that such classes 
may provide physically sound stellar interiors, we shall present two new classes in 
the following section. 

4. Two New Classes of  Solutions 

Class I. We assume 

n + l  = 0 ,  

and 

1 - 8 + ( 2 a - 2 b + m ) (  2 -  1 ) = 4 b - 1 .  

The resulting class of solutions is 

e u = (Cl r2a+2b + C27"2a-2b) 2Im, 

e_A= (Cl-+-c2r-4b)2 { Ar-8b/m m 2 } 

(c] + ct2 T-4b) (el -[- C27"-4b) 2Im 4bcl ' 

where 

c] - (2a + 2b + m)cj ,  

c~ -= (2a - 2b + ~~)C2 

with 

a =  

b -  

4 + 12m - 3 m  2 

8(m + 2) ' 
1 

(16 - 96m + 152m 2 - 24m 3 + m4) 1/2, 
8(m + 2) 

(17) 

(18) 

(19) 

(20) 

(21) 
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provided that 

m # 0 , - 2 ;  m ~/ (0.34310, 0.34334). (22) 

For m = 2, we rediscover Tolman's IV solution which is the only member of the 
class giving rise to finite central pressure and finite central density. The condition 
(16) requires that 

0 < m _< 0.3431, 0.34334 _< m _< 2. (23) 

The expressions for pressure and density are 

87rG 1 [ (4a + 4b + m)cl + (4a - 4b + re)c2 r-rib 
CI p = -~ [-- 1 + m(c] + ct2r-4b)(c I + c2r-4b) -l+(2/m) 

- 4bc---~(Cl + c2r-4b) 2/m , 

X 

(24) 

87rG 1 [ 8b clAr -8b/m 
c2 P= -~LI + - -  m (Cl + c2r-4b) -l+(2/m) (c] + ct2r-nb) ' + 

Ar_Sb/m m 2 -- - - ( e l  + C2r-4b) 2/m 
+ 4bcl x 

(el + C2£-4b)-l+(2/m)(Ct 1 + Clr-4b)2 

x { - (2a + 2b + 2 + 

+(8ab + 24b 2 + 4bin - 4a - 2m)clc2 r-4b + 

+(1 + 4 b ) ( 2 a -  2b + m)c~r-Sb}]. (25) 

We find that the central pressure and central density are infinite but their ratio is 
finite and equals the limiting value of (dp/dp)o: 

1 ( p )  = 1 (d~p) = m 2 + 4 m ( a + 2 b ) + 8 b ( a + b )  
-~ o ~ o m 2 + 4mb + 8b(a + b) (26) 

The causality condition at the centre 

( d P )  < c 2  (27) 
dp0- 

further restricts the range of the parameter to the following intervals: 

0.207 < m < 0.246; 0.66667 < m < 2. (23a) 
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The constants cl, c2 and A are evaluated by matching the solution (18), (19) 
with the Schwarzschild extedor solution for a ball of mass M and linear dimension 
2rb: 

1 
= -27{ u (4a  - 45 + m )  - 2a + 2b}rb2(a+b)(1- - -- 2U) ( m / 2 ) - l ,  c1 

14o- 

1 
= TT{ - u (4a  + 4b + m )  + 2a + 2b}r[2(a-b)(1- -- 2u) (m/2) - l ,  C2 

~40 - 
(28) 

A = 

where 

u- - - -  

m 2 
--  -t- c 2 r  b ) . 4 b c l r 2 a + 2  b q- (1  2 U ) I - m ( C t l  r 2 a + 2 b -  ! 2a-2b~ 

ù.. , 2 a + 2 b + ( 4 / m ) ( b - a )  
x ( l  - zu)G 

G M  

C27. b • 

Class H. We assume 

n + l = 0 ,  m = l .  

The resulting class of solutions is 

e" = (Cl r [(l- 1)/2+2b] + c2 r [(t- 1 )/2-2b] ) 2 

X 

(29) 

(30) 

(31) 

e - / ~  

Ar[(13-31)/2-2b] _ c] t -- c~r -4b 

c~ + cl2 r-4b 

where 

eil = / +  1 ) + 2 b  e l ,  C2 

I l  - -  4Cl t l  

el 31 - 13 + 4b' c2 - -  

and 

= - l ( l  2 + 21 - 15)1/2 b 

The class provides real non-singular solutions for 

[ ~ ( / +  1 ) - 2 b ]  cz, 

4c2 

31 - 13 - 4b 

(32) 

(33) 

(34) 

3 < 1 < 4. (35) 
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The expressions for pressure and density are given by 

87rG 
C4 p --  

1 f [(l + 4b)c l  + (l - 4 b ) c 2 r - 4 6 ] [ A r  (13-3t) /2-2b - c] ~ - c~r -46] 
- 11 ,(36) 

87rGc 2 P=~51 I. [1 + c]' + (1 - 4 b ) c ~ r  -4b +c] ½(3/+ et2 r-4b-b 4b - 1 5 ) A r  (13-31-4b)/2 q- 

4bc2 r ,  -4b [c 1,, + c~r -4b  _ Ar(13-3 l -4b) /2]  
+ (37) 

(C] + C~T-4b) 2 

We observe that the central pressure and central density are infinite but their 
ratio is finite. We obtain 

1 (p )  l (dB) 1 2 + 4 b ( / - 1 ) - 7  
c - ' ~  r = 0  = c-2 r=0 = 12 -- 2l + 4b( l  - 3) - 5 

provided I ¢ 4. We observe that the fluid obeys the causality principle at the centre 
for 

3 _ < l < 4 .  

Applying the junction conditions over the boundary r = rb the constants are 
evaluated as follows: 

(1 -- 2U) -1 /2  
c, -- -~, ~ ~  [1 - l + 4b + 2 u ( l  - 4b)], 

õOI" b 

(1 - 2u) -1/2 
c2 - -8-br(--l_l_4b)/--------- 5 [--  1 + 1 + 4b - 2u( /+  4b)], 

t t -4b\1  (31-13+4b)/2 
A = [eil t q- C~?'b ab -1- (1 -- 2"a)(C 1 --[- 821" b )]7" b 

In the following sections we shall discuss physical properties of stellar mod- 
eis based on some particular members of the two classes and the corresponding 
equations of state. 

5. Solution Common to Class I and Class II 

In this section we shall present a detailed study of the particular solution common 
to each of the Classes I and II. The solution is obtained by assuming ra = 1 in 
(16), (19), or by letting l = 19/6 in (31) and (32): 

e ~ = (51x l / z  ÷ C2X5/3) 2, 
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e_~ = 6 6~~ + 12ê2 x7/6 q- 7Äx 7/3 
7 9fil q- 16C2X 7/6 ' 

87rG 2 1 [2 (661 + 13t32x7/6)(6Cl + 12t~2:r7/6 -k- 7Äx 7/3) 

Õ %P = x-2 [7 (Cl + c2x7/6)(9Cl + 16c2x 7/6) 

871-G 2 1 [ 2 ] 8t~ 1 -4- 78c2 x7/6 -~- 70Äx 7/3 
B róp = ~ L1 7 9e~ + 16~2x7/6 + 

16e2x7/6(6el -k- 12c2 x7/6 q- 7Äx 7/3) 
+ 

(9el q- 16~2x7/6) 2 

_1], 

where 

?:1 ----- ~(5 - 13u)(1 - 2u) -1/2, 

3 
c2 = ff(4u - l)(1 - 2u) -1/2, 

Ä - 1 ( 2 5  - 135u + 98u2)(1 - 2u) -1/2 

and 

T 
X ~  

/'b 

In Table II the march of pressure, density, pressure-density ratio and the square of 
the adiabatic sound speed dp/dp is given for u -- 0.20. 

We observe that these fl uid parameters decrease monotonically with the increase 
in the radial coordinate throughout within the causal fluid ball. It is to be noted that 
the monotonic decrease in p and p is essential for a realistic fluid ball. A similar 
behaviour of p/p and dp/dp is the characteristic feature of a polytrope. 

We note that the behaviour of fluid parameters within the ball depends upon u 
the mass-radius ratio. One may construct models where p/p and dp/dp be non- 
monotonic or even monotonically increasing. 

6. A Par t icular  M e m b e r  of Class I for m = 6 

The solution is 

e ~ = (~lx2/5 + ~2X9/5) 5/3, 

e - A  (t~l q- c2x7/5)2 [ Äx7/3 36 1 
(8el + 3c2 x7/5) (êl q- e2x7/5) 5/3 q- ~ ' 
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TABLE II 

March of pressure, density, pressure-density ratio and square 
of the adiabatic sound speed within the fluid ball (0 < x < 1) 
corresponding to the common solution to Class I and Class II 
(m = 1 or 1 = 19/6) with u = 0.20 

871G 2 871G 2 1 p 1 dp 
c4 prb ---~-prb c 2 p c 2 dp 

0 cx~ cx~ 1/3 1/3 

0.1 12.958621 43.037187 0.3011028 0.3234033 
0.2 2.844013 10.775176 0.2639412 0.2978245 
0.3 1.0821266 4.7724689 0.2267435 0.282644 

0.4 0.5068652 2.6578049 0.1907082 0.2593828 
0.5 0.2609897 1.6701588 0.1562664 0.2522642 
0.6 0.1391623 1.1269624 0.1234844 0.210349 

0.7 0.0731653 0.7863437 0.0930449 0.1839726 
0.8 0.0354187 0.4953364 0.0715043 0.1774149 

0.9 0.0131874 0.4163359 0.0316749 0.1448071 
1.0 0 0.3 0 0 

87rG 2 l[(5Cl-q-4c2x7/5)[5Äx7/3-t-~(el-t-c2x7/5)5/3]] 
B rbP = x-2 (el  q -c2x7 /5 )2 /3 (8Cl  q- 15(32 x7/5)  -- 1 

87l-G 2 1 [ 
C2 rbP ---= ~ 1 q- (t31 -I- C2z7/5)-2/3(8Cl q- 15932x7/5) - 2  × 

L 

, 4 0 0  2 
× { - Ä x 7 / 3 / - ~ ê  1 + 297~1~2x 7/5 + 180ê~x 14/5) _ 

_ 36 (40~2 + 122~1~2x7/5 + 180~~x14/5)(01 + ~2x7/5)5/3}1 
35êi  J 

where 

3 ( 3  - 8 ~ ) ( 1  - 2 ~ , ) - 2 / 5 ,  

2 
~2 - 7 ( 5 ~  - 1 ) ( 1  - 2~) -2/5, 

Ä -  561-3-8u7U+8u 2 (1_2n)  2/5. 

Table III shows the march of p, p, p/(c2p) and (1/c2)(dp/dp), within the fluid 
sphere whose mass to radius ratio is given by u - GM/(c2rb) = 0.18. 
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TABLE llI 

March of pressure, density, pressure-density ratio and square 
of the adiabatic sound speed within the fluid ball (0 < z < 1) 
corresponding to the common solution to Class I and Class 1I 
(m = 6/5)  with u = 0.18 

8~G 2 8~G 2 1 p 1 dp 
c 4 prb "--~-prb c 2 p c2dp 

0 ec cc 0.2 0.2 

0.1 6.8644356 35.747112 0.1920277 0.1950493 

0.2 1.6017015 8.9499976 0.1789611 0.1902851 

0 .3  0.6490889 3.9847439 0.1628935 0.1863598 

0.4 1.3245283 2.245673 0.1445127 0.1841447 

0.5 0.17885 1.4441397 0.1238453 0.1846894 

0.6 0.1023952 1.0019634 0.1021945 0.1910861 

0.7 0.0580192 0.7374889 0.0786712 0.2038191 

0.8 0.0303991 0.5655912 0.0537474 0.2346442 

0.9 0.0123099 0.4475398 0.0275057 0.2885637 

1.0 0 0.3629265 0 0.5517486 

7. A Particular Member of Class II  for 1 = 10/3 

For l = 10/3, the class of solutions (31) and (32) gives rise to the following 
solution: 

e ~ = (~zl/3 + c2z2) 2, 

e_X = 3 6~1 + 21~2x 5/3 + 7Äz 7/3 

7 4~1 + 9~2x 5/3 ' 

87rGr2 p ___ 1 [ 5 (~l + 3c2x5/3)(6Cl + 21~2 z5/3 + 7Äx7/3)] 
c 4 ~5 - 1 + 7 ~ ~ ) ( - 4 ~ - ~ 1  -+-~c2z-Ü~ J '  

87rG 1 20~1 (2~1 - 3~.2z 5 /3)  - 3 5 Ä z 7 / 3 ( 8 C l  -4- 9c2 z5/3) 
C 2 r2p = 7x 2 (4Cl -t- 9~2x5/3) 2 ' 

where 

3 2 5u)(1 2u) -1/2, ~~ - 5 (  - 

1 
~2 - ~ ( 5 u -  1)(1 - 2u) -1/2, 
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TABLE IV 
March of pressure, density, pressure-density ratio and square 
of the adiabatic sound speed within the fluid ball (0 < x < l) 
corresponding to the member of Class II (l = 10/3) with 
u =0.18 

87rG 2 87rG 2 1 p 1 dp 
c4 prb ~ p r b  c 2 p. c 2 dp 

0 c,o ~ 0.2 0.2 
0.1 6.932199 35.82089 0.1935239 0.1969473 
0.2 1.6261602 8.9978856 0.1807269 0.1926609 
0.3 0.6597907 4.017648 0.1642231 0.1854423 
0.4 0.3292216 2.2679643 0.1451617 0.1764199 
0.5 0.1806186 1.5102877 0.1195921 0.1601132 
0.6 0.1027301 1.0091015 0.1018035 0.1540776 
0.7 0.0579647 0.7387083 0.0784676 0.1415633 
0.8 0.0299569 0.5615387 0.0533478 0.1277493 
0.9 0.0119994 0.4386787 0.0273535 0.1137353 
1.0 0 0.3495936 0 0.099499 

- -  1 2 
A ~ f f ( 1 4 u  - 2 4 u + 4 ) ( 1 - 2 u )  -U2.  

For  u = 0.18, we have caiculated p, p, ( l / c 2 ) ( p / p )  and ( l / c 2 ) ( d p / d p )  for a 

monotonic sequence of  the dimensionless variable z within the fluid sphere (0 < 
z < 1). We observe that these fluid parameters fall monotonically from their 
maximum central values (Table IV). 

8 .  C o n c l u s i o n  

A method to integrate Einstein's field equations for equilibrium stellar interiors has 
been devised by which to obtain a variety of  classes of  physically meaningfui solu- 
tions. We have seen as to how by the transformation (5) along with the assumption 
(8) one is able to derive new classes and that some of  a few known classes are 
rediscovered in the process. To make our point home we have presented two new 
classes of  solutions. We have shown that members of  these classes provide stellar 
models with physically significant fluid properties. 

The assumption (8) can further be generalized for an exhaustive exploration of  
the existence of  classes of  physically meaningful solutions. In this way one hopes 
to rediscover Kuchowicz 's  class (Kuchowicz,  1968) which is a generalization of  
uniform density interior solution due to Schwarzschild, deriving new classes not 
covered by the method discussed in the present paper. 
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