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Abstract.  The influence of viscosity on the gravitational collapse in radiaüng fluid spheres is investi- 
gated. The interior solution is matched with the Vaidya metric at the boundary of the fluid distribution. 
Prescribing an equation of state to take into account the degree of induced anisotropy by the viscosity 
and using the Herrera, Jiménez and Ruggeri method, we obtain an explicit Tolman VI-like exploding 
model. The sphere explodes more violently when the anisotropy due to the viseosity is smaller. The 
shear viscosity diminishes with the expansion of the distribution of matter. 

1. Introduction 

Dissipative processes are frequently excluded in general relativistic calculations 
(Carter, 1988; Israel and Stewart, 1980). However, the viscosity may be important 
(Arnett, 1977; Brown, 1982; Bhete, 1982) in the neutrino trapping during gravita- 
tional collapse, which is expected to occur when the central density is of the order 
of 1011-1012 g cm -3. Although the mean free path of the neutrinos is much greater 
than other particles, the radiative Reynolds number of the trapped neutrinos is 
never~heless small at high density (Mihalas and Mihalas, 1984), rendering the core 
fluid viscous (Kazanas, 1978; Kazanas and Schramm, 1979). Recently a method 
was reported by Herrera et al. (1989) for radiating viscous spheres. This procedure 
may be considered as a first-order iterative method, in the sense that the radial 
dependence of the one relevant physical variable is extracted from the classical 
approximation and introduced into fully relativistic equations. More recently, was 
repovLed a proposition (Barreto and Rojas, 1992) for studying dissipative fluids 
(viscosity + heat flow) in a general relativistic approach which consists of a pre- 
scription of an equation of state to obtain the tangential stress induced by the shear 
viscosity. 

In this paper we shall use the Herrera et al. (1980) method for studying radiating 
viscous spheres in the streaming out approximation (Herrera et al., 1989). But now 
prescribing an equation of state (through the sphere), relating the tangential induced 
pressure to the other dynamical variables (Cosenza et al., 1982). 

The paper is organized as follows. In Section 2 are sketched the conventions, 
the Einstein field equations, an equation of state for the tangential pressure induced 
by the viscosity and the junction conditions at the boundary of the sphere. Section 3 
contains the description of the model worked out. The discussion of the results is 
presented in Section 4. 
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2. The Field Equations, an Equation of State and the Junction Conditions 

Let us consider a spherically symmetric nonstatic distribution of matter which 
consists of viscous fluid and unpolarized radiation traveling in the radial direction. 
in radiation coordinates (Bondi, 1964) the metric takes the form 

ds 2 = e2/3[(V/r) du 2 + 2 du dr] - r2[dv ~2 + sin 2 0 d~ß2], (1) 

where/3 and V are functions of u and r. Here u -- x ° is a time-like coordinate (in flat 
space-time u is just the retarded time, so that surfaces of u = constant represent null 
cones open to the future), r - x 1 is a null coordinate (g~~ = 0) such that surfaces 
r = eonstant, u = constant are spheres, and 0, ~ = x 2,  •3 are the usual angle 
coordinates. For the matter distribution considered here, the energy-momentum 
tensor has the form 

Tù~, = (p + P ) U u U  v - Pg»,v + ek,,kv + tuv , (2) 

where U u and k u denote, respectively, the four-velocity of the fluid and a null- 
vector pointing in the direction of the outgoing radiation. The tensor ruù is given 
by 

%v = rl(U~,;v + UL,;, - Ü~U~, - Ü~U~,) + @ -  3rl) O Pù.~, (3) 

where ~/and ~ are the shear and the bulk viscosity, respectively, and as usual 

0 = U.,~ (4) 

is the expansion, 

P~~ =9~~- uùu~ 

is the projection tensor, and 

Ü~ = u~'u~;ù 

is the four-acceleration. We can write the expression for the energy momentum 
tensor in the more convenient form 

Tu~, = (p + P - ¢O)UùU~, - ( P  - (O)guù + ekukù + 2~aù~,, (5) 

where the shear tensor «u~, which is given by 

« ù ù  = u ( ù ; . )  - u(,,Üù)- l-oPù~ (6)  
3 

satisfies the conditions 

crù~,U ~ = cru~g ~" = 0. (7) 
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Also, we can introduce the scalar cr by means of 

0 2:= ~ O'/z~'O'#u. (8) 

Now in order to provide a physical meaning to the components of the energy- 
momentum tensor, as given by (2), let us (following Bondi (1964)) introduce 
purely locally Minkowskian coordinates (t, z, y, z) by 

dt = e213[(V/r)l/2 du + ( r /V )  1/2 dr] 

d z : = e 5 ( r / V ) l / 2 d r ;  d y = r d 0 ;  d z = r s i n 0 d ~ .  (9) 

Denoting Minkowskian components of the energy-momentum tensor by a caret 
we have 

~b0 = T00 e2/3 V/r ,  

~bl • (T00"~- T01) e2/3, 

Tl1 = (~b00 q- Tll 4- 2TOl)e2P(r/V), 

~~ = T3 ~ = ~7  + ~'~~. (10) 

Next, one assumes that for an observer moving with velocity co relative to these 
coordinates in the radial direction the space contains: 
(a) a viscous fluid of density/5 and pressure/5 
(b) isotropic radiation of energy density 3,~ 
(c) unpolarized radiation of energy density g traveling in the radial direction. 

For this specific observer the covariant energy tensor is 

B + 3 5 , + g  - g  

- e  / '  + ~, - C0- 
-4~W/x/3 + e 

0 o 

0 0 

0 0 

P + ~ - (o+ 
+ 271cr / x/-5 

0 0 0 P + ~ - «0+ 
+ 2r/c~/x/5 

then the Lorentz transformation readily shows that 

( p  q- pw 2 ) 
r00 = e49(1- 2--<)r \ - i  ~ j  + « ' 

To~ = e 2 ~ p -  Pco 
1 --(,aß 

(11) 

(12) 
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(p + P)(1  - co) 
Tl1 = 

(1 -t- ~)(1 - 2 la~r ) '  

T~ = T~ = - P , ;  

(13) 

(14) 

where 

p = t~ + 3~,; 

Pt = P + 2v'grlo'; 

V = e2¢~(r- 2th(u,  r))  

p = / 5  + ~ _ «0 - 4r/er/v/-3; 
^/1  +ù, '~  

can be shown by Eq. (4) that 

0 = 2w(1 - 2 r h / r )  1/2 
(1 - ca2)1/2 (/31 + l / r )  -t- (15) 

[ 1 ( 1 -  - O ~ ~ - ) O _ - - ~  + 
+e  -2¢~ (1----~~) 1 / 2 - w  2rh / r ) -3 /2 rho / r  c°o(1-2rTz/r)  -1/2" 

q (1 - - ~ 2 ) ' / i ( 1  - 2th~r)-1/2 (,a ga, 
\ 7  r + 

+(1 - 2 ~ / r )  1/2 wl 
(1 - c02) 3 /2 '  

and, by Equation (8) 

3w ( r  - 2 ~ ( u ,  r)'~ 1/2 0 
~r = 7 1 - w  2 ,/ + V/~. (16) 

Thus, it can be shown (Herrera et al., 1989) that the Einstein fields equations may 
be written in radiative (null) coordinates as 

p + P w  2 1 (_rhoe_2~ (r - 2r7~) ) 
1 - co 2 + g = 4rcr(r - 2 ~ )  + r #/,1 , (17) 

p - w P  rhl 
l + c o  -- 47fr 2' 

(18) 

1-CO ~p~ + P )  - f l l ( r -  2rh) 
(19) 

1 + co 2 r r r  2 ' 

Pt - 
/3ole -2z 1 

47r + ~7(1 - 2r?~/r)(2/311 + 4/32 - - /31 / r )+  

3/31(1 -- 2r5q) -- < l l  
q- (20) 

87fr 
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where differentiation with respect to u and r is denoted by subscripts 0 and 1, 
respectively. Observe that from a purely formal point of view, the system (17)-(20) 
is the same as for a radiating anisotropic fluid (without viscosity), with radial 
pressure P and tangential pressure Pt. 

Now, the method consists in assuming that the r dependence auxiliary functions 

ä =  P - P w ,  (21) 
l + w  

[ '  - P - P ~ ,  ( 2 2 )  
l + o a  

are t]he same as that of the energy density and pressure corresponding to the static 
"seed" model (Herrera et al., 1980). With this r dependence of P and/5, we can 
integrate the field Equations (18) and (19) to obtäin the geometfical variables r~ 
and t5, up to some functions of u, which will be specified for the model worked 
out. 

It remains for us to give a prescription to obtain the tangential stress induced by 
the viscosity. For this purpose we shall use an Equation of State (throughout the 
sphere) relating the tangential induced pressure to the other dynamical variables 
(Cosenza et al., 1982; Barreto and Rojas, 1992), namely 

c (/5 + p)  P~ - P = (7-~2-~)(4r~r3/5__ + rä), (23) 

where C is a constant throughout the sphere. Equation (23) specify the degree of 
anisotropy induced by the viscosity, Pt - P = 2v~r/«.  Therefore, this prescription 
Permits us to avoid a first-order iterative methods (Herrera et al., 1989). 

Before finishing this section, it is worth noticing that, in order to make the 
method outlined above completely consistent, it is necessary to match the interior 
solution with the Vaidya metric at the boundary of the fluid distribution (Darmois or 
Lichnerowicz conditions). It is easy to check that these conditions are equivalent to 
the continuity of the functions Ô~ and ga across the boundary of the sphere (Herrera 
and Jiménez, 1983), and to the equation 

-fl0~ + (1 - 2gaa/a)/31~ - gal~/2a = 0, (24) 

where the subscript a indicates that the quantity is evaluated at the surface r = a(u). 
Using the continuity of/3 and fl = 0 for the Vaidya metric, we may expand it near 
the boundary 

/30~ + ä/31~ = o, (25) 

whege now the differentiation with respect to u also is denoted by a dot. Substituting 
this last expression back into (24) and using the field Equations (18) and (19), we 
obtain 

ä = (1 - 2ga~/a) ~ (w~pa - P~)/(1 - coa) p f  ~-~-~~ } .  (26) [ 
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In radiation coordinates, the velocity of matter is given by 

d f = e2~3(1 _ 2~a/r) co (27) 
du 1 ca 

Therefore, it follows that 

ca« (28) a = ( l -  2~c/a)1 - ~ c  
Comparing (26) and (28) we get 

4 
P c -  v/-Sr/cac, (29) 

where 

-fc= êc + ~,c-~~oc, 
Thus the radial pressure at the boundary of the viscous sphere does not vanish. This 
situation, discontinuity of the radial pressure at the boundary, also occurs in the 
case of thermal conduction (Herrera et al., 1987; Santos, 1985), where the radial 
pressure at the boundary is proportional to the heat flux evaluated at the surface. 

3. An Exploding Model 

We shall illustrate the method with a simple but illustrative model inspired in the 
Tolman VI solution (Tolman, 1939) The equation of state of the static Tolman VI 
solution approaches the one of a highly relativistic Fermi gas. Thus, following the 
method, let us choose (Herrera et al., 1980 ; Cosenza et al. 1982) 

3g(~) (30) 
B - -  ~,2 

where g is an arbitrary function, and 

- [ I - I ( ~ ( r / a ) ~ ]  

with 

h = 1 - 2 C ,  

I = 8 - 3 h - 4 v ~ - 3 h ,  

K = 8 - 3 h + 4 v / - 4 - 3 h ,  

I + 3hw~ 
Ct - -  

K + 3hw«" 
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It is worth noticing that with the choice of the above auxiliary variables, the 
Tolman-Oppenheimer-Volkov-like equation for these variables is not satisfied, 
except in the static case (Barreto et al., 1991). 

Next, the field Equations (18) and (19) are integrated to give 

~,~ = m ( r / a )  (32) 

and 

( r / a )  2-V~(4-3h) ( 3 3 )  
fl = 3ah(1 - 2ra~a) In 1 - a 

where m -= ~ ( u ,  a). For the functions of u appearing in (32) and (33) (m, a, ws) 
we have the following three equations (surface equations) which are obtained from 
(17), (27) and the conservation law T;~ u = 0, evaluated at the surface (modulo the 
junction equations), 

Ä = F(f~ - 1) (34) 

p = 2_rE + Ä(1 - r )  
A ' (35)  

and 

~_-~{~+ h [ 3 F F t - 4 ( 1  - F)] 

8Afl F(1-F) ' (36) 

where 

,~(~ = o) = .~(o);  A = a / m ( 0 ) ;  

M = , ~ / . ~ ( 0 ) ;  ~/~(o)-~ ~; 

F = 1 - 2 M / A ;  fZ = 1/(1 - c~=); 

E = 47ra2Ca . 

The system (34)-(36) may be integrated, provided one function of u is given. 
As usual we assume that the total luminosity is a specific function of u, such that 
a giwm portion of the initial mass is carried away. In this paper we assume that 

'~rad [ (~-~0) 2]~~ 
r E -  7 - ~ - e x p  - j ,  (37) 

where, the constants mrad and 7 have been chosen such that 1/100 of the initial mass 
is c~ried away by the pulse. Then the result of the integration of (34)-(36) (with 
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Fig. 1. Evolution of the radius for different values ofh. The curves labelled a-e are for h = 0.7334, 
0.8667, 0.9334, 0.9866 and 1.0134, respectively. 
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Fig. 2. Evolution of the dimensionless density ~ = pro(0) 2 for h = 0.8667, monitored at different 
regions. The curves labelled a-d are for r/a(O) = 0.25, 0.5, 0.75 and 1, respectively. The density 
function is shown multiplied by 103. 
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Fig. 3. Evolution of matter velocity (dr/du) for h = 0.8667, monitored at different regions: curves 
a--d are for r/a.(O)= 0.25, 0.5, 0.75 and 1, respectively. 

(37)) is fed back into (32) and (33), fully determining functions ~ and/3. The field 
Equations (17)-(20) and (23) remain to be used algebraically for determining the 
physical variables (p, P,  w, « and ~]) for any piece of material. As the degree of 
anisotropy induced by the viscosity was specified (Equation (23)) some additional 
nume, rical work was necessary to calculate the shear viscosity. It is clear from 
Equations (15) and (16) that (r depend explicitly of w0 and aq. 

The following set of initial data has been considered 

A(0) = S; F(0)  = 0.75; f~(0) = 0.9. 

This initial data and the running time of the numerical integration was suggested 
by the behavior of the matter variables themselves. A discussion of the results is 
defen:ed to the next section. 

4. Conclusions 

Figure 1 displays the evolution of the radius for different values of h. It is worth 
noticing that the sphere explodes more violently when the degree of anisotropy 
induced by the viscosity is the sma]ler. Nevertheless, when P, < P (curve e) 
the profiles of the shear viscosity are negative. Likewise, when P~ > P but 
the difference is too large (curve a), the resultant shear viscosity is not physically 
acceptable (r] < 0). Figs. (2) - (4) show the evolution of the density, matter velocity 
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Fig. 4. Evolution of the shear viscosity for h monitored at different regions. The curves a -e  are 
for r/a(0)= 0.2, 0.3, 0.4, 0.5 and 0.9, respectively. The shear viscosity function is shown multiplied 
by 103. 

and shear viscosity, respectively. The shear viscosity is high in the regions with high 
density, as expected, and diminishes with the expansion of the sphere. The bouncing 
of the sphere should not be related to the appearance of a shock wave within 
the sphere. Rather it is connected with the simple, but not extremely unphysical 
equation of state. 

We would like to conclude with the following comment: Although the Eckart and 
Landau-Lifshitz (Eckart, 1940; Landau and Lifshitz, 1959) methods of including 
viscosity in general relativity have been widely used in the past, it is well known that 
these theories present serious difficulties. However, they led to the Navier-Stokes 
equations in the classical approximation. 

Acknowledgements 

The author thanks L. Herrera for interesting discussions and encouragement. This 
work has been partially supported by the Consejo de Investigaciones de la Univer- 
sidad de Oriente. 

References 

Amett, W.: 1977,Astrophys. J. 218, 315. 



EXPLODING RAD1ATING VISCOUS SPHERES IN GENERAL RELATIV1TY 201 

Barreto, W., Herrera, L. and N. Santos: 1992, Astroph. Space Sci. 187,271. 
Bhete, H.: 1982, in: M. Rees and R. Stoneham (eds.), Supernovae: A Survey of Current Resear«h, 

D. Reidel Publishing Company, Dordrecht. 
Bondi, H.: 1964, Proc. R. Soc. London. A 281, 39. 
Brown, G.: 1982, in: M. Rees and R. Stoneham (eds.), Supernovae: A Survey of Current Research, 

D. Reidel Publishing Company, Dordrecht. 
Carter, B.: 1988, in: C.V. Vishveshwara (ed.), Proc. h~t. Conf on Gravitation and Cosmology, 

Cambridge Univ. Press, Cambridge. 
Cosenza, M., Herrera, L., Jimenez, J., Esculpi, M. and Witten, L.: 1982, Phys. Rev. D25, 2527. 
Ecka~t, C.: 1940, Phys. Rev. 58, 919. 
Herrera, L. and Jiménez, J.: 1983, Phys. Rev. D28, 2987. 
Herrera, L., Jiménez, J. and Barreto, W.: 1989, Can. J. Phys. 67, 855. 
Herrera, L., Jiménez, J. and Esculpi, M.: 1987, Phys. Rev. D36, 2986. 
Herrera, L., Jiménez, J. and Ruggeri, G.: 1980, Phys. Rev. D 22, 2305. 
Israel, W. and Stewart, J.: 1980, in: General Relativiß, and Gravitation: Orte Hundred Years after the 

Birth of Albert Einsteüz, Vol. 2 ed. A. Held, Plenum Press, New York. 
Kazanas, D.: 1978, Astrophys. J. L109. 
Kazanas, D., and Schramm, D.: 1979, in: Sour«es ofGravitational Radiation, L. Smarr (ed.), Cam- 

b~ridge Univ. Press, Cambridge. 
Landau, L. and Lifshitz, E: 1959. Fluid Mechanics, Pergamon Press, London. 
Mihalas, D. and Mihalas, B.: 1984, Founda/ions ofRadiation Hydlvdynamics, Oxford Univ. Press, 

Oxford. 
Santos, N.: 1985, Mon. Not. R. Astr. Soc. 216,403. 
Tolman, R.: 1939, Phys. Rev. 55, 364. 


