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The alloy Ti-6Al- l .6Zr-3.3Mo-0.30Si  (VT9) is a 
creep-resistant alloy of o~ +/3 type, designed for 
application in the compressor stage of jet engines. Its 
/3 transus temperature is 1243 K [1]. It develops a 
wide variety of microstructures depending on the 
solution-treatment temperature and the subsequent 
rate of cooling [1, 2]. Whereas rapid cooling from 
the /3-range leads to transformation of the /3-phase 
to a single-phase martensitic structure, slow cooling 
results in a two-phase structure with Widmanst~itten 
o~ and/3 retained between the oL-plates. Two types of 
martensite, one with h cp crystal structure (od) 
[1-6] and the other with orthorhombic structure 
(o/') [4-10] occur in titanium alloys. There have 
been different reports [2,3, 11] concerning the 
crystal structure of martensite in the alloy VTg. 
Dyakova et al. [11] reported the structure of 
martensite to be orthorhombic in the o~ +/3 solution- 
treated and water-quenched condition, whereas 
Trenogina and Lerinman [3] reported it as h c p with 
a small amount of retained /3 in the /3 treated and 
quenched condition. In the same VT9 alloy Banerjee 
et al. [1] reported single-phase h c p martensite with 
no /3 present at the oF-plate interfaces even in the 
stabilized condition (803 K for 6 h), following /3 
treatment and water-quenching. The structure of the 
martensite and its decomposition upon ageing are 
known to influence predominantly the tensile ductil- 
ity of these titanium alloys [1, 12]. The aim of the 
present investigation was therefore concerned with 
studying the structure of the martensite in VT9 
titanium alloy in unaged and aged conditions, 
following/3 treatment and water-quenching. 

The VT9 alloy was obtained from Midhani 
(Hyderabad, India) in the form of a rod 20 mm in 
diameter in mill-annealed condition, following for- 
ging and rolling in the /3-phase field. It contained 
( inwt%)  5.47 A1, 2.90 Mo, 1.90 Zr, 0.22 Si and 
balance titanium. Small specimens were sealed in 
silica tubes with titanium getter at a vacuum level of 
0.08 Pa. The sealed specimens were solution-treated 
at 1323 K in the /3 range and quenched in water 
(WQ), using the technique described in [13] to 
ensure efficient quenching. A few specimens were 
again sealed in silica tubes separately as described 
above, and aged at 823 K (WQ-A) for 24 h. The 
specimens were heated in a resistance heating 
furnace with temperature control of +3 K. X-ray 
diffraction analysis was carried out using Philips 
X-ray diffractometer. TLin foils for transmission 
electron microscopy were prepared by a Fischione 
twin jet electropolisher using electrolyte containing 
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(in vol%) 59 methanol, 35 n-butanol and 6 per- 
chloric acid, cooled at 230 K, at 12.5 V. The foils 
were examined at 120 kV in a Jeol 200 CX transmis- 
sion electron microscope. 

X-ray diffraction data for the WQ and WQ-A 
specimens are given in Tables I and II, respectively. 
Analysis of the diffraction data showed single-phase 
orthorhombic and h c p crystal structures in the WQ 
and WQ-A conditions, respectively. The lattice 
parameters of the orthorhombic martensite (od') 
were determined as a = 0.3106, b = 0.4915 and 
c = 0.4659 nm, and those of the h c p martensite as 
a = 0.29402 and c = 0.46828 nm. 

Figs i and 2 are transmission electron micrographs 
showing single-phase martensitic platelets in the WQ 
and WQ-A specimens, respectively. It may be noted 
that in contrast to the orthorhombic structure in the 
WQ condition using X-ray diffraction, selected-area 
electron diffraction confirmed it to be h c p marten- 
site. No evidence for /3-phase at the platelet inter- 
faces or the Ti3A1 phase could be obtained even in 
the WQ-A condition. 

T A B L E  I Observed and calculated interplanar spacings for VT9 
in the  W Q  condition indexed on the basis of an or thorhombic cell 
with a = 0.3106, b = 0.4915 and c = 0.4659 n m  

h k l 20 (degrees) dob s (rim) d0al (nm) 

10 0 28.746 0.3105 0.3106 
101 35.546 0.2525 0.2584 
0 2 0 36.600 0.2455 0.2457 
0 0 2 38.650 0.2329 0.2329 
11 1 39.188 0.2298 0.2287 
0 21 40.527 0.2225 0.2173 
0 2 2 53.600 0.1709 0.1690 
13 0 63.801 0.1459 0.1449 
13 2 77.000 0.1238 0.1230 
0 4 0 78.200 0.1222 0.1228 
0 0 4  82.640 0.1167 0.1164 
2 2 2 84.140 0.1150 0.1143 
0 3 3 86.820 0.1121 0.1127 
141 87.700 0.1112 0.1109 
15 0 110.770 0.0936 0.0937 

T A B L E  II  Observed and calculated interplanar spacing for 
VT9 in the  W Q - A  condition indexed on the basis of a hexagonal  
cell with a = 0.294 02 and c = 0.468 28 nm 

h k l 20 (degrees) dob~ (rim) deal (nm) 

0 1 i 0 35,247 0,254 62 0.254 65 
0 0 0 2 38.446 0.234 14 0.234 14 
0 1 i 1 40.348 0.223 53 0,223 71 
0 1 i 2 53.321 0.171 81 0.172 36 
0 1 i 3 71.082 0.132 62 0.133 08 
0 2 2 1 78.243 0.122 18 0.122 86 
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Figure I (a) Transmission electron micrograph of martensitic (o:') platelets in as-quenched (WQ) condition showing a high density of 
dislocations. (b) Selected-area diffraction pattern taken from the region shown in (a). The pattern shows two zones: B = Z = [0001] and 
fl = Z = [01 i 1]. The indices belong to the [0001] beam direction. 

Figure2 (a) Transmission electron micrograph showing single-phase martensitic platelets of o:'. Platelets show a low density of 
dislocations. (b) Selected-area diffraction pattern taken from the region shown in (a) with the zone axis B = Z = [i 2 i 6] in the WQ-A 
condition. 

It is obvious from the X-ray diffraction data that 
the fi-phase transformed to a single-phase ortho- 
rhombic martensitic (0l") structure when solution- 
treated in the /3 range and quenched in water at 
room temperature.  The values of the lattice para- 
meters of this phase determined in the present 
investigation are in good agreement with those 
reported in [7, 8, 12, 14] for the orthorhombic phase 
in other  titanium alloys. However ,  electron diffrac- 
tion analysis showed the structure to be h c p and is 
in agreement  with a similar report  [3] on the same 
VT9 alloy. Such differences were also observed 
previously [8, 15] in other titanium alloys. These 
differences are attributed to relaxation of the ortho- 
rhombic (a/') to h c p  ( d )  during electrothinning 
[8, 15]. Thus, it may be inferred that the ortho- 
rhombic phase as determined using X-ray diffraction 
represents the true structure of the material in the 
WQ condition. 

The formation of the orthorhombic phase upon 
quenching is observed to occur over a limited 
composition range and over a a small temperature  
interval of solutionizing. Sugimoto et al. [16] con- 
firmed the formation of oL" in simulated commercial 

titanium alloys of the type T i - A I - S n - Z r - M o  with 
Mo content in the range 4 -6  wt % and quenched 
from a temperature  range of 1173-1323 K. Dyakova 
et al. [11] observed, in VT9 alloy (comparable to the 
alloy of Sugimoto et al. but with lower Mo content),  
that the fi-phase transforms to o:" upon water- 
quenching following solution-treatment in the 
(o: +/3)-phase field. This could be attributed to the 
higher Mo partitioning to fi-phase during the o~ +/3  
treatment to the critical amount  of approximately 
4%. The formation of the orthorhombic ol"-phase in 
VT9 alloy in the present investigation, even in the/3 
solutionized and water-quenched condition (which 
results in the overall Mo content of 2.9 wt % instead 
of the required critical amount  of 4 wt %),  could 
probably be attributed to the role of silicon in 
stabilizing the orthorhombic od' structure [14]. 

Ageing of the WQ specimen at 823 K resulted in 
the transformation of the orthorhombic o:" marten- 
site to the h c p od martensite structure. This is in 
accordance with the observation of the transform- 
ation of oc" through precipitation of oL needles [14] 
rather than through the precipitation of /3  particles 
[12], as no /3 particles could be observed in the 
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present investigation. It is important to note that the 
stabilizing treatment (803 K for 6 h) of the as- 
quenched specimen [1] did not result in the precipi- 
tation of/3 in VT9 alloy. Also, in [17] it was found 
that only ageing the as-quenched specimen at the 
high temperature of 973 K for 4 h gave thin films of 
/3 at the interplatelet boundaries of the martensite. 

On the basis of the above analysis, it may be 
concluded that the crystal structure of the martensite 
in VT9 alloy resulting from/3 treatment and water- 
quenching is orthorhombic. A small amount of 
silicon seems to stabilize the orthorhombic marten- 
site even when the overall /3 stabilizing element is 
only about 2.9 wt% compared with the approxi- 
mately 4 w t %  found by Sugimoto et al. [16]. 
However, it transforms to h c p upon ageing at 823 K 
for 24 h. 
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