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Abstract. A theory is developed which describes flow in multi-scale, saturated swelling media. 
To upscale information, both the hybrid theory of mixtures and the homogenization technique are 
employed. In particular, a model is formulated in which vicinal water (water adsorbed to the solid 
phase) is treated as a separate phase from bulk (non-vicinal) water. A new form of Darcy's law 
governing the flow of both vicinal and bulk water is derived which involves an interaction potential 
to account for the swelling nature of the system. The theory is applied to the classical one-dimensional 
consolidation problem of Terzaghi and to verify Low's empirical, exponential, swelling result for 
clay at the macroscale. 
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1. Introduction 

The development of  theories to simultaneously represent consolidation and the flow 
of  water in saturated clay soils began with Terzaghi [48] and Biot [11]. Essentially, 
Biot and Terzaghi developed linear poroelastic models based upon a phenomeno- 
logical approach at the macroscale. Their models axe now well established and 
Biot 's model can be recovered via a linearization procedure within a more general 
thermomechanical framework e f  modem mixture theory (e.g. Crochet and Naghdi 
[20], Green and Steel [31]) or by applying a homogenization technique to a local 
pore-scale problem where the solid is considered to be linearly elastic and the fluid 
is assumed to be Stokesian (Auriault [4]). Although limited to the linear elastic 
range, the Biot and Terzaghi models have been the basis for the development of 
more general approaches aimed at removing some of  their restrictive assumptions. 
For one-dimensional consolidation, nonlinear extensions of  the Terzaghi theory 
have been proposed by using nonlinear stress-strain relationships (e.g. Davis and 
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Raymond [23], Mikasa [42]), by using the nonlinearized definition of strain for 
large deformations (e.g. Gibson et al. [28]), and by using a variable permeability 
coefficient (e.g. Cherubini [18], Low [39]). Similarly, theological models based 
on a Kelvin-Voigt viscoelastic material have been proposed to extend the Biot 
theory into the range of secondary consolidation which is governed by creep phe- 
nomena and stress relaxation in viscous clay soils (e.g. Barden [8], Gibson and 
Lo [29]). Plasticity models have also been proposed which extend the Biot theory 
into the anelastic range by including features such as yield phenomena, irreversible 
deformations, hysteresis, and hardening and softening. Within this category, the 
Cam-Clay model and Modified Cam-Clay models (e.g. [45]) have been devel- 
oped recently and are considered to be more appropriate for modeling nonlinear, 
path-dependent, hysteretic soil behavior. As in the Terzaghi and Biot models, the 
majority of models describing the consolidation of clay have been developed direct- 
ly at the macroscale usually by taking measurements of a representative sample 
of clay and postulating constitutive equations which most accurately reflect the 
experimental data. 

Despite the widespread use of generalized Terzaghi and Biot models, the authors 
are not aware of any models which are rigorously derived from the microstructure 
of clay. Saturated clays consist of an assemblage of clusters of hydrous aluminum 
and magnesium silicates plus adsorbed water (clay particles). The mixture often dis- 
plays a tendency to swell when wetted and to shrink when dried. This swell/shrink 
phenomenon is associated with the extremely high specific surface area of the 
hydrophilic plate-like clay mineral. The hydrophilic nature of clay affects the 
properties of water near the clay minerals and hence this affected water, which is 
strongly attracted to clay minerals, has physical properties which are altered by 
the proximity of a solid (Low [39], [40], [41], Grim [32]). Such affected water 
is often called vicinal water, adsorbed water, or interlayer water to distinguish it 
from bulk water or free pore water (i.e. water which lies in porous openings and 
whose properties are not significantly affected by the presence of clay minerals). 
For example, the density of vicinal water has been reported to be between 0.97 and 
1.7 times that of free water, and the vicinal water is more viscous than free water, 
with both properties varying with the distance from the surface and depending in 
a complex way on the structure and commensurability of the surfaces, the surface- 
liquid potential, the separation of the surfaces, the direction of shear, the rate of 
shear and the history of shear (Cushman [22]). In general, the vicinal water may 
behave as an inhomogeneous anisotropic fluid. The anomalous nature of vicinal 
fluids is born out both experimentally and computationally (e.g. Cushman [22]). 
The microscopic properties of vicinal water are revealed on the macroscale in such 
behavior as swelling, plasticity characteristics, and in deviations from such popu- 
larly used equations as Darcy's law. Darcy's law has given satisfactory results for 
granular porous media, where swelling is not predominant. However, it has been 
shown that the classical form of Darcy's law is not accurate in swelling media (e.g. 
Philips [44], Kiralis [37]). It is also well known that the classical effective stress 
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principle stated by Terzaghi has produced highly accurate results when applied to 
non-swelling media such as sand. However, an extension of Terzaghi's effective 
stress principle to swelling media is not straightforward (e.g. Sridharan and Rao 
[47], Kiralis [36], Chenmin and Hueckel [17]). Modifications of the principle of 
effective stress have also been proposed (Sridharan and Rao [47], Chenmin and 
Hueckel [17]) for clay soils in order to take into account features such as inter- 
particle contact stress, electro-chemical forces, adsorption of water by the clay 
minerals, etc. 

Approaches which have been used to develop models of porous media include 
mixture theory and methods which propagate microscopic governing and con- 
stitutive equations to the larger scale (e.g. homogenization, volume averaging, 
etc.). Mixture theory is an approach in which the system is viewed as overlapping 
continua (e.g. Bowen, [13]). Additional terms are introduced in the conservation 
equations to account for interaction between constituents, and the entropy inequal- 
ity is exploited using the Coleman and Noll method [19] to restrict the forms of the 
constitutive equations. This approach allows assumptions to be brought in only at 
the macroscale so that the form of the constitutive equations can be chosen to fit 
experimental data. One disadvantage of this technique is that microscopic infor- 
mation and features are lost. On the other hand, techniques such as homogenization 
(Bensonssan et al. [10], Sanchez-Palencia [46]) and volume averaging (e.g. 
Bachmat and Bear [7], Whitaker [49]) begin with microscopic conservation and 
constitutive equations and then propagate the information to the macroscale. 
Although this method generally gives useful closed-form relations for macroscopic 
material coefficients, it does not allow much flexibility in chosing the form of the 
constitutive equations at the macroscale. Both approaches are well-established and, 
after initial assumptions are made, have a firm mathematical basis. A combination 
of these two approaches designed to combine the advantages of each was first 
proposed by Hassanizadeh and Gray [33, 34]. We call this approach hybrid mixture 
theory. Essentially it consists of applying classical mixture theory to the macro- 
scopically averaged balance laws for phases and interfaces. Thus some microscale 
information is passed onto the macroscale, yet constitutive equations are formulated 
on this latter scale. 

In order to derive a mathematical model for flow in swelling clay soils we pro- 
pose an approach significantly different from those generalizing Terzaghi and Biot 
models. The proposed model is developed from the microscale by taking advantage 
of the microstructure of clay. The model is multiscale as it includes three levels of 
observation: micro, meso and macro (see Figure 1). At the microscale the model 
has two phases, the disjoint clay minerals and the vicinal water. At the mesoscale 
the model includes the clay particles (vicinal water plus clay platelets) and the bulk 
water, and at the macroscale the medium is treated as a single continuum. Thus the 
vicinal water and the bulk water are treated as two distinct phases. To propagate 
information from the microscale to the mesoscale we adapt with some modifica- 
tions the framework established by Achanta et al. [2]. In this work, to capture the 
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Fig. 1. Multi-scale model for clay. 
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effects of swelling, the upscaling approach used is hybrid mixture theory with the 
volume fraction included as one of the independent variables. It should be noted 
that using the volume fraction as an independent variable began within the context 
of mixture theory (Drumheller [25], Bowen [14, 15], Bedford and Drumheller [9]). 
Gray and Hassanizadeh [30, 35], followed by Achanta et al. [2], used the volume 
fraction as an independent variable within the framework of hybrid mixture theory 
and Achanta et al. [2] suggested that this is an appropriate method for modeling 
clay particles. One of the novel results derived using the hybrid mixture theory with 
the volume fraction as an independent variable is that flow of a single phase, single 
constituent fluid in swelling soils is driven by a gradient of chemical potential [2]. 
Contrary to classical belief (i.e. classical form of Darcy's Law), the gradient of the 
chemical potential is more general than a pressure gradient as it also involves an 
interaction potential to account for the swelling nature of the system. 

Thus at the mesoscale we derive equations which govern the flow of vicinal 
water using the hybrid mixture theory. To model the Newtonian bulk water we 
assume flow is governed by the Stokes equations. Appropriate boundary condi- 
tions between the vicinal and bulk phases are proposed establishing a system of 
governing equations at the mesoscale. We then use the homogenization technique 
[10, 46] to propagate the mesoscopic information to the macroscale. This proce- 
dure results in a single system of equations. In using this upscaling technique 
the loss of information in reducing the number of degrees of freedom associated 
with the movement up the hierarchy manifests itself on the macroscale with the 
appearance of new constitutive variables (Cushman [21]). These new variables 
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appear, for example, in a modified Darcy's law which governs the total velocity 
field, including the flow of both the vicinal and bulk phases. The resultant system 
of homogenized equations is then linearized about an equilibrium state and a gen- 
eralized solution is presented within the framework of the semigroup theory (Pazy 
[43], Sanchez-Palencia [46], Yosida [50]). 

The homogenized model is applied to the classical one-dimensional consoli- 
dation problem described by Terzaghi [48] where the steady-state solution of the 
macroscopic governing equations reproduces Low's [41] swelling-pressure expres- 
sion. In [41] Low reported on numerous experiments and empirically derived a 
relationship between the vicinal and bulk phase pressures at equilibrium (swelling 
pressure). Low's empirical result has recently been derived using the hybrid mix- 
ture theory model at the mesoscale by Achanta et al. [2]. Our model produces 
Low's result directly at the macroscale (including the bulk water phase) as well as 
the mesoscale. 

A brief outlineof the paper is as follows: In Section 2, we develop the model for 
the clay particles based on a combination ofhydrid mixture theory and the technique 
of Lagrangian multipliers which is used to exploit the entropy inequality with 
internal constraints in the sense of Liu [38]. In Section 3, we propose appropriate 
boundary conditions between the vicinal and bulk phases and then establish the 
mesoscopic problem. In Section 4, we apply the homogenization procedure to 
derive macroscopic governing equations and present a generalized solution of 
the linearized problem. In Section 5, we apply the theory to the classical, one- 
dimensional consolidation problem described by Terzaghi [48]. 

2. Governing Equations for Clay Particles with Incompressible 
Constraints 

In this section we present the balance equations, constitutive assumptions, and 
resulting constitutive relations governing the movement of the clay platelets and 
vicinal water. Our development will combine the approach presented by Achanta et 

al. [2] for compressible swelling media with the technique of Lagrangian multipli- 
ers (in the sense of Liu [38]) for exploiting the entropy inequality when the vicinal 
water and clay platelets are incompressible. In [2], the hybrid mixture theory is 
used to derive equations for the general case of a multiphase swelling media. Here, 
we consider a simpler case of a two-phase (solid and fluid), single constituent per 
phase, system which has negligible interfacial effects. The latter assumption is 
physically satisfied if the clay particles are assumed partially swollen and all clay 
platelets are thoroughly wetted. 

In the usual framework of the mixture theory a typical clay particle consists 
of two liquid-solid coexisting continua which undergo independent motions x = 
x~(X~, t), a = l, s with respect to each reference configuration (here x denotes 
the spatial position of the particle of the c~-phase at time t with respect to a 
reference position X=). We begin with the mesoscopic mass, momentum, energy 
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and entropy equations of Hassanizadeh and Gray [33] which are the microscopic 
conservation equations averaged over a representative elementary volume (REV). 
These equations are defined everywhere so that the mi6roscopically distinct phases 
are now viewed as superimposed continua. One of the major advantages of the 
hybrid mixture theory is that each mesoscopic variable is precisely defined in 
terms of its microscopic counterparts. 

The entropy inequalityis postulated for the mixture as a whole. The local forms 
of the balance laws are presented for the liquid and solid phases (represented by 
subscripts I and s respectively) below for the case in which the entropy fluxes are 
solely due to heat fluxes, the only external source is gravity, and the solid and fluid 
are non-polar, non-reacting phases at local thermal equilibrium. 

Conservation of Mass 

D~(r 
Dt 

+ ~b~p,~divv,~ = 0, 

where 4)~, P~ and va are respectively the volume fraction, intrinsic volume-average 
density, and mass-average velocity of phase a. D=/Dt is the material time deriva- 
tive following the a-phase 

D~ 0 
- -  - + v ~  . ~ r .  

Dt Ot 

Conservation of Momentum 

D,~v,~ div(~b~t~) - ~b~p~g = 1"~, 
~P~ Dt a = l, s, (2.1) 

where ta denotes the average symmetric stress tensor for phase a, 1?a the exchange 
of momentum to phase a from the other phase and g is the body force (gravity). 

Conservation of Energy 

D,~E~ ff ,~tr(t~d~)-div(r = Q~, a = l, s, (2.2) 

where E~ is the average internal energy of phase a per unit mass, h~ is the heat 
flux, d~ is the symmetric part of V v,~ and Q,~ is the net exchange of energy between 
phases due to mechanical interactions. 

Entropy Inequality 

Dt 
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where ~ is the entropy of phase a per unit mass of the mixture, T is the tem- 
perature and A is the rate of net entropy production. In addition, the conservation 
of momentum and energy for the clay particle (vicinal fluid plus clay platelets) 
requires 

T~ = O, 
a=l,s 

o r  

( ~  = -T t  �9 vl,,, (2.4) 
~=I,S 

where vl,s = vt - v8 is the mass-average relative velocity (i.e. the objective part 
of the vicinal fluid velocity). 

To obtain a constitutive theory formulated in terms of the temperature rather 
than entropy we choose to replace E~ by its Legendre transform 

As = E~ - Tr/~, 

where As is the Helmholtz free energy density of the a-phase. Replacing E~ in 
(2.2) by As, combining with (2.3) and using (2.4) gives 

A =  ~ [_r \(D~A~Dt r l ~ t ) +  -~tr(t~d~) ~ Ca VT] 

1 l:z ~> 0. -- ~ V l , s "  

The choice of independent variables is based on the experimental constraints and 
internal state behaviors of the system (the latter is related to the swelling properties 
of the clay particles). Assuming that on the mesoscale, the solid and fluid phases are 
incompressible and not heat conducting and that the vicinal water is non-viscous, 
the behavior of the system is dictated by the following independent variables: 

T,E~,r VCt, vl,,, (2.5) 

where E, is the averaged strain tensor of the skeleton formed by the solid phase 
and is given by 

E s  1 T :  (Fs r s  - I ) ,  
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where F~ = grad x~ denotes the deformation gradient (with grad denoting the 
differentiation with respect to a material particle on the averaged state). 

We include ~Tq~l in the set (2.5) to provide a potential for vicinal water flow in 
swelling systems. This is analogous to including VT: as an independent variable in 
a heat-conducting medium (see e.g. [27]). Our dependent variables, i.e. variables 
which are functions of the set of independent variables (2.5), are thus 

A~, ~/~, D~j_L,t~,ha,T1 ,A a = 1,s. (2.6) 
Dt 

In Hassanizadeh and Gray [34] E~ and 95l are not considered to be independent 
variables, since knowledge of Es determines 95l through the continuity equation 
for the incompressible solid phase. On the other hand it is pointed out by Achanta 
et al. [2] that the inclusion of the volume fraction as an independent internal state 
variable is crucial for a proper description of swelling. The inclusion of the volume 
fraction is necessary to recover the well known empirical exponential swelling 
relation between the pressures of the vicinal and bulk phase waters determined by 
Low [41]. The disparity between the two approaches can be mollified by viewing 
the continuity equations for the solid and fluid phases as constraints (Liu [38]) 
rather than balance laws. These constraints are enforced by adding to the entropy 
inequality the mass balances for incompressible media premultiplied by Lagrangian 
multipliers. The theorem proposed by Liu gives an equivalence between the entropy 
inequality with an imposed restriction and a modified entropy inequality using the 
Lagrange multiplier formulation. 

The closure issue, which is discussed extensively by Bour6 [12], must be 
addressed. For compressible materials and/or multiphase flows, p,~ and 95~ may be 
included in the list of independent variables [1 5, 35] and [2] (the latter as an internal 
variable). To have the same number of equations as unknowns an additional closure 
law is provided by postulating that D~95t ~Dr (the material derivative following the 
solid phase) is a dependent variable with dependence given in terms of a volume 
fraction topological law in the sense of Bour6 [12] (or rate law for 951). As noted by 
Bout6, this law is distinct from the other constitutive equations. It contains features 
specific to multiphase flows such as interfaeial structure and geometry, that must 
be restored to enable closure. Because both vicinal fluid and the clay platelets are 
assumed incompressible, we diverge slightly from our predecessors' approach- 
es. In [2] incompressibility is not considered and in [34] Ds95JDt is eliminated 
using the continuity equation. As pointed out in [2], the rate law for 95 contains 
important information related to swelling pressures in clay colloidal systems. We 
wish to retain the additional information obtained when considering D~95z/DZ as a 
dependent variable and still enforce the incompressibility of the two phases. This 
is accomplished by imposing the continuity equation for incompressible media 

D adpa 
- - + C o d i v v a = 0 ,  a = l , s  (2.7) 

Dt 
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using two Lagrange multipliers, A1 and A~ in the entropy inequality 

A= ~_~ T \ Dt + r I p - j +  t r ( t ~ d ~ ) + ~ - ~ h ~ . V T  - 
og=l~s 

- ~ v t , s  �9 -+--  + r div va /> O. 

According to Liu [38], the problem now can be treated as a free variation problem 
with the Lagrange multipliers, Al and As as unknowns which are neither independent 
nor dependent variables in the sense of (2.5) and (2.6), i.e. they are functions of x 
and t. 

Since in our formulation the continuity equation was imposed as a constraint 
rather than a balance law, Dsr was not eliminated from (2.7) and therefore 
the swelling information available in the topological law for Dsr is main- 
tained. 

As in [2] the dependence of the Helmholtz free energies on the independent 
variables is postulated to be 

Al = At(T, r As = As(T, Es). 

The retention of the volume fraction in the constitutive dependence of Al is 
motivated by Low [41], who verified experimentally that the free energy of the 
vicinal water is strongly dependent on the separation of the clay platelets. 

The Coleman and Noll method [19] is now used to exploit the restrictions 
placed by the entropy inequality on the constitutive theory. By substituting the 
above functional forms into the entropy inequality, expanding the material time 
derivatives and using the relation DsEs/Dt = FTdsFs [27], we obtain 

A = 

/> 

~p~ ( OAa ) D~T ~ 
T \ - Y (  + --bY + tr((t  + A I)d ) + 

+-~t r ( ( t s  + A f t -  t : )ds)  + ~--sVT • 

• r - r \ -~"  + rll -- 
8 

/ OAt V~ 'FI) 1 �9 (,r 9l - AtVr + - - -  ~ V l ,  s 

1 Osr [" OAI ) 
T Dt ~r - A1 + As 

O, 
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OAs T 
= psFs--~-~'-~ Fs 

Urns  

where  

is the classical effective stress tensor of the solid phase introduced by Terzaghi 
[48]. 

Because DsT/Dr, dl, ds and V T  are neither dependent (constitutive) nor inde- 
pendent variables, A is a linear function in these variables. Hence, for the inequality 
to hold for all possible processes, the coefficients of these variables must be iden- 
tically zero. This gives the following relations which must always hold 

Z 
Ot~l~S 

Z 
OL----/~$ 

( OA~ ) 
r OT + ~  =0, 

(OAt ) 
r - CtptTvt,s \--~-- + r/t = O, 

tl = - A l L  

ts = -AsI  + t~. 

We are left with the residual entropy inequality 

A 1 .((2tptOAtvct_AtVOt+qs = 

1 DsCt / OAt ) 
T Dt ~r At+As >. O. (2.8) 

2.1. EQUILIBRIUM RESTRICTIONS 

The state of thermodynamic equilibrium is defined to be the state in which 
the variables {VT, vt,s, DsCt/Dt} vanish. At equilibrium, entropy is maximum 
and entropy generation attains its minimum value and therefore we must have 
(OA/Oza)e = 0 and (OEA/Oza OZb) e positive definite. Here (.)e denotes the eval- 
uation of the functions at equilibrium and z~ and Zb are any of the above set 
of variables. Application of these requirements to the residual entropy inequality 
yeilds at equilibrium 

(4s ((At OAt'~ Vr  = - Ctpt-y ! ) 

/ OAt'~ (2.9) 
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By comparing the above equations with those of [2], where no incompressibil- 
ity assumption is made, we note that the Lagrange multipliers A~ represent the 
pressures p~ of the phase o~. For compressible media these have been previously 
defined as (e.g. [34]) 

p~ 20A~ ) 

In classical literature on interfacial thermodynamics, the difference ,~l - ),~ is 
commonly referred to as 'interracial pressure' (Zangwill [51]). When moisture 
content is high it is reasonable to assume that the majority of the overburden 
pressure is carried by the vicinal water. This assumption implies that the interfacial 
pressure is approximately equal to the pressure in the vicinal water and henceforth 
we may assume 

Al - As = Pt - P~ ~ Pt. (2.10) 

Under the above hypothesis, application of (2,9) to a clay-swelling experiment [2] 
leads to the exponential swelling pressure relationship between the pressures of the 
vicinal and bulk water postulated by Low. 

2.2. NEAR-EQUILIBRIUM THEORY 

To obtain results which hold near equilibrium, the non-equilibrium restrictions 
can be expanded in a Taylor series about equilibrium and a linear approximation 
obtained by neglecting quadratic and higher order terms in the expansion. In the 
subsequent discussion we linearize the residual entropy inequality about variables 
which are zero at equilibrium (i.e. Dsr  vl,s) and ensure positive quadratic 
forms appear after the linearization so that (2.8) is always satisfied. We have using 
the assumption (2.10), 

OA1V.  ~ 
6 lPl -~ l  q)l -- p lVr  + q~l = --(r 

and 

(2.11) 

where K1 and # .  are material coefficients (the latter has dimensions of viscosity) 
which depend on the set of independent variables and which are constrained to be 
positive by the residual entropy inequality. We assumpe isotropic behavior of the 
clay particles at the mesoscale so that Kl = KlI  where Kt is the permeability of the 
clay particles. Based on previous experimental results (Low [39]), the conductivity 
of clay soils is assumed to be of the form Kt = Kt(r  Also through the remainder 
of the paper we assume # .  = # , ( r  

OAt D~r (2.12) 
P1 = r + #.  Dt  ' 
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Equation (2.12) introduces a novel definition of swelling pressure for non- 
equilibrium processes in colloidal systems (Achanta and Cushman [1]). When 
D , ~ l / D t  = 0 it reduces to the traditional equilibrium definition. 

A generalized form of Darcy's law can now be derived by combining (2.11) 
with the momentum equation (2.1) for the liquid phase to eliminate T 1. Neglecting 
inertial terms and noting that tl has only a pressure component we have 

O AI V ~ _ PIgl) 
$lVl,s = - -Kl (~ l )  ( V p l  + p l - ~ l  'r (2.13) 

The above form of Darcy's law differs from the standard one used to model saturated 
flows in non-swelling systems. The important difference is the appearance of an 
additional 'interaction potential' which accounts for swelling. We remark that a 
similar additional term namely the 'wettability potential', was derived in [30, 35] 
for unsaturated flows. 

3. Mesoscopic Problem for Clay Particles and Bulk Water 

In this section we formulate the mesoscopic governing equations for the clay 
particles and bulk water along with the appropriate boundary and initial conditions. 
We begin by re-writing Equations (2.7), (2.12) and (2.13) for the case in which the 
convective terms in the continuity equations are negligible for the clay particles, 
i.e. v~ �9 ~Tq~ << 1, We have 

O--t- + (1 - q~l) divql = O, 

= + - p z g ) ,  

Pl = ~IP, + # ,  Ot , 

where 

OAl 
p ,  = p l - ~ l  l and ql = ~lVl,s, 

with p ,  having the same units as pressure. The above system is supplemented by 
experimentally obtained coefficients Kl = Kl(~bl), p ,  = p,(qSl) and # ,  = #,(~bz) 
completing the mesoscopic description of the clay particles. In addition, it is 
postulated that the bulk phase flow is governed by the classical Stokes problem 

d iv t f  + p : g  = 0, 

t: = - p : I  + 2#:d:,  
div v :  = 0, 

(3.1) 
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where the subscript f denotes the bulk phase and #Y the viscosity coefficient. A 
complete mesoscopic description of the entire system requires additional boundary 
conditions on the particle-bulk water interface F and initial conditions. Through 
the remainder of the paper we shall assume Pt = Py = P (which is satisfied if 
there is enough vicinal fluid) and hence continuity of the mass on the interface 
requires 

ql "n  = vf,s  �9 n on F, 

where n is the unit normal exterior to f~y. We introduce the chemical potential #~ 
of phase a which, for a single component system is defined as (Callen [16]) 

#~ = G~ = A~ + p - l p ~ ,  a = l, f , (3.2) 

where G~ is the Gibbs free energy of phase a. Applying the above definition to 
the vicinal water we have by the chain rule 

p V p t  = p . V C t  + Vpt ,  

which when combined with Darcy's law yields 

qt = - p K z ( V # t  - g). 

The above equation emphasizes a well-known classical result which states that the 
gradient of the chemical potential provides the generalized force for flow of matter, 
i.e. matter tends to flow from regions of high chemical potential to regions of low 
chemical potential. Thus in our form of Darcy's law, '~7/.t I is more general than ~7p1 
since it involves a coupling term p , V r  accounting for swelling. This result can be 
exploited to derive the second boundary condition on r .  To this end we shall pursue 
a generalization of the framework of Douglas and Arbogast [241 for single-phase 
flow in non-swelling fractured media, where continuity of the pressure in the fluid 
on the interface between the porous blocks and fracture domains is postulated. 
Since our driving force is the chemical potential, the approach of Douglas and 
Arbogast can be generalized to swelling media by postulating continuity of the 
chemical potential on the boundary 

# t = # y  o n F  (3.3) 

or using (3.2) 

pAt  + Pt = p A y  + py on F. (3.4) 

Note that this assumption is consistent, but more general than that of Douglas and 
Arbogast, since it reduces to the continuity of the pressure when swelling is absent, 
i.e. when Az does not depend on qSt so that At = Ay .  
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The above equation imposes a boundary condition involving the trace of the 
bulk-phase stress tensor. It should be recalled that we have assumed the vicinal 
water supports no shear. Thus in addition to (3.4) we assume the following condition 
for the deviatoric part of tf: 

dyn ~ dsn onF.  (3.5) 

The Stokes problem can be posed in terms of the bulk-fluid velocity relative to the 
solid phase, vLs. Since vs is zero outside its domain of definition we can simply 
replace vy by vf,~ and dy by dy,~ in (3.1) where df,s denotes the symmetric part of 
~Tvf,~. In addition, if we define ty,~ = - p f I  + 2#Ydy,s, then (3.5) implies that the 
normal component of the deviatoric part of ty,~ vanishes on the boundary. Together 
with (3.4) this gives 

(pAt + pz)n = (pAyI - ty,~)n on F, (3.6) 

which represents continuity of the normal component of Bowen's [13] chemical 
potential tensor,/x~, 

g~ : A/~I-  p-it/~, 

with/3 = I and f~ s. Because Al = Ay when <~t = 1, we may rewrite (3.6) as 

(tf,~ + pzI)n = p . ( s ) I d s  n on F. 

Together with the above Neumann boundary condition, we shall henceforth con- 
sider the Stokes problem posed in terms of {ty,s, py, vy,~}. To simplify notation 
we redefine ty and vy as relative to the solid phase and then pose our mesoscopic 
problem in terms of these variables. 

Let f~ and f~y denote the vicinal and bulk fluid domains, respectively. Then 
our mesoscale problem is given by the following system of equations for the five 
unknowns ~l, ql, vy, Pl and py 

d i v v y = 0  inlay, 

-~fAvf q- Vpf = pg in f/f, 

0t + (1 - ~bt)divq~ = 0 in ~21, 

qz = -Kt((~l)[Vpz + p.(~t)V(~t  - pg] in a l ,  

Pl = ~bzp.(~bz) + #.(6t)~--~t t in f~, 

q l ' n : v f ' n  onF~ 

(ty + plI)n = p . ( s ) I d s  n onI?, 
l 

~l=~b0 i n a l ,  t = O .  
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When the driving force for the vicinal water flow is the gradient of the pressure, our 
mesoscopic problem is similar to that discussed by Ene and Vernescu [26] for the 
slow motion of a Newtonian viscous fluid in a non-swelling fissured medium. 

4. Two-Scale Asymptotic Expansions 

4.1 .  MACROSCOPIC EQUATIONS FOR A SWELLING MEDIUM WITH A BULK PHASE 

By upscaling the mesoscopic problems posited in the previous section we derive 
governing equations at the macroscale (Fig. 1). We begin by postulating the exis- 
tence of a periodic reference cell, f~0, consisting of the union of the vicinal and 
bulk water domains. In order to determine a macroscopic equivalent description, 
the asymptotic behavior of the periodic solution of the mesoscopic equations is 
sought as the period tends to zero. Following the general framework of the homo- 
genization procedure [10, 46] we introduce two lengths characterizing the pore 
size (I) and the observation size (L), and their ratio e = l /L(e << 1). The tran- 
sition from the mesoscopic (in which the heterogeneities can be distinguished) 
to the macroscopic description (in which the dual porosity of the structure is not 
distinguishable) is carried out by letting e ---+ 0. This process is accomplished by 
considering every property to be of the form f(x,  y) (where x and y denote the 
macroscopic and mesoscopic coordinate respectively with y = e - i x )  and then 
postulating two scale asymptotic expansions for the set u ~ of primary unknowns 
{qt, v$, pt, PI,  ~bt} in terms of the perturbation parameter e 

u ~ = u ~ + eu 1 + e 2 n  2 +  . . .  

with the coefficients u i, f~0-periodic in y. A difficulty inherent to the swelling of the 
clay particles is the treatment of the free interface, 1L One way of overcoming this 
difficulty, as discussed in [3, 5] when homogenizing immiscible flows, is to assume 
that the movement  of the interfacial boundary is small relative to the movement of 
the fluid phase. Formally the free boundary problem is treated as a perturbation of 
order e of a zero order problem posed in fixed domains ft} and f~} separated by a 

zero order interface F ~ 
We assume that clay particles and bulk phase are of dimension e, and that all 

dimensionless quantities associated with the mesoscopic problem are of order e ~ 
except (Auriault et al. [6]) 

IVPSl _ PI L = O(e-2).  
OL-  SlAvs I  svs 

Using this estimate the viscosity term in the Stokes problem is rescaled by c a. 
Inserting the above developments into the set of governing mesoscopic equations 
with the differential operator cg/0~ replaced by cg/Oz + e-lcO/cgy we obtain, after a 
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formal matching of the powers of e, successive cell problems. For the bulk water 
we have 

Vyp~ = 0 in f~f, (4.1) 

#YAvv~ - Vzp9 - Vyp} + pg = 0 in [2], (4.2) 

divyv~ = 0 in f~f, (4.3) 

divxv~ + divvy} --- 0 in ft],  (4.4) 

and for the vicinal water, after expanding the set of phenomenological coefficients 
0 = {KI,p. ,  #.} about r we obtain 

0 0 VyP ~ + P.~ 'yr  = 0 in f~l, (4.5) 

0 0 1 qO = _KO[VxpO + V v p / +  p,(X7~r + Vvr ) - pg] in f~I, (4.6) 

p~ o o . o0 r  ~ = P.r  + / z . - ~  in 9tl, (4.7) 

divyq ~ = 0 in ftz, (4.8) 

ar  o 
Ot + (1 - Ct~ ~ + divyq]) = 0 in ~2t, (4.9) 

along with boundary and initial conditions 

( q l -  v}) .n  = o onr, (4.1o) 

(t} + p ~  = o ds n onF,  (4.11) 

= = - p . r  on r ,  (4.12) o 

r = Co(x) in f~t,t = 0, (4.13) 

where O ~ o o o = {Kz, p. , /z.} satisfies 

o = o ~ + ~r ~ 1 7 6 1 6 2  ~ OOz" l, + o(e:).  
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At O(e~ has only a pressure component and using (4.1) t} = -p}(x, t)I. 
Combining (4.5) and (4.7) we obtain 

o o 0.-, 0 r  ~ c VyCt + #,Vy--~-  = O, (4.14) 

with the coefficient c~162176 or given by 

co  odp ~ d ,  ~ 0r ~ 
= ,ez 5-26 + 2P~ + dr de ~ 0t 

Integration of (4.14) leads to 

VyCt~ = Vur176 ., 0)exp [ -  fotC~176 -1 ds] 

which when combined with assumption (4.13) on the initial data leads to r = 
r176 t). Together with (4.7)this also implies pO = pO(x ' t) and therefore from 
(4.7) and (4.11) we have 

L lpO(s) ds, pO 0 o # , 0 r  ~ 
- = P , r  + �9 po po= at 

We now derive the macroscopic Darcy's law governing the flow of both the vicinal 
and bulk water. To this end we analyze the local problems {(4.2), (4.3)} and 
{(4.6), (4.8)}. Let L2(f20) be the usual Hilbert space of square integrable scalar 
valued f2o-periodic functions defined on f2i, (i = 0, l, f) ,  equipped with the usual 
inner product 

(f ,g)i= L fgdf2, i=O,l , f .  
Js  i 

Let H i (f2o) denote the Sobolev subspace of L2(f20) consisting of f20-periodic 
functions with the derivative Of in the distributional sense satisfying Of C L2(f2o) 
and equipped with the inner product 

(f,g)l = ~ ff~ cO~ f2. 
[al~<l o 

Let the space W(f2o) be defined by 

W(f~o) = {w E L2(f~o), divyw = 0}. 

0 Since the solution, vf, of the local problem { (4.2), (4.3)) with Neumann conditions 
is determined up to an additive constant we also need the quotient space Wf (f2f) 

W f ( ~ ' ~ f )  -~- {Wf E g l ( ~ - ~ f ) ,  divywf = O, @f = 0}. 
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The weak formulation of the local problems is given by 

/ ( v : ~ ,  V~w:) :  

= ( p g - V z p g , w f ) f + f r t l f n . w y d F  Vw E Wf, 

0 - 1  0 (Kt) (ql, w)l 

---- (Pg - VzP0, w)t - v,~0:Vz~el~'0, w)l+ 

+ f ( ;~  o 1 + p , r  VwEW. 
Jr 

Let 
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(4.15) 

(4.16) 

(4.17) 

The left-hand side defines a symmetric coercive bilinear form and thus the existence 
of a unique solution is an immediate consequence of the Lax-Milgram lemma. 

From (3.2) the chemical potential at O(e~ #o (x, t), (i = l, f )  of both the vicinal 
and bulk water phases is given by 

plzO = pA o + pO i = 1, f (4.18) 

where A9 = Af  is constant and At ~ = At(C~ Application of the boundary 
condition (3.3) at O(e~ implies #9 = #o =/zo. Moreover we have from (4.18) 

~o V ~o in f~l VxP ~ + v,  xv'l 
PVz#~ = Vxp~ in f~f 

and therefore (4.17) can be rewritten as 

(K~ -~ (v ~ , w)~ + / ( v u v  ~ Vyw):  

(pg, w)o (vxp  ~ o o = - - v , (vxr - ( vxv~ ,w) :  

U(ao, n:) = {w e W(no),w: e wan:)) 

and define the total velocity 

v = { V f  in f , /  
qt in f~t. 

By adding (4.15) and (4.16) and using the boundary condition (4.12), V ~ satisfies 
the variational problem: Find V ~ E U such that Vw E U 
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(K~ -1 (v ~ + #s(vyv~ Vyw)i 

= p(g - Vz#~  Vw E U. (4.19) 

If we define to(y) as the particular solution of (4.19) corresponding to p(g - 
V~#  ~ = I and introduce the mean value operator 

7 ~ laO1-1 L "df2i(y), i = l, f, 
o 

then by linearity we have after averaging 

fr = _ p K ( V x # o  _ g), with K = s (4.20) 

where 

= o V -o V~p~, PV~#  ~ V z P  ~ + p,  x@z + 

Equation (4.20) is the macroscale Darcy law which accounts for the flow of both 
the vicinal and bulk water. The coefficient K is a symmetric positive definite tensor 
which depends on the mesoscale permeability of the clay particles, Kt, the viscosity 
of the bulk water, #f ,  and the geometry of the cell. This coefficient is identified 
with the macroscale conductivity of the entire system. It can be determined by 
averaging the solution of the cell problem (4.19) with a unit source. We remark 
that this definition differs from the classical one, but is similar to that of Ene and 
Vernescu [26] for non-swelling fissured media. 

Finally, we derive the macroscopic mass balance. To this end we introduce the 
zero-order volume fraction of the clay particles relative to the ceil, n o = [f 01/l  [ 
and formally treated it as a constant within the context of the perturbation analysis 
of the free boundary problem. Applying the mean value operator to (4.4), coupled 
with the boundary condition (4.10) and the periodicity assumption yields 

d~vxV~ = -If~o[ -1 f a  divyv} d~  

(4.21) 

Averaging (4.9) and using (4.21) gives 

n ~ + (1 - r176 ~ + d i v x ~ )  = 0 



112 M,~RCIO A. MURAD ET AL. 

or in terms of the total velocity 

o0r 
n ~ + ( 1 - r 1 7 6  0 = 0 .  

After dropping superscripts and subscripts, for a given set of coefficients 0 = 
{Kt, p., #.}, the system of homogenized equations is 

OCz n--~- + (1 - el) divV = O, 

V = - K ( W p t  + p,Wr + V p ]  - pg), 

.0r  
p~ = p,(0~)r + # , ( r  0t  ' (4.22) 

which can be rewritten as 

n - - g / +  (1 - Cz) d ivV = O, 

- 0r  
V = - A V e r  - B V - - ~ -  + K p g ,  (4.23) 

with the coefficients A and B given by 

( ~_~ ____d#*Or B = 2 K # . .  A = 2 K  r + 2 p , +  dr Ot ' 

If the gravity term is negligible, the macroscopic form of Darcy's law in (4.23) is 
analogous to the viscoelastic constitutive equations for the effective stress tensor 
in rheological models for secondary consolidation and creep of clay (e.g. Barden 
[8], Gibson and Lo [29]). In the viscoelastic model the constitutive equation for the 
effective stress tensor is given by a combination of linear or non-linear 'springs' 
with linear or non-linear 'dashpots' with short time memory. After homogenizing, 
the mesoscopic viscoelastic form of Darcy's law (2.13) for the vicinal water also 
governs the flow of vicinal and bulk water at the macroscale, i.e. the macroscopic 
flow governed by (4.22) and follows the gradient of the chemical potential for the 
entire system including the vicinal and bulk phase contributions. 

4.2. SOLUTION OF THE LINEARIZED MACROSCALE MODEL 

We assume that both the clay particles and the bulk water are initially at equilibrium 
with a constant volume fraction r Volume fraction changes, together with their 
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space and time derivatives are assumed small. Linear terms in the governing 
equations and quadratic terms in the Helmholtz free energy of the vicinal water are 
retained. We have 

pAl = pAo + e~(r - r + -~(r - ~/ / )2  

where A0, a and/3 are constants depending on r Retaining only linear terms, 
denoting {f( ,  ~-,} = {K(r #,(r and noting that p ,  is given by 

p ,  = ~ + / 3 ( r  - r  

our system of linearized homogenized equations is 

0r  n-~- + (1 - r  = 0, 

V = - [ f ( V p t  + ~VCt  + Vpy  - pg), 

I4 P l - P f  = p , ( s )  d~ - c~(r  ~ ) ,  

- -  - -  - -  0r (4.24) 
p~ = c~r + (~ +/3r162 - r + P,  a t  

We now present a generalized solution of the above linearized system. Consider 
the macroscopic clay soil domain f~ and without loss of generality, assume homo- 
geneous Dirichlet boundary conditions on Oft. Then (4.24) can be written as 

- 0r 0r 
0~ACt + bA--~- = n--~-- in f~, 

on 0~2, 

in f~, t = 0, (4.25) 

6~ = 2/~(1 - r +/3r b = 2f((1 - r 

The above system is the linear Kelvin-Voigt viscoelasticity problem with an addi- 
tional external damping term in the right-hand side. The existence of a generalized 
solution of linear viscoelastic problems is usually obtained within the framework of 
the semigroup theory (Pazy [43], Sanchez-Palencia [46], Yosida [50]). Define 

V = Hol(~) = {v r H I ( ~ ) ,  v = 0 on Of/} 
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and the symmetric bilinear forms 

a(u, v) = ~(Vu,  Vv), b(u, v) --- b(Vu, Vv)  + n(u, v), V{u, v} e V 2 

where (.) denoting the inner product in L2(f~). The weak form of (4.25) is: Find 
@ E V such that 

( 0 @ , )  
a(@, v) + b \--~- v = 0, Vv E V. (4.26) 

Clearly the forms a and b are continuous and coercive. Using the Riesz repre- 
sentation theorem define the linear self-adjoint, bounded and coercive operator 
A: V --+ V such that 

b(A@,v) = -a(@,v), Vv E V, 

so that (4.26) is given by 

b \_0_~ _(0@ _ A@, v) = 0, Vv e V. 

Together with the initial condition this can be rewritten as an evolution problem of 
the form 

0r 
Ot = A@, @( . ,0 )  = r (4.27) 

Since A is a bounded operator in V, A is the generator of the uniformly contin- 
uous semigroup, T(t) = e ta (Pazey [43]). Moreover, T(t)r defines a strongly 
continuous function on V which is the solution of (4.27). 

5. Application to One-Dimensional Consolidation of Clay 

In this section we apply the macroscopic model of Section 4 to the classical 
one-dimensional consolidation problem described by Terzaghi [48]. The problem 
consists of a porous column of length L bounded by rigid, impermeable walls, 
except on its top where it is loaded by a pressure P0 and is free to drain. The 
clay particles are assumed partially swollen so that the overburden pressure equals 
that in the vicinal water. In one-dimensional consolidation the displacement of 
the porous medium can be calculated using the mass balance of the solid phase. 
Denoting atmospheric pressure by Patm and for simplicity dropping the gravity 
term, the one-dimensional simplification of (4.22) is 

O@ r OV 
n-b7 + = o, 



MULTI-SCALE THEORY OF SWELLING POROUS MEDIA: I. 115 

v = - K  \-b-2~ + P * ~  + o z ) '  

0r 
Pz = P, Ct + # ,  O r '  

Pl - Pf  = p . ( s )  ds, 

with boundary conditions 

P l = P 0  o n x = 0 ,  

Py = Patm on x = 0, (5.1) 

V = 0  o n x  = l, 

and initial condition 

Cz = r in (0, L),  t = 0. (5.2) 

5.1. EQUILIBRIUM SOLUTION 

We show that the equilibrium solution of  the above system at steady state reproduces 
Low's  [41] exponential swelling relation. Setting 0 r  = 0, we have 

V = 0 ,  

Opt OCl Op] = 0, (5.3) 
Ox + P*Tx + Ox 

Pl = P,  Ct, (5.4) 

Pt - Pf  = p . ( s )  ds. (5.5) 
l 

From (5.5) 

Op s Op~ ocz 
0---~ - O~ + p* O x '  

which when combined with (5.3) leads to 

Op~ 0r 
o--2 + p . - $ 2  = o. 
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Hence, using (5.4) we have 

0r O(p~r _ o, 
r ~ + pl ox - O ~  

which after integration yields 

p~r = p.(r 2 = C, 

where C is a constant. Hence, Cz, Pl and P :  are constants with Pl = P0 and 
P f  = Patm. TO solve for Ct we have, from (5.4) and (5.5), 

dpl Pz 
dq~l = -P* = -r (5.6) 

which after integration and using the condition Pt = P :  = Patm at r -= 1 yields 

Patm (5.7) 
p l -  Cz" 

When the clay consists of flat platelets, the swelling of the system is dictated by the 
separation of the platelets, )~. If we denote the effective thickness of a clay platelet 
by ),~, the volume fraction is given by 

r ), + ) ,  �9 

On rewriting (5.6) in terms of the separation between platelets, we find 

+ a  0)~=-P~" 

At high moisture contents, )~ << )~2/.Xs and, hence, after integrating we obtain 

Pl = P :  exp(As/A). 

The swelling pressure II is given by 

II  ~ Pl - P :  = p : ( e x p ( ~ , / ) ~ )  - 1). 

The above relation for the swelling pressure is identical to that obtained empiri- 
cally by Low [41] at equilibrium. We also remark that Achanta et  at .  [2] obtained 
the identical result at the mesoscale by applying the hybrid mixture theory to the 
clay particles and assuming compressibility. Here we generalize the approach of 
Achanta et  al . ,  where we show that Low's result also obtains from the macroscop- 
ic problem with incompressibility assumptions. To the authors' knowledge it is 

M,~RCIO A. MURAD ET AL. 
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the first time a model for one-dimensional consolidation reproduces the classical 
swelling pressure result at equilibrium. 

5.2.  SOLUTION OF THE LINEARIZED EVOLUTION PROBLEM 

The transient solution of the one-dimensional consolidation example is now derived 
by considering the problem governed by the following simplified form of the 
linearized system (4.24) 

OCt - -  O V  
n - j / -  + (a - r = o, 

( op~ oct opf ) 
v = -5" \ T x  + ~-d~ + -UX-~;' 

p~ - ps = / - 1  ~(~) d~ - ~ ( r  ~ ) ,  

JCz 

;~ = ~r + (~ +/~r162 - r + p, ~162 

together with the boundary and initial conditions (5. l) and (5.2). Setting Cz = r t 
where the superscript oc denotes the steady state solution, from (5.4) and (5.7), 
Po = ~ r  and Coot = Patm/PO. Introducing the dimensionless quantities 

x*  - x__ S = 2 h ' # ,  (1  - r t* = R t ,  
- L ' n L  2 

where 

R = 2/{(1 - r +/3r 
n L  2 

the above problem can be rewritten as 

0r 02r 03r 
- -  - - - + S -  
O t *  Ox .2 Ox*20t  *" 

The solution admits the following Fourier series expansion 

Ct = Patm + ~ sin(Mx*) exp 
PO n=O 1 + -ff-M 2 ] 

Pt = Po + ~ -~ -  Y i-~ff--~-2] sin(Mx*)exp 
n=0 1 + S M  2 ' 
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~ 2r ( 
P f = Patm + ~ ~ 

n=0 

#*M2R sin(Mx*) exp 
1 + S M  2 1 + S M  2 ' 

V = -4 / s  ~--~. r 
n=0 

1 + S M 2 J  cos(Mx*) exp l -+if---M2) ' 

where 

M - H(2n + 1) f = a + flPo flPo 
2 ' a ' "0=2~ 

The displacement Us of the solid can be calculated in a post-processing scheme 
using the linearized macroscopic continuity equation for the solid phase, 

_ O 2 G  
+ r -o ,  

with ~s = 1 - r Hence, we have 

OCt 
= (1  - r o Ga2 n - g (  Ox ' 

which can be expressed in terms of the dimensionless quantities and the corre- 
sponding dimensionless displacement Us* = Us (Po - Patm)/nLpo as 

02U * _ 0r  

Ot* Ox* Or*" 

Together with the condition U* (x, 0) = 0 this yields the solution 

U* = ' ~  -~-5cos(Mx ) 1 - e x p  
n=0 1 + S M 2 " 

Figure 2 shows different evolutions in time of the normalized displacement U'~(0, t) 
with respect to the steady state solution (U~(O,t) = U2(O, t)/U~(O, ec)) para- 
metrized by the number S. Terzaghi's solution of the parabolic problem is recovered 
from the viscoelastic problem when S ---+ 0. Due to the viscous relaxation term, 
as S increases, U* approaches U~ less rapidly than would be expected from the 
Terzaghi theory. This phenomenon is extensively discussed in the literature on 
secondary consolidation and has been modeled using different rheological models 
(e.g. Gibson and Lo [29]). 

6. Remarks on Evaluating the Phenomenological Coefficients 

In our model there are three phenomenological coefficients which must be exper- 
imentally determined, #,,  Kt, and p,. Of these coefficients Kt and #,  arise when 
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Fig. 2. Evolution in time of the normalized displacement. 

linearizing the residual entropy inequality (2.8) about equilibrium. They can be 
evaluated from Darcy's law and the topological law (2.11) and (2.12) for ql and 
Dsrfiz/Dt respectively. The latter coefficient can be measured in a non-equilibrium 
swelling pressure experiment. Both of these phenomenological coefficients require 
knowledge of p,. Thus one must first obtain p,,  which is given by pzOAz/Of5 where 
Al = Al(&l) for the incompressible vicinal fluid. Since At may be multivalued, 
determining the constitutive form of Az is not as simple as it may seem. Because 
we linearized about equilibrium, which is an unknown state in this problem, p,  is 
dependent on the choice of the equilibrium reference configuration (for the con- 
solidation problem equilibrium was taken as the steady-state configuration). As a 
first approximation p,  can be evaluated using the equilibrium swelling pressure 
relationship. In this case p, = Patm/q~. 

7. Conclusions 

We have presented a multi-scale theory for flow in swelling media. Vicinal and bulk 
waters were treated as distinct phases. Swelling at the mesoscale was studied within 
the framework of hybrid mixture theory. Upscaling the mesoscopic equations for 
the particles and bulk phase within the framework of homogenization led to Darcy's 
law at the macroscale. Darcy's law states that the flow of vicinal and bulk phases is 
driven by a gradient of the chemical potential for the entire system including both 
vicinal and bulk-phases contributions. 

A simplified theory was applied to the classical one-dimensional consolidation 
problem. It was shown that the steady-state solution of this problem reproduces 
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Low's  swelling-pressure relationship between the vicinal and bulk-phase pressures 
at equilibrium. Such a result is novel  for consolidation problems. 

Extensions of  the theory to multi-dimensional consolidation problems which 

include particle shearing can be obtained by combining the present approach with 
a more general description of  the solid matrix. This can be accomplished by postu- 
lating more general sets of  independent variables in the hybrid-mixture theory. 
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