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Three-dimensionally periodic dielectric structures, (photonic crystals), possessing a 
forbidden gap for electromagnetic wave propagation, (a photonic bandgap), are now 
known. If the perfect 3-dimensional periodicity is broken by a local defect, then local 
electromagnetic modes can occur within the forbidden bandgap. The addition of extra 
dielectric material locally, inside the photonic crystal, produces 'donor' modes. Con- 
versely, the local removal of dielectric material from the photonic crystal produces 
'accepter" modes. It wil l now be possible to make high-Q electromagnetic cavities of 
volume ~ 1 cubic wavelength, for short wavelengths at which metallic cavities are 
useless. These new dielectric cavities can cover the range all the way from millimeter 
waves, down to ultraviolet wavelengths. 

1. Introduction 
There is an interesting analogy between electron waves in a crystal and light waves in a 
three-dimensionally periodic dielectric structure. Both should be described by band theory. 
The idea of photonic band structure [1, 2] is rapidly gaining acceptance [3-6]. The concepts 
of reciprocal space, Brillouin zones, dispersion relations, Bloch wave functions, Van Hove 
singularities, etc, are now being applied to optical waves. 

Recently, some three dimensional topologies have been discovered [5, 7], in which a 
'photonic bandgap' can open up. This is an energy band in which optical modes, spontaneous 
emission, and zero point fluctuations are all absent. Indeed, a photonic bandgap would be 
essentially ideal since optical dielectric response can be real and dissipationless. 

In addition to the obvious applications in atomic physics, inhibited spontaneous emission 
can now begin to play a role in semiconductor and solid state electronics. If  the photonic 
bandgap overlaps the electronic band edge, spontaneous electron-hole recombination is 
rigorously forbidden. In a semiconductor laser, this would lead to near unity quantum 
efficiency into the lasing mode. Photon number state squeezing [8] into that mode would 
be greatly enhanced. 
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efficiency into the lasing mode. Photon number state squeezing [8] into that mode would 
be greatly enhanced. 

There have been a series of challenges in this field. The first was to show that a full 
3-dimensional 'photonic bandgap' could actually exist in some type of dielectric structure. 
Then it was necessary to show that such a forbidden gap could be created in a micro- 
structure amenable to practical micro-fabrication. Now, practical methods of 'doping' the 
photonic crystal are being developed. Ultimately, a practical, electrically injected micro- 
laser incorporated inside the photonic crystal will have to be demonstrated. 

At the outset of research on 3-d photonic band structure, it was realized [1] that a 
face-centred-cubic (f.c.c.) array in real space would produce the 'roundest' Brillouin zone 
in reciprocal space. Such a sphere-like Brillouin zone improves the prospects for a forbidden 
gap to have a common overlap all the way around its surface. But it was unclear what 
should be the real-space shape of the atoms in the f.c.c, array. The original suggestion [1] 
called for cubic atoms. Later, the first experimental effort [9] concentrated on dielectric 
spheres and on spherical voids in a dielectric background. The spherical void structure 
appeared to performed particularly well. During this period there was a search for that 
optimal 3-dimensional dielectric geometry, favoured by nature and by Maxwell's equations. 

Around the same time, electronic band theorists began calculating photonic band struc- 
ture. It rapidly became apparent that the familiar scalar wave band theory, so frequently 
used for electrons in solids, was in utter disagreement with experiment on photons [10-13]. 
Recently a full vector-wave band theory [3-5] became available, which not only agreed with 
experiments, it highlighted some discrepancies in experiment. Vector-wave band theory 
showed that spherical atomic symmetry produced a degeneracy between valence and 
conduction bands at the W-point of the Brillouin zone, allowing only a pseudogap, rather 
than a full photonic bandgap. Ho et al. [5] were the first to overcome this problem. They 
introduced diamond structure, which breaks the spherical symmetry by requiring 2 atoms 
per f.c.c, unit cell., 

More generally we find that the symmetry-induced degeneracy in f.c.c, lattices is lifted 
by making the atoms non-spherical. This has led to a practical, new, face-centred-cubic 
(f.c.c.) structure which simultaneously solves two of the outstanding problems in photonic 
band structure. (1) In this new geometry the atoms are non-spherical, lifting the degeneracy 
at the W-point of the Brillouin zone, and permitting a full photonic band gap rather than 
a pseudogap. (2) Furthermore, this fully 3-dimensional f.c.c, structure lends itself readily 
to micro-fabrication on the scale of optical wavelengths. It is created by simply drilling 3 
sets of holes 35.26 ~ off vertical into the top surface of a solid slab or wafer, as can be done 
for example by reactive ion etching. At refractive index n ~ 3.6, typical of semiconductors, 
the 3-d forbidden photonic bandgap width in this new structure is ~ 20% of its centre 
frequency. Calculations indicate that the gap remains open for refractive indices n ~> 2. 

2. An f.c.c, photonic crystal w i th  nonspherical atoms 
The Wigner-Seitz (W-S) real-space-unit-cell of the f.c.c, lattice is a rhombic dodecahedron as 
shown in Fig. 1. The problem of creating an arbitrary f.c.c, dielectric structure reduces to 
the problem of filling the f.c.c. W-S unit-cell with an arbitrary spatial distribution of dielectric 
material. Real space is then filled by repeated translation and close-packing of the W-S unit 
cells. Scientific progress in this field has been marked by improved choices of how to fill the 
W-S unit cell with dielectric material. As already mentioned, early proposals called for cubic 
[1] atoms, then spherical atoms and spherical voids [8] to be inscribed inside the W-S unit cell. 
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(a) (b) 

Figure 1 The Wigner-Seitz real-space:unit-cell of the 
f.c.c, lattice is a rhombic dodecahedron. In [8], slightly 
oversized spherical voids were inscribed into the unit 
cell, breaking through the faces, as illustrated by the 
dashed lines in (a). The current structure, shown in 
(b), is non-spherical, Cylindrical holes are drilled 
through the top 3 facets of the rhombic dodecahedron 
and exit through the bottom 3 facets, The resulting 
atoms are roughly cylindrical, and have a preferred 
axis, pointing up through the page. 

Figure la shows a W-S unit cell filled by an over-sized spherical void, a structure which 
seemed to perform rather well in [9]. Since the spheres were slightly larger than close- 
packed, the voids broke through the surfaces of the W-S unit cell as indicated by the dashed 
circles on the faces of the rhombic dodecahedron in Fig. la. In [9] it was already pointed 
out that there was a symmetry-induced degeneracy at the W-point of the Brillouin zone in 
f.c.c, structures. There was a danger that the valence and conduction bands could touch at 
the degeneracy, closing the photonic bandgap. Based on the weight of experimental 
evidence however, it was argued [9] that the degeneracy had only caused adjacent conduction 
band levels to touch, permitting the gap to remain open. Vector-wave band theory, which 
has become quite successful recently [3-5], contradicted this. It showed that the degeneracy 
did indeed cause valence and conduction bands to touch at HI, permitting only a pseudogap 
rather than a full photonic bandgap. Unfortunately, the finite-sized experimental sample in 
[9] allowed inadequate resolution to detect touching at isolated points on the Brillouin zone. 

The degeneracy at Wcan be lifted by lowering the spherical symmetry of the atoms inside 
the W-S unit cell. We have made a close examination [14] of the degenerate wave-functions 
at W in the nearly-free-photon model, and learned that a distortion of the spherical atoms 
along the (111)-direction will lift the degeneracy. The W-S unit cell in Fig. lb has great 
merit for this purpose. Holes are drilled through the top 3 facets of the rhombic dodecahedron 
and then exit through the bottom 3 facets. The beauty of the structure in Fig. lb is that a 
stacking of W-S unit cells results in straight holes which pass clearly through the entire 
'photonic crystal'! The atoms are odd-shaped, roughly cylindrical voids centred in the W-S 
unit cell, with a preferred axis pointing to the top vertex. 

An operational illustration of the construction which produces an f.c.c. 'crystal' of such 
W-S unit cells is shown in Fig. 2. A slab of material is covered by a mask containing a 
triangular array of holes. Three drilling operations are conducted through each hole, 35.26 ~ 
off normal incidence and spread out 120 ~ on the azimuth. The resulting criss-cross of holes 
below the surface of the slab produces a fully 3-dimensional periodic f.c.c, structure, with 
W-S unit cells given by Fig. lb. The drilling can be done by a real drill for microwave 
work, or by reactive ion etching to create an f.c.c, structure at optical wavelengths. We have 
fabricated such 'crystals' in the microwave region by direct drilling into a commercial, 
low-loss, dielectric material, Emerson & Cumming Stycast-12. Its microwave refractive 
index, n ~ 3.6, is meant to correspond to that of the common semiconductors, Si, GaAs, 
etc. By simply scaling down the dimensions, this structure can be employed equally well at 
optical wavelengths. In this paper we will present the measured and calculated, co versus k, 
dispersion relations for this new photonic crystal. 
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Figure 2 The method of constructing an f.c.c, lattice of the 
Wigner-Seitz cells as shown in Fig. lb.  A slab of material is 
covered by a mask consisting of a triangular array of holes. Each 
hole is drilled through three times, at an angle 35.26 ~ away from 
normal, and spread out 1 20 ~ on the azimuth. The resulting criss- 
cross of holes below the surface of the slab, suggested by the 
cross-hatching shown here, produces a fully 3-d periodic 
f.c.c, structure, with unit cells as given by Fig. 1 b. The drilling can 
be done by a real drill bit for microwave work, or by reactive ion 
etching to create an f.c.c, structure at optical wavelengths. 

The diamond symmetry of Ho, Chan and Soukoulis [5] can be created by supplementing 
the operations of Fig. 2 with three additional drilling operations, making a total of six drilling 
directions. These three new drilling directions, 120 ~ apart, would all lie within the plane of 
the slab. Therefore they are somewhat difficult to implement experimentally. The six drilling 
directions correspond to the six inequivalent (110)  channelling holes in diamond structure. 

We have experimentally surveyed three f.c.c, structures, drilled in accordance with Fig. 
2, to different ratios d/a of hole diameter d to f.c.c, unit cube length a: d/a = 0.361, 0.433, 
and 0.469. The removed volume fraction was approximately 62%, 70%, and 78% in the 
three cases, respectively. The 78% empty structure had the largest forbidden gap in this set 
and in this paper we will present results on that structure only. We believe 78% is near the 
optimal volume fraction for this f.c.c, geometry. 

Our procedure is similar to the one we used in [9], except that our dynamic range was 
improved by using an HP-8510 network analyser for all the measurements. The experimental 
aim is to fully explore all 4re steradians in reciprocal space, while scanning frequency. The 
valence band edge frequency is defined by a sudden drop in microwave transmission, while 
the conduction band edge is defined by the frequency at which the transmitted signal 
recovers. Conservation of wave vector momentum parallel to the slab entry face determines 
the band edge position along the surface of the Brillouin zone. Since there are two polariz- 
ations, we can usually determine the two valence band edges and two of the conduction bands. 

Sometimes the coupling of external plane waves to internal Bloch waves is poor, and the 
experiment can miss one of the conduction band edges, as happened in [9]. Finite sample 
size limits the useable dynamic range, exacerbating the weak coupling problem. Therefore 
it is important to back up the measurements with numerical calculations, which we have 
done as follows. The scalar dielectric constant distribution in Fig. 1 is expanded as a Fourier 
series in reciprocal space, while Maxwell's equations are expanded [3] as vector plane waves. 
The eigenvalues converge after a few hundred plane waves are summed in the expansion. 

In spite of the non-spherical atoms of Fig. lb, the Brillouin zone (BZ) is identical to the 
standard f.c.c. BZ shown in textbooks. Nevertheless, we have chosen an unusual perspective 
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Figure 3 (a) The Brillouin zone of an f.c.c, structure incorporating non-spherical atoms, as in Fig. 1 b. Since 
the space lattice is not distorted, this is simply the standard f.c.c. Brillouin zone lying on a hexagonal face 
rather than the usual cubic face. Only the L-points on the top and bottom hexagons are three-fold symmetry 
axes. Therefore they are labeled L 3 . The L-points on the other six hexagons are labeled L 1 . The U 3 -K 3 points 
are equivalent since they are reciprocal lattice vector apart. Likewise the U1-K 1 points are equivalent. (b) 
Frequency versus wave-vector, o) versus k, dispersion along the surfce of the Brillouin zone shown in 3a, 
where c/a is the speed of light divided by the f.c.c, cube length. The ovals and triangles are the experimental 
points for s and p polarization respectively. The solid and dashed lines are the calculations for s and p 
polarization respectively. The dark shaded band is the totally forbidden bandgap. The ligher shaded stripes 
above and below the dark band are forbidden only for s and p polarization respectively. 

from which to view the Brillouin zone in Fig. 3a. Instead of having the f.c.c. BZ resting on 
one of its diamond-shaped facets as is usually done, we have chosen in Fig. 3a, to present 
it resting on a hexagonal face. Since there is a:'preferred axis for the atoms, the distinctive 
L-points centred in the top and bottom hexagons are three-fold symmetry axes, and are 
labeled L 3. The L-points centred in the other six hexagons are symmetric only under a 360 ~ 
rotation, and are labeled LI. It is helpful to know that the U3-K3 points are equivalent since 
they are a reciprocal lattice vector apart. Likewise the U1-K1 points are equivalent. 

Normal incidence on the slab of Fig. 2 sends the propagation vector directly toward L 3 
in reciprocal space ('the North pole'). Tilting the angle of  incidence moves the propagation 
vector along a 'meridian' toward the 'equator'.  By choosing different azimuthal angles 
toward which to tilt, the full reciprocal space can be explored. Fig. 3b shows the dispersion 
relations along different meridians for our primary experimental sample of normalized hole 
diameter d/a = 0.469 and 78% volume fraction removed. The oval points represent 
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experimental data with s-polarization (_1_ to the plane of incidence, I1 to the slab surface), 
while the triangular points represent p-polarization (11 to the plane of incidence partially l 
to the slab surface). The horizontal abscissa in the lower graph of Fig. 3b, L3-K;-L1 -U3-X- 
U3-L3 represents a full meridian from the North pole to the South pole of the BZ. Along 
this meridian the Bloch wave functions separate neatly into s and p polarizations. The s and 
p polarized theory curves are the solid and dashed lines respectively. The dark shaded band 
is the totally forbidden photonic bandgap. The lighter shaded stripes above and below the 
dark band are forbidden only for s and p polarization respectively. 

Along the meridian L3-W-K I, the polarizations do not separate neatly, and only the 
totally forbidden photonic bandgap is shaded. The top of the valence band is at W and is 
mostly s-polarized, but the valence band maxima at U3, X, and UI are almost as high. The 
bottom of the conduction band is at L~, purely p-polarized, is only marginally lower than 
the valley at L 3. We have also measured the imaginary wave vector dispersion within the 
forbidden gap. At mid-gap we find an attenuation of 9 dB per unit cube length a. Therefore 
the photonic crystal need not be very many layers thick to effectively expel the zero-point 
electromagnetic field. 

At a typical semiconductor refractive index, n = 3.6, and 3-d forbidden gap width is 
19% of its centre frequency. We have repeated the calculation at lower refractive indices, 
re-optimizing the hole diameter. Our calculations indicate that the gap remains open for 
refractive indices as low as n = 2.1 using circular holes as in Fig. 2. In reactive ion etching, 
the projection of circular mask openings at 35 ~ leaves oval holes in the material, which 
might not perform as well. Fortunately we found, defying Murphy's Law, that the forbidden 
gap width for oval holes is actually improved, fully 21.7% of its centre frequency. 

in the visible region, there are many transparent optical materials available with a 
refractive index above 2.1. Furthermore, state-of-the-art reactive ion etching [15] can 
produce holes that are > 20 times deeper than their diameter, deep enough to produce an 
f.c.c, photonic crystal with substantial inhibition in the forbidden gap. It appears that the 
application of photonic bandgaps to semiconductor physics, optical, and atomic physics 
may soon be practical. 

3. Donor and acceptor modes 
The photonic bandgap is very interesting in its own right. It is an energy band in which 
optical modes, spontaneous emission, and zero point fluctuations are all absent. Nevertheless, 
the photonic bandgap might actually be at its most interesting when the perfect translational 
symmetry is disrupted in a controlled manner. For example, by introducing a known degree 
of disorder, mobility edges and the Anderson localization transition [2] can be investigated. 

Lasers, perhaps the most important application, also require that the 3-d translational 
symmetry should be broken. Even while spontaneous emission into all 4n steradians would 
be inhibited, a local electromagnetic mode is still necessary to accept the stimulated 
emission. In effect the local defect-induced structure resembles a Fabry-Perot cavity, except 
that it reflects radiation back upon itself in all 4re spatial directions. Meade et al. [16] have 
proposed that this could be accomplished by introducing a simple defect into the periodic 
geometry. 

The perfect three-dimensional translational symmetry of a dielectric structure can be 
lifted in either one of two ways. (1) Extra dielectric material may be added to one of the 
unit cells. We find that such a defect behaves very much like a donor atom in a semiconductor. 
It gives rise to donor modes which have their origin at the bottom of the conduction band. 
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F i g u r e  4 A  ~1,1, 0) cross-sectional view of our 
face-centred-cubic photonic crystal [7] con- 
sisting of non-sphericai 'air-atoms" centred on 
the large dots. Dielectric material is represented 
by the shaded area. The rectangular dashed line 
is a face-diagonal cross-section of the unit 
cube. Donor defects consisted of a dielectric 
sphere centred on an atom. We selected an 
accepter defect as shown centred in the unit 
cube. It consists of a missing horizontal slice in 
a single vertical rib. 

(2) Conversely, translational symmetry can be broken by removing some dielectric material 
from one of  the unit cells. Such defects resemble acceptor atoms in semiconductors. The 
associated acceptor modes have their origin at the top of the valence band. We will find that 
acceptor modes are particularly well-suited to act as laser microresonator cavities. Indeed 
it appears that photonic crystals made of sapphire or other low-loss dielectrics, will make 
the highest-Q single-mode cavities (of volume ~ 1 ,,],3) covering all electromagnetic frequencies 
above the useful working range of superconducting metallic cavities. The short wavelength 
limit in the ultaviolet, is set by the availability of optical materials with refractive index > 2, 
the threshold index [5, 7] for the existence of a photonic bandgap. 

While the face-centred-cubic (f.c.c.) photonic crystal employing non-spherical atoms has 
already been fabricated [17] by reactive ion etching in GaAs, we have chosen to investigate 
local defect modes in larger structures on the scale of 1 cm wavelengths for now. We have 
introduced a single defect into our microwave photonic crystal. The 'doping' experiments 
are supplemented by theoretical calculations of the photonic bound states. 

Photonic crystals generally consist of a continuous three-dimensional web of dielectric 
material, made up of inter-connecting ribs. The Wigner-Seitz unit cell of our photonic 
crystal [7] is the standard f.c.c, rhombic dodecahedron [7] with 'air-atoms' created by drill 
holes centred on the top 3 faces, which exit through the bottom 3 faces as shown in 
Fig. lb. Figure 4 is a ~ 1, T, 0) cross-section of the same photonic crystal cutting through 
the centre of  a unit cube. Shading represents dielectric material. The large dots are centred 
on the air-atoms and the rectapgular dashed line is a face-diagonal cross-section of the unit 
cube. Such structures are made simply by drilling 3 sets of holes 35.26 ~ off vertical into the 

1, 1, 1) top face. 
Since we could design the structure at will, donor defects were chosen to consist of a 

single dielectric sphere centred in an air-atom. Likewise, by breaking one of the inter- 
connecting ribs, it is easy to create acceptor modes. We selected an acceptor defect as shown 
in Fig. 4, centred in the unit cube. It comprises a vertical rib which has a missing horizontal 
slice. 

The heart of  this experimental apparatus is a 'doped' photonic crystal embedded in 
microwave absorbing pad as shown in Fig. 5. The photonic cryst.als were 8-10 atomic layers 
thick in the ~ 1, 1, 1) direction. Cubic unit cell length was a = 11 mm and hole diameter 
was 5.16 mm, leaving an empty volume fraction ~ 78%. Monopole antennas, consisting of  
6mm pins, coupled radiation to the defect mode. The HP 8510 network analyser was set 
up to measure transmission between the antennas. Figure 6a shows the transmission 
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Figure 5 Experimental configuration for the detection of 
local electromagnetic modes in the vicinity of a lattice 
defect. Transmission amplitude attenuation from one 
antenna to the other is measured. At the local mode fre- 
quency the signal hops by means of the local mode in the 
centre of the photonic crystal, producing a local trans- 
mission peak. The signal propagates in the (1, 1, 1) 
direction through 8-1 0 atomic layers. 

amplitude in the absence of  a defect. There is very strong attenuation ( ~  l0 -s)  between 
13 GHz and 16 GHz marking the valence and conduction band edges of the forbidden gap. 
This is a tribute to both the dynamic range of the network analyser, and the sizable 
imaginary wave-vector in the forbidden gap. 

A transmission spectrum in the presence of an acceptor defect is shown in Fig. 6b. Most 
of the spectrum is unaffected, except at the electromagnetic frequency marked 'deep 
acceptor' within the forbidden gap. At that precise frequency, radiation 'hops' from the 
transmitting antenna to the acceptor mode and then to the receiving antenna. The acceptor 
level frequency, within the forbidden gap, is dependent on the volume of material removed. 
Figure 7 shows the acceptor level frequency as a function of defect volume removed from 
one unit cell. When a relatively large volume of material is removed, the acceptor level is 
deep as shown in Fig. 6b. A smaller amount of material removed results in a shallow 
acceptor level, nearer the valence band. If the removed material volume falls below a 
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Figure 6 (a) Transmission attenuation through a defect-free 
photonic crystal, as a function of microwave frequency. The for- 
bidden gap falls between 1 3 and 1 6 GHz. (b) Attenuation through 
a photonic crystal with a single accepter in the centre. The large 
accepter volume moved its frequency near mid-gap, The electro- 
magnetic resonator Q was ~ 1 000, limited only by the loss tangent 
of the dielectric material. (c) Attenuation through a photonic crystal 
with a single donor defect, an uncentred dielectric sphere, leading to 
two shallow donor modes, 
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Figure 7 Donor and acceptor mode frequencies as a function of normalized donor and acceptor defect 
volume. The points are experimental and the corresponding lines are calculated. Defect volume is normalized 
to [2/2n] 3 where 2 is the mid-gap vacuum wavelength and n is the refractive index. A finite defect volume 
is required to bind a mode in the forbidden gap. 

threshold volume, the acceptor level falls within the continuum of levels below the top of 
the valence band, becoming metastable. 

On an expanded frequency scale we can measure the resonator Q of the deep acceptor 
mode, which is Q ~ 1000, as limited by the loss tangent of the Emerson & Cumming 
Stycast material of which the photonic crystal was made. 

The behaviour of an off-centre donor defect is shown in Fig. 6c. In this case the donor 
volume was only slightly above the required threshold for forming bound donor modes. 
Already two shallow donor modes can be seen in Fig. 6c. When the donor is perfectly 
centred in the Wigner-Seitz unit cell, the two modes merge to form a doubly degenerate 
donor level as in Fig. 7. Single donor defects seem to produce multiple donor levels. 
Fig. 7 gives the donor level frequency as a function of donor volume. As in the case of 
acceptors, there is a threshold defect volume required for the creation of bound modes 
below the conduction band edge. However, the threshold volume for donor defects is almost 
ten time larger than the acceptor threshold volume. Apparently this is due to the electric 
field concentration in the dielectric ribs at the top of the valence band. Bloch wave functions 
at the top of  the valence band are rather easily disrupted by the missing rib segment. 

We have chosen in Fig. 7 to normalize the defect volume to a natural volume of the 
physical system, (2/2n) 3, which is basically a cubic half-wavelength in the dielectric medium. 
More specifically, 2 is a vacuum wavelength at the midgap frequency, and n is the refractive 
index of the dielectric medium. Since we are measuring a dielectric volume, it makes sense 
to normalize to a half-wavelength cube as measured at the dielectric refractive index. Based 
on the reasonable scaling of Fig. 7, our choice of volume normalization would seem 
justified. (Experimentally, the odd-shaped defect volumes were measured by weighing the 
samples). 

It is interesting to compare our local modes to those of a one-dimensional Fabry-Perot  
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resonator, constructed in the usual manner of quarter-wave multilayer dielectric mirrors. 
In such a resonator the mirrors face each other and are usually separated by an integral 
number of half wavelengths. The net effect of the left and right mirrors facing each other 
is that they combine to form a monolithic 1-d periodic dielectric structure, but with a 
quarter wavelength of phase slip introduced into the very centre. This same quarter 
wavelength of phase slip is often employed in distributed feedback lasers [18], effectively 
converting them into Fabry-Perot resonators. The standing wave mode is sometimes [19] 
regarded as a bound state split off into the 1-d bandgap and localized to the quarter-wave 
defect in the periodic structure. In one dimension however, nothing requires that the defect 
be one-quarter wavelength long. A phase slip, no matter how small, allows a bound mode 
to form in the forbidden gap, usually near the band edge. This is in distinction to Fig. 7 
where a finite-sized defect volume is required to bind a mode. 

This is similar to the comparison between 1-d and 3-d quantum mechanics. In one 
dimension even an infinitesimal quantum well will bind [20] a state. In 3-d, a finite depth 
potential well is required to produce [20, 21] a bound state. Figure 7 is telling us that the 
same requirement for a finite defect volume applies to 3-d confined photon modes. John 
and Wang [6] have shown that the requirement for a finite volume-integrated polarizability 
can be satisfied even by a single resonant atom if undamped by non-radiative decay. Then 
an individual atom is capable of binding a local electromagnetic mode at its resonant 
transition frequency. They call this a photon-atom bound state. Inhibited spontaneous 
emission is accompanied with strong self-dressing of the atom by its own localized radiation 
fields, leading to anomalous Lamb shifts. 

We have also performed calculations of the frequency spectrum of these dielectric 
systems. In order to solve for the electromagnetic modes, we expand Maxwell's equations 
in plane waves, employing the techniques of Ho et aI. [5]. We employ the supercell method 
placing one defect in a repeated cell of dielectric material. Our calculations were performed 
in supercells containing eight f.c.c. Wigner-Seitz cells, and we have performed tests on 
larger supercells containing eight conventional f.c.c, cubic unit cells (32 Wigner-Seitz cells). 
Because the distance between defects is relatively small, there is significant overlap between 
the localized modes on neighbouring defects. This overlap manifests itself as a dispersion 
of the impurity band, and the frequency of the bound state is taken to be the band centre. 
We expanded the H(r) magnetic field in a basis of 4000 plane waves, and the lowest 
eigenvalues were obtained by the Vanderbilt [22] iterative diagonalization technique. 

The solid lines in Fig. 7 show good qualitative agreement with the experimental points. 
The discrepancy between theory and experiment is larger for defects in supercells than for 
purely bulk systems, where better than 1% agreement has been achieved. There are two 
important reasons for this larger discrepancy. Firstly because of the larger unit cell size, it 
is necessary to work at a lower plane-wave cutoff. Second is the small number of primitive 
unit cells used in the supercell approximations. As in [16], the dispersion of the impurity 
band is quite large in the eight atom supercell, ~ 20-80% of the gap-width for various 
states. Increasing the supercell to 32 atoms reduces the bandwidth by 80%. 

4. Application to laser cavities 
The extension of these 3-d dielectric microwave resonators to laser wavelengths is 
marked by the following considerations. The refractive index we have chosen to work with 
(n = 3.6) is a good match to the common semiconductors of which lasers are made. 
Furthermore, the f.c.c, geometry we are using has begun [17] to be microfabricated in GaAs. 
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Such micro-resonators will be particularly valuable for making tiny low-threshold lasers. 
But their value is greatly increased if the photonic bandgap inhibits spontaneous emission. 
In a semiconductor laser, this would lead to near unity quantum efficiency into the lasing 
mode. Photon number state squeezing [8] into that mode would be greatly enhanced. 
Inhibited spontaneous emission requires that the broad semiconductor luminescence band 
should be centred within the forbidden gap. In semiconductor lasers, population inversion 
and gain first appear at the red edge of the luminescence band, i.e. nearer to the valence 
band. This suggests that acceptor modes would be the appropriate defect type for lasers. 

The other advantage for acceptor-mode laser cavities is associated with out acceptor defect 
geometry. The vertical rib with a missing horizontal slice, as in Fig. 4, can be readily micro- 
fabricated. It should be possible to create it in III-V materials by growing an aluminium- 
rich epitaxial layer and lithographically patterning it down to a single dot the size of one 
of the vertical ribs. After regrowth of the original III-V composition and reactive ion 
etching of the photonic crystal, HF acid etching, whose [23] selectivity ~> 108, will be used 
to remove the Al-rich horizontal slice from the one rib containing such a layer. The resonant 
frequency of the micro-cavity can be controlled by the thickness of the Al-rich sacrifical layer. 
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