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The correlation functions of the intensity fluctuations are calculated by use of a linearization procedure 
for the equations of motion which include the coupling of the counter-rotating travelling waves of the 
ring laser in the cases of Doppler broadening, of homogeneous broadening with a self-induced 
population-inversion grating, and in intermediate cases. Depending on the strength of the mode 
competition various stable stationary solutions exist for the amplitudes. The transition between these 
stable states shows phenomena closely resembling phase transitions such as critical fluctuations, critical 
slowing down, etc. In particular, when the system passes from the state where both modes are above 
threshold to the state where one mode is below threshold, the negative cross-correlation of the 
fluctuations also becomes critical. In the case of the transient behaviour of the ring laser in the unstable 
region the time development of the amplitudes and the correlation functions are described in a short-time 
approximation. 

1. Introduction 
In contrast to a laser with a Fabry-Perot resonator the counter-running waves of a single-frequency ring 
laser are only coupled due to the active medium. The strength of this coupling depends on the spectral 
characteristic of the amplifying molecules. In the case of  a spectrally inhomogeneously broadened line, 
e.g. in gas lasers, the coupling of the counter-running waves is determined by the common gain reservoir 
of  both waves. In a gas laser with Doppler-broadened gain this common reservoir depends on the 
detuning of  the laser frequency from the line centre. Far from the line centre each of the counter- 
running waves interacts with an ensemble of  molecules of different velocity and the coupling is weak. 
Near the line centre the velocity groups of molecules interacting with the two waves overlap and a strong 
coupling between the counter-running waves results. In the case of  a spectrally homogeneously 
broadened line both running waves are amplified by the same active molecules. If  the molecules are at 
rest an additional coupling exists. The two oppositely directed running waves comprising the electric 
(leld add in the medium, yielding a standing wave, and burn spatial holes in the population inversion. 
The periodically modulated population-inversion grating acts like a Bragg grating to reflect one running 
wave back into the other [ 1 ]. For stationary atoms this grating is precisely out o{ ~ phase with the stand- 
ing wave pattern and destructive interference occurring between the reflected wave and the similarly 
directed running wave lead to an additional mode competition. This strong coupling significantly 
influences the mode spectrum of a ring laser as well as that of  a Fabry-Perot laser [2-5].  

Especially in a single-frequency ring laser unidirectional operation is caused by this strong coupling 
[ 1 ]. At the line centre in a gas laser also a spatial population-inversion grating occurs [9]. The contri- 
bution of Bragg scattering due to this grating to' the mode competition depends on the ratio of  the 
dipole decay constant 3  ̀determining the linewidth of the laser transition and the level decay constant F. 
In many gas lasers where F ~ 3' this contribution is negligibly small (e.g. in a He-Ne laser P --~ 15 MHz, 
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:3' ~-- 150 MHz). The influence of the coupling between the counter-running waves in a gas ring laser on 
their fluctuations and correlationsiwas treated in full detail by Tehrani and Mandel [6, 7]. They neglected 
the Bragg-scattering contribution at line centre and showed that the competition of the oppositely 
directed waves in a Doppler-broadened gain medium leads to negative correlations between their inten- 
sity fluctuations, whose magnitude depends on the detuning of the laser frequency from the line centre. 
At the line centre the relative intensity fluctuations do not die out in general as the pump parameter is 
increased, and the emitted light does not become fully coherent as in a Fabry-Perot laser. The aim of  
this paper is to take into account the influence of the strong coupling of the oppositely direct waves due 
to the population4nversion grating on the intensity fluctuations and their correlation. In Section 2, the 
basic equations are derived for a ring laser with homogeneously broadened gain. They take account of 
the fact that drift and diffusion of  excitation energy can partially wash out the spatial holes burnt into 
the population inversion by the standing wave pattern [8]. The equations obtained there are similar to 
the ones which are the starting point in [6], but the coupling constant appearing there has a different 
physical content and range of  values. However, this permits one to compare directly the effect of  the 
two kinds of coupling as limiting cases and include intermediate cases. The basic equations are !inearized 
with respect to the fluctuations and the solution of the linearized equations is given. Of course, this 
approximation restricts the size of the fluctuations which can be treated. On the other hand it is 
possible to obtain analytical results which show the influence of  the mode competition on the 
fluctuations and their correlations and enables the behaviour of these quantities at the transition 
between various stable states' of  the ring laser to be considered. This is done from the point of  view of 
co-operative effects [13, 14] in Section 3. Using a,short-time approximation the time development of 
the fluctuations and their cross-correlation is considered in Section 4 for the transient behaviour of 
the ring laser from an unstable state. 

2. Laser equations 
A system of two level atoms which are in resonance with a cavity field consisting of two oppositely 
directed running waves of the same frequency w is treated with a single transition frequency 6Oo 

A ( z , t ) =  / [  h ][ble_i(o~t_kZ)+b~ei(Wt_leZ)+b2e_i(o~t+kZ)+b~e+i(tot+kz)]. (1) 

The field described by the vector potential A(z,  t) is  assumed to be linearly polarized and directed along 
the z-axis. Applying the equations of motion for the light fidd and atoms [ 1 O] to this field we obtain 
the field equations 

+ ikz + .  b~ = --~nb+~+ig ~ a u e  t ` + F ; n ,  n = 1,2 (2) 
P 

and the matter equations 

d~ = (io% -- "y)a~ -- ig* [ b'~ei!Wt-~zu ) + b~ei(t~ § ) ] s u + (F~U)) § (3) 

su = -- F(stt -- So) -- 2i {ga~[ble-i(t~ ) + b2e-i(wt+kzt` )] --g*at`[b~eitt~ ) 

+ b~e i(~~ ] } + F~ u), (4) 

where bn (n = 1,2) are the amplitudes of the counter-running waves varying slowly with time, K,~ is the 
cavity linewidth for the nth mode, k.the wave number, zt` the position of the #th atom, at` the operator 
of the transition of the pth atom, s t, the inversion operator, So the operator of inversion without a 
lasing field, V the normalization volume and g is the couPling coefficient of'the interaction between field 
and atoms and is given in mks units by 

g = -  i(2Vhweo) -1 cooP (5) 

where P is the dipole matrix element of the transition. FK,~, F~ u) and F~ u) are the fluctuating forces due 
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to the cavity losses Kn, the spontaneous emission described by the dipole decay constant 7, and the 
relaxation of the inversion described by the level decay constant P respectively. These fluctuating forces 
are assumed to be Markoffian and Gaussian. The random forces acting on different atoms are assumed to 
be independent. In order to eliminate the atomic variables in Equation 2 the following assumptions are 
made: (a) The relaxation times of the atomic system are short compared to all other times of the system. 
In this case the atomic variables, i.e. the dipole moment and the inversion, follow the motion of the field 
adiabatically. (b) Only the fluctuations due to the spontaneous emission are taken into account. F~n and 
F ~  ) and the effect of  F~ u) on the inversion are neglected. Assuming exact resonance w = COo and not 
too high photon numbers we obtain the population inversion from Equations 3 and 4: 

su = so 1 -- I'7 - (b tb l  + b2b2 + b~ble =2kz~ + b~b2e -2ikzu) �9 (6) 

This formula describes the inversion saturation. The inversion So caused by pumping and decay processes 
is lowered by the intensity of both modes. It is obvious that the saturated inversion is spatially modu- 
lated due to the standing wave pattern. At this point we want to include the fact that drift and diffusion 
of excitation energy can wash out this population-inversion grating. Therefore the terms in Equation 6 
containing spatial dependence are multiplied by a factor which can vary from zero (i.e. the inversion 
grating is washed out completely) to one (i.e. the spatial grating has the highest possible amplitude). 
Then Equation 6 becomes 

__ b+b e-2ikz.'ol 4 l g l : -  + --larb+b e2ikz/'t 1 2 yJJ (7) S u = So 1 - - ~ - -  [bib1 + b+2b2 + (e 1~. 2 1 ~- 

where 1 ~< e ~< 2. By inserting Equation 7 into Equation 3 the atomic variables in Equation 2 can be 
eliminated by means of  the adiabatic approximation in the usual way (see e.g. [ 10]). Replacing the 
operators by the corresponding classical quantities, e.g. the photon operators by the complex field 
amplitudes b +, bn -~ ~ ,  ~, Equation 2 takes the form 

~ _ [a 1 _ d ( [ f l  1 [2 -t- e [ ~  2 [2)]/~1 = Fl(t)  (8 )  

~; - -  [a2 - -d(I /~212 + e 1/3, 12)1/3~ = F;(t) (9)  

where ai = Ki (No/N( t~-  1) is the pump parameter, W ~  = KiT/Igl ~ the threshold inversion, No = Nso 
the unsaturated inversion, N the number of active atoms and d = 4No [g[4/72F. The fluctuating forces 

ig Z e+-kZt*F(~U)(t) Fj( t )  = -~ u 

(+ sign corresponds to ] = 1 and -- to ] = 2) have the property 

( F i ( t ) F ~ ( t ' ) )  = 4q6iy6(t--  t ' )  (10) 

where q = ig12N/47 is the noise strength. Equations 8and 9 derived for an active medium with a homo- 
geneously broadened laser line are the starting point for the following considerations. The parameter e 
which is a measure of the amplitude of  the spatial grating describes the coupling between the counter- 
running waves due to the Bragg scattering at the population-inversion grating. When deriving equations 
of motion of the complex field amplitudes for an active medium with a Doppler-broadened line one 
obtains equations similar to Equations 8 and 9 [11 ]. The coupling parameter occurring there depends on 
the detuning of the laser frequency from the atomic line centre and is a measure for overlapping of the 
holes burnt into the velocity distribution of the population inversion by the counter-running, waves. It is 
given by 

e D = 1 + (1 1) 
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and varies from zero to one. Equations 8 and 9 with Equation 11 are the starting point of [6, 7]. How- 
ever, as mentioned above, in a gas laser tuned at line centre a spatial inversion grating also occurs [9]. 
If the influence of this grating must be taken into consideration, and this is the case if 3' ~-- P, it may be 
expected that this can formally be done by choosing the following range for the coupling parameter 

0 < e < ~ (12) 

where 1 < ~ ~< 2. That means that Equation 8 and 9 formally describe a ring laser with an active medium 
of  three possible spectral characteristics: (a) a Doppler-broadened laser line, i.e. 0 ~< e ~< 1, (b) a homo- 
geneous broadened line with a self-induced spatial grating of various amplitudes, i.e. 1 ~< e ~< 2, and (c) 
the intermediate case of  a Doppler-broadened line and a spatial grating at line centre, i.e. e is given by 
Equation 12. 

In order to solve Equations 8 and 9 approximately we use the linearization method [12]. A condition 
for applying this method is that the fluctuations are small enough to permit us to retain only linear 
terms involving deviations from the unperturbed quantities. This condition restricts the size of the 
fluctuations but the method enables analytical results to be obtained which give a good insight into the 
most essential effects. We use the decomposition 

/~s(t) = [aj(t)  + 8i(t)] eiW <t) (13) 

where a i (t) are the smoothly varying averaged amplitudes, ~j (t) the phase which can still refer to the 
noise source [10] and 8j(t) small deviations caused by the noise source. Inserting Equation 13 into 
Equations 8 and 9 leads to equations describing smooth variations of  the averaged amplitudes 

~1 - [al - a ( ~  + e ~ ) ]  ~1 = 0 

& 2 -  [ a 2 - d ( a ~  + e ~ ) ]  ~ = 0 

and equations linear in ~i(t) 

d(~1/+(2d0g~--A1; 2deo/1o12 t(611 = (NI) 
dt \  8=] \2deala=; 2da~-- k=]\8=] N2 

(14) 

(15) 

(16) 

where Aa,2 = al,2 --d(o~,2 + ear , l )  and Ni = Re (e-i~~ Assuming that e -i~i can be absorbed into 
the fluctuation forces as a new phase factor [10] the random forces N~ have the property 

<Ni(t)Nj(t')) = 2qSijS(t-- t'). (17) 

The equations for ~o i which are dropped here lead to the well-known phase diffusion [10]. 

3. Moments and correlation functions of the intensity fluctuations for stationary 
amplitudes 

Equations 14 and 15 have two stationary solutions. (a) Both amplitudes are non-vanishing'and are given 

by 
1 a l  - -  ca2 a~ -- 1 a2-- ca1 (18) 

a~ -- d 1-- e = ' d 1-- e 2 " 

(b) One of the amplitudes becomes zero: 

a~ = a~. a~ = 0 or a~ = 0; a~ = -ak (19) 
d '  d "  

Inserting first the stationary solution (Equation 18) into Equation 16 and taking into consideration that 
A i = 0 we obtain linear differential equations with constant coefficients yielding the following solution 

8i(t ) =j=~l,2 fto dsGij( t--  s)Nj(s) (20) 
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where 
Gil(t - s) = gue h,(t-s) -t- hije x:(t-s), 

d ( a~ - -~+x /D/d ,  --2ca,a2 ) 
gii = 2x/D \ -- 2e~la2, ~ = a~ + x/D/d] 

_ d ( ~ - - ~  + x/D/d, 2eaaa2 ] 

hi]  2x/D \ 2eala2, a~ -- ol~ + X/D/d ] 

Xl,~ = - d ( ~  + ~ )  • x/D 
and 

D = d2[al 4 + a~ + 2a~ot~(2e 2 -  1)1. (21) 

a i is given by Equation 18 and 6i(0 ) = 0 is assumed as the initial value. Using the result (Equation 20) 
with Equations 18 and 21 the normalized correlation and cross-correlation functions of the intensity 
fluctuations 

laij(t, r) = (AIi( t )AIj( t  + r))_  4(61(t)Sj(t + r)) (22) 
(Ii>< 4 ) a,aj 

can be calculated. Here we have written (I  i } = oe~; AI i (t) = Ii -- <-Ii) -~ 2oq 6 i. Taking into account the 
property of the fluctuation forces (Equation 17), Equation 22 with 20 takes the form 

qd(1-e2)2  (e [( a l + a 2 + x / D ) r ] { 1 - - e x p [ 2 ( -  a ' + a 2 + x / D )  t]}  
#ll( t ,r)  = 2(al_ea2)2(a2_eal  ) xp - l + e  - 1+----~ 

{ (al a2 eal,)} • X / D + _ _ ~ I  2 2 
1 - -  e 2 x/D 

 xp[ 
qd(1 =e)e_. _ ( ( a  I -t-a 2 -t- 

U,=(t, r) = (a, -- ea~)(a= -- ea,)[[ x/D 

+ exp -- + e 

1 [a i - -ag 
1 - d [ x / o  + 2 ( a ~ -  ca, 

x l - - e x p [  \ l + e  - - ~ - - + e + l  exp -- + e  

x ( 1 - - e x p [ - - 2 ( a l l ~ a 2 + x / D )  t]} ). 

g22(t, r) is obtained from Equation 23 by exchanging 1 ~ 2. For the case of equal pump rates 
al = a2 = a, Equations 23 and 24 take the form 

tql(t ,r)  = t~22(t,r) _ qd(l+e)((a2(~]--Z-e) e + l ) e x p [  2a(1--e)r]{l--exP[l+e --4a(l  " e )  

+ (1 -- e)e-2a~(1 -- e-4a~)) 

/212(t , r) -- qd(1 + a2(l -- e~ ((1 + e) exp [-- 2ar(1 -- e)/(1 + e)] {1 -- exp [-- 4at(1 -- e)/(1 + e)]} 

-- (1 -- e)e-2ar(1 -- e-4at)). 

(23) 

(24) 

(2s)  

(26) 

Second the stationary solution (Equation 19) is inserted,into Equation 16. Using again the initial con- 
dition 6i(0 ) = 0 the solution of these equations is 
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(27), 

: t  
62(0 = J o  ds exp [(a2-- eaa)( t"  s)] N2(s): (28) 

The correlation functions can be calculated by means of  the results in Equations 27 and 28. The 
normalized correlation function of  the intensity fluctuations of the mode with non-vanishing intensity 
becomes 

2qd -2a r e-aalt) (29) pa,(t,T) = a~ e ' (1 - -  . 

The correlation function of the fluctuations of  the mode below threshold is given by 

(82(t) $2(t + r)> - q ~  exp [(a2 -- ca1) r] {1 -- exp [2(a2 -- ca1) t] }. (30) 
c a  1 - -  a 2 

The cross-correlation of the iwo modes becomes zero. Now we want to discuss these results. The aim is 
to determine the range of  the coupling parameter e, where either the solution Equation 18 or the 
solution of  Equation 19 is stable, and to consider the dependence of the fluctuations and their corre- 
lations on the coupling parameter e. First we deal with the case of  different pump rates of the counter- 
running waves and assume a x > a2. A closer investigation of  Equation 21 with Equation 18 reveals that 
x/D < (a~ + a2)/(1 + e) for e < a2[aa and the correlation functions Equations 23 and 24 approach 
a stationary value for t -+ oo. This also implies that the stationary solution for Equation 18 is stable in 
this range. For e > a2]al the correlation functions do not tend to a stationary value for t-+ oo but 
diverge. This implies that the solution (Equation 18) is unstable and Equation 19 is now the stable 
solution. When e reaches the critical value ec = a2]al the solution of Equation 18 which is stable for 
e < a2]al approaches continuously the solution of Equation 19 which is stable for e > a2[al (soft 
transition) and the relaxation constant 2 [(a~ + a2)/e - x/D] tends to zero (critical slowing down 
[13, 14]). In other words, when e passes from e < ee to e > ee the stable equilibrium positions are 

exchanged, i.e. we have the so-called exchange of stability. As is obvious from the variance 
/au = #u(0, 0) and the covariance/a12 of  I1,/2 

2qd(1 -- e 2) (31) 
Ull - ( a l -  ca2) ~ 

2qa(1 - e 2) (32) 
U22 - ( a 2 -  eaO 2 

2qd(1  - e 2) e (33) 
tal2 (al - ea2)(a2 - ca1) 

the fluctuations grow with increasing e, i.e. when the laser frequency is tuned towards the line centre. 
Whereas the intensity fluctuations of the mode remaining above threshold for e t' a2]aa approach the 
value of/-qx = 2qd[(a~ --a~) the fluctuations of the mode which becomes zero tend to infinity* (critical 
fluctuations). The intensity fluctuations of the two counter-running modes become anti-correlated. The 
magnitude of the anti-correlation is proportional to the coupling constant e./~2 as well as (6~62) tends 
to infinity for e f" a2/a~. As isalso evident from Equations 23 and 24 the dependence of the corre- 

Jation functions on r is not always well" represented by a single exponential as it is in the case of a con- 
Ventional laser. The correlation time increases with increasing e. Equations 31-33 agree with those 
obtained in [6] for a ring laser operating well above threshold. For e > ee the correlation functions given 
by Equations 29 and 30 approach the stationary value for t -+ ~o. The correlation function of the inten- 
sity fluctuations of the mode abc~ve threshold corresponds to that of a conventional single-mode laser 
[ i0].  For e ~. ee the correlation function of the fluctuations of the mode below threshold also show the 
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Figure 1 The var iat ion o.f the intensit ies (a}, the intensi ty f luc tuat ions (b), and the cross-correlat ion (c) o f  the two ring 
laser modes having d i f fe ren t  pump parameters, a 1 = 18, a 2 = 15 wi th  coupl ing parameter e. In (a) the solid curves 
indicate the range o f  stable ampli tudes, the dashed curves the range o f  unstable ampli tudes. 1 and 2 label the course o f  
the quant i t ies belonging to the modes w i th  ampl i tudes a 1 and c~= respectively. The e-dependence o f  (8i~ ] )  in (b) and (c) 
are p lo t ted fo r  the case o f  exchange o f  stabi l i ty  at e e = a2/a ~ . For all f igures q = d = 1 is assumed. 

phenomena of  critical fluctuations and critical slowing down. So far we have seen that in the case of 
Doppler broadening for different pump rates there are two stable states. With the transition from e < ee 
to e > e e the system passes through an instability and shows typical features of a second-order phase 
transition [15]. This behaviour is illustrated in Fig. 1. It is also shown in Fig. la that in the range 
al/a2 ~< e ~< 2 either the solution al 2 = al/d, a~ = 0 or a~ = 0, a2 2 = a2/d is stable, i.e. the ring laser shows 
a bistable behaviour in this region. When e passes from e > alia2 to e < aa/a2 the solution a~ = a2/d 
becomes unstable and the system jumps to the new stable state a]  = 0, a~ = al/d (hard transition). 
Hysteresis occurs when the direction of changing e is reversed. Both features characterize the analogy to 
a first-order phase transition [15]. At this transition the fluctuations of the mode aT become critical. 

For equal pump rates the critical value of  the coupling parameter is e c = 1, which is the upper limit 
of Doppler broadening. Thus in the case of pure Doppler broadening the solution of Equation 18 is 
valid and in the case of a homogeneously broadened line with self-induced grating of variable amplitude 
the solution of Equation 19 is valid. However, if the spatial inversion grating occurring at the centre of a 
Doppler broadened line noticeably influences the behaviour of the ring laser (see Section 2), the critical 
point e c = 1 lies within the range of values of e given by Equation 12. For e t 1 the intensity fluctuations 
of the two modes grow and also the magnitude of their negative cross-correlation and becomes infinity 
for e = 1 "t (see Equations 25 and 26). In contrast to the case of different pump rates with the transition 
from e < 1 to e > 1 the solution of Equation 18 for a~ = a2 becomes transient and decays to the new 
stable solution given by Equation 19 (hard transition). Thus one can say, when exceeding a critical size 
the strong anti-correlation between the two counter-running modes forces the system to go into a new 
state where one of the two modes is below threshold and the cross-correlation vanishes. This state is 
bistable, i.e. either mode 1 or mode 2 is below threshold. Critical fluctuations and critical slowing down 
occur for both modes. This behaviour which also shows typical features of a first-order phase transition 
is illustrated in Fig. 2. 

t i t  is an important point that the divergence of the correlation functions is caused by the linearization procedure. In 
the exact theory which avoids linearization it remains true, however, that at the critical points the fluctuations and 
their correlations become large (compare for the case of Doppler broadening [6]). 
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Figure 2 T h e  same as f o r  Fig.  1 f o r  equa l  p u m p  

p a r a m e t e r s  a~ = a 2 = 10.  

4. Transient behaviour of the ring laser in the unstable region 
In this section we are interested in determining the time development of the intensity fluctuations and 
their cross-correlation when the ring laser operation starts from an arbitrary initial state and tends to its 
stable state. Practically this can be realized by introducing spatially inhomogeneous losses into the ring 
resonator which force the laser to oscillate with counter-running waves of  non-vanishing amplitudes [2] 
desphe the Bragg grating occurring in the active medium. At the time t = 0 these spatially inhomo- 
geneous losses are removed and the state becomes transient and decays to a new stable state. For arbi- 
trary initial values of the amplitudes and the fluctuations the complete equations of motion (Equations 
14-16) have to be solved. We will do this approximately by using a short-time approximation. We look 
for the solution of Equations 14 and 15 and the homogeneous part of Equation 16 in the form 

Oti(t ) = Oti(O ) -t- • i (O) t  -1- 1/2~i(O)t 2 (34) 

~i(t) = ~i(o) + ~ i (o) t  + 1/2g;(o) t ~ (3s) 

taking into account only terms up to second order in t. Inserting Equation 34 into Equations 14 and 15 
and comparing coefficients of the same power of t we obtain 

e i ( t )  = f i [ l + A ~ t  +1 2 (36) ~(A/-- 2 d ~ A  i -  2ed~Aj ) t2 ] ;  i# : j  
where 

~'~ = a ~ ( 0 ) ;  /x~ = a~-d(f{+ e~'~);  i#/. 

After putting Equation 36 into Equation 16 the homogeneous part of Equation 16 is solved in the 
approximation of Equation 35. Using this solution, the solution of the complete Equation 16 can be 
found in the form given by Equation 20. Thus we obtain the correlation function <6i(t)fj(t )) up to the 
second order in t 

([til(t)] z) = 2def~f2[-- 2(t + A1 t2)(q~q~) + 2deflf~t2((q2)2)] + {1 + 2B, t + 2[A~ -- a~'?(7A1 

-- 4cl~12) - - d ~ ( e A  2 -- 2de2~'12)] t2}((ql) 2 ) + 2q (t + B i t  =) (37) 

<~l(t) 82(t)> = -- 2def, f~[(t + A ~t2)<(ql) 2 > ~- (t + A2tz)< (q2) z ) + 2qt  2] 
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+ (1 + (Bi + B 2 ) t  + {112(A1 + A2)2-- d~'?[(e + 5)A~ + 2A2-- 2d~'~ -- 2d~'~(2e 2 + 1)] 

-as + 5)A= + 2 A , -  2ar 2a~?(2: + 1)]}t2)<q~q2) (38) 

where qi = 6i(0) andA1 = 2A1 + A2 -- 3 d ~  - - d [ ~ ; B i  = Ai -- 2 d [ ~ . A 2  and <[62(t)] z) can be ob- 
tained from A 1 and Equation 37 by substituting 1 e 2. Equations 37 and 38 describe the development of 
the fluctuations and their cross-correlation of the system having the initial values ~'i, (q iq j )  within a 
small time interval. Note that if  as initial conditions the stationary solution (Equation 18) and vanishing 
fluctuations are chosen, Equations 37 and 38 change into Equations 23 and 24 approximated for small 
times. Assuming that ~t t = 0 the coupling between the modes is switched on, i.e. <qlq2 ) = 0 and e > 1 
for t ~> 0, we see from Equation 38 that the fluctuations of  the counter-running modes become anti- 
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correlated. The amount is proportional to the coupling parameter e. Especially for the initial values 
~ = ~ = a/d,  ( (q l )  ~ ) = ( (q:)2 ) = q /2a ,  i.e. stationary amplitudes and fluctuations for e = 0, Equations 
37 and 38 take the form 

( [~l(t)] 2) = q (1 + 6e2a2t ~) (39) 

(~ i ( t )  82(t))  = -- 2 eq (t  --  2at2).  (40) 

From Equation 39 it is evident that the fluctuations of a unidirectionally travelling wave q /2a  are 
increased due tb the mode competition with second order in t. The magnitude of the anti-correlation is 
increased due to the coupling of the counter-running modes in the first order in t and diminished due to 
the pumping "rethe second order in t. Equations 36-38 can be used to calculate the evolution of the 
amplitudes and the correlation functions numerically when the system starts from an arbitrary initial 
state and tends to its stable state: For the situation that the coupling between the two modes is suddenly 
switched Onthis is illustrated in Fig. 3 for various values of  the coupling parameter e. These figures show 
that the increase and the magnitude of the intensity fluctuations, as well as of their negative cross- 
correlation, grow when e is increased. It is also evident that the more slowly the initial state of  the inten- 
sities decay, the closer e approaches to the critical value (critical slowing down). 

5. Conclusions 
There are various mechanisms causing a competition of the counter-running modes of a single-frequency 
ring laser. In the case of a spectrally inhomogeneously broadened line, e.g. Doppler broadening, the 
strength of the competition isdetermined by the common gain reservoir of both modes; and in the case 
of  homogeneous broadening and the active atoms being at rest, the coupling is enhanced by the self- 
induced population-inversion grating. Depending on the ratio of the lifetimes of the levels and the 
dipole moment of  the active atoms, in the case of Doppler broadening an inversion grating occurring at 
line centre may influence the mode competition and intermediate cases are possible. Depending on the 
strength of the coupling there are different stable states: (a) both modes are above threshold and (b) 
only one mode is above threshold. In the first case the intensity fluctuations are anti-correlated. The 
magnitude of the anti-correlation increases with an increasing coupling parameter. In particular, in the 
case of equal pump rates and consequently of  equal intensities of the oppositely directed waves one 
may conclude that when exceeding a critical size the strong anti-correlation between the counter- 
running modes forces the ring laser to go into a new state where one of  the modes is below threshold 
and the fluctuations of the two modes are uncorrelated. The transition between the stable states shows 
phenomena closely resembling phase transitions such as critical fluctuations, critical slowing down, etc. 
For mode coupling enhanced by a population-inversion grating the time development of the amplitudes 
and the correlation functions during the transient behaviour of the ring laser is described in a short-time 
approximation. It  is illustrated by means of special initial conditions that the strong coupling leads to 
negative cross-correlation to the first order in time and that the pumping has a tendency to decrease this 
anti-correlation in a second order in time. 

There is a whole series of further physically interesting phenomena connected with a ring laser, the 
gain of which is spectrally homogeneously broadened and shows a population-inversion grating. Exper- 
iments show that if both directions are back-scattered by retro-reflecting elements the two modes begin 
to oscillate mutually with a frequency depending on the strength o f back-scattering [ 16 ], or, in other 

words,  the system pumped continuously shows order in the time domain. It would also be interesting to 
investigate the fluctuations and especially their cross-correlation of a homogeneously broadened ring 
laser, which is forced by spatially inhomogeneous (6-shaped) losses to oscillate in both directions. This 
also offers the possibility of experimentally determining the influence of the mode competition 
enhanced by the population-inversion grating on the cross-correlation of the counter-running modes. 
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