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A temperature-dependent dispersion 
equation for congruently grown lithium 
niobate 

The form of the equation we used is as 
described by Hobden and Warner [3]. In a slightly 
recast form this reads. 

The refractive indices of lithium niobate have been 
extensively studied for both stoichiometrically 
grown and congruently grown crystals. In the 
former category, Boyd et al. [1, 2] measured the 
wavelength dependence of the refractive indices in 
the 0.4-4 micron region, while Hobden and 
Warner [3] examined the temperature dependence 
and published a temperature-dependent Sellmeier 
equation covering the visible region of the spec- 
trum. The congruently grown material has been 
studied by Nelson and Mikulyak [4] who measured 
the room-temperature refractive indices in the 
range 0.4-3.1 microns. Subsequently, Smith et al. 
[5] published the results of measurements on the 
variation with temperature of the refractive index 
at the two wavelengths 0.632 99 and 3.3922 ~m, 
as well as data on the wavelength dispersion at 
room temperature. The variation of the refractive 
indices with the lithium/niobium ratio in the melt 
has also been studied [6] and was found to have a 
significant effect on the phase-matching tempera- 
ture of nonlinear optical processes. 

The importance of the congruently grown 
material lies in the good compositional and optical 
homogeneity that may be obtained, enabling crys- 
tals up to at least 50 mm in length to be used in 
parametric frequency doubling and mixing exper- 
iments. Also, the relatively strong temperature- 
dependence of the extraordinary refractive index 
frequently allows the material to be used in the 
non-critical phase-matching configuration, with 
consequent advantages in conversion efficiency. 
For these reasons we have found it desirable to be 
able to predict the phase-matching temperature of 
congruently grown lithium niobate for general 
three beam parametric interactions, and in con- 
sequence we have derived from published data a 
temperature-dependent Sellmeier equation for the 
refractive indices. The predictions of this equation 
are compared with some experimental results 
obtained from difference-frequency mixing of two 
visible lasers in a lithium niobate crystal to pro- 
duce infrared radiation. 

n 2 = A1 + 
A2 + B I F  

L 2 -- (A3 + B z F )  2 
I- B 3 F - - A 4 L 2 ( 1 )  

where A1, A2, A3, A4, B1, B2 and B3 are constants 
and L is the vacuum wavelength in microns. F, 
which contains the temperature dependence, is 
given by F = ( T - -  To)(T + To + 546) where To is 
a constant and Tis the temperature in degrees 
centigrade. A separate equation is required for 
each of the two principal refractive indices. When 
T = To, the equation reduces to the temperature- 
independent Sellmeier equation 

A2 A4L 2 (2) 
n z = A l q  (L~ A~ ) 

The procedure adopted for estimating the par- 
ameters in Equation 1 was as follows. First, 
Equation 2 was fitted by a least-squares method to 
the wavelength dependent data of Nelson and 
Mikulyak [4]. This data was obtained at 24.5 ~ C, 
which gives the value for To. For both the ordinary 
and extraordinary index, the 30 data points of 
Nelson and Mikulyak were fitted by Equation 2 
with a standard deviation of 1.3 x 10 -4, consistent 
with the quoted experimental uncertainties of 
-+ 2 • 10 -4. Having obtained values for the par- 
ameters An, the constants B n were estimated from 
the temperature data of Smith et al. [5]. These 
authors expressed the temperature dependence 
of the refractive index for two wavelengths 
(0.632 99 and 3.3922 microns) in the form of a 
polynomial: 

n = no(1 + d l T + d 2 T  2 + d 3 T a + d 4 T  4) ( 3 )  

where no is the refractive index at 0 ~ C. There are 
four sets of the coefficients no and dn, corre- 
sponding to the two refractive indices at each of 
the two wavelengths. Using the published values of 
these coefficients and the A n values already 
obtained, a least-squares fit was performed for 
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T A B  LE I Coefficients of Equation 1 for the ordinary and extraordinary refractive indices 

Aa A2 A3 A4 B1 B2 B3 

Ordinary.  4.904 8 0.117 75 0 .21802  0.027 153 2.2314 X 10 -s - -2 .9671 X 10 -8 2.1429 X 10 -s 
Extraordinary 4.582 0 0.099 21 0.210 90 0.021 940 5.2716 X 10 -s - -4 .9143 X 10 -s 2.2971 X 10 -7 

Equation 1 at 20 ~ C intervals in the range 
0-500 ~ C. For each refractive index the fit mini- 
mized the total deviation from Equation 3 for 
both wavelengths simultaneously. The standard 
deviation of the fit over the whole temperature 
range was 1.8 x 10 -4 for both the ordinary and 
extraordinary indices and the results obtained for 
the coefficients of Equation 1 are shown in 
Table I. 

As a check on the accuracy of the equation in 
predicting phase-matching temperatures, we have 
some data obtained from difference-frequency 
generation in lithium niobate. Infrared radiation in 
the range 2.1-3.2 microns was generated by para- 
metric mixing of two visible lasers - a single-mode 
argon ion laser operating on the 488 nm line and a 
dye laser tunable over the range 565-640 nm. The 
mixing was carried out using type 1, non-critical, 
phase matching in a congruently grown, 50 mm 
long lithium niobate cry~tal (grown by Barr and 
Stroud) held in a stabilized oven. The wavelength 
of the dye laser could be determined to a precision 
of about 1 in 106 by comparison with a stabilized 
helium-neon laser in a wavemeter, while the oven 
temperature was known to within +- 0.05 ~ C in the 
range 200-400 ~ C. The phase-matching tempera- 
tures measured for ten different infrared wave- 

T A B  LE I I The ooserved and calculated phase-matching 
temperatures (o C) as a function of infrared wavelength 
(microns) 

Wavelength 1' (observed) T (calculated) 

2.159 180.0 176.4 
2.249 200.0 200.1 
2.337 220.0 221.3 
2.432 240.0 242.2 
2.541 260.0 264.0 
2.643 280.0 282.6 
2.771 300.0 303.7 
2.901 320.0 323.0 
3.049 340.0 342.6 
3.235 360.0 364.5 
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lengths are shown in Table II, together with the 
temperatures predicted by Equation 1. There is 
good agreement between the two sets of figures 
and the systematic difference of about 3 ~ C which 
is apparent over most of the range is probably not 
significant given the magnitude of the uncertainties 
in the input data. (One/~T is approximately equal 
to i x 10-4( ~ C) -~ at 250 ~ C and so, neglecting the 
considerably smaller temperature variation of the 
ordinary index, an error of 1 ~ C in phase-matching 
temperature is approximately equivalent to an 
error of 1 x 10 -4 in the refractive index at 
488 nm.) 

In view of the wide range of wavelengths 
involved in the data of Table II and the good agree- 
ment between theory and experiment, we believe 
that Equation 1 should provide a simple, practical 
method for predicting phase-m~atching tempera- 
tures with reasonable accuracy in congruently 
grown lithium niobate over the bulk of the trans- 
parency range (0.4-4.5 microns) of the material. 
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