[RhCl(CO)(PPh₃)₂] (8 mg, 1.27×10^{-2} mmol) was added to 1-pentyne (0.69 g, 10 mmol). This was followed by *t*-BuOOH (1.9×10^{-2} mmol, 1.0 cm³ of 0.019 molar benzene solution). The mixture was allowed to stir at room temperature for 30 minutes, before triethylsilane (0.73 g, 6.3 mmol) was added. The solution was stirred at room temperature for 8 h. The yield and ratio of isomers were determined by quantitative g.l.c. on the Varian Aerograph 700 "Autoprep" Gas chromatograph using a 6 ft. column of 10% FFAP on Chromosorb G using indan as an internal standard.

Acknowledgements

We would like to acknowledge the support of Dow Corning Corporation and the University of North Carolina at Greensboro Research Council, and Johnson Matthey, Inc. for the loan of rhodium salts.

References

⁽¹⁾ M. M. Taqui Khan and E. A. Martell, Homogeneous Catalysis by Metal Complexes, Academic Press, New York, Vol. II, 1974. – ⁽²⁾ M. F. Lappert, T. A. Nile and S. Takahashi, J. Organometal Chem., 72, 425 (1974). – ⁽³⁾ L. Ramain and Y. Trembouze, Compt. rend., 273 C, 1408 (1971). – ⁽⁴⁾ H. van Bekkum, F. van Rentwijk and T. van de Putte, Tetrahedron Lett., 1 (1969). – ⁽⁵⁾ R. A. Faltynek, Inorg. Chem., 20, 1357 (1981). – ⁽⁶⁾ H. M. Dickers, R. N. Hazeldine, L. S. Malkin, A. P. Mather and R. V. Parish, J. Chem. Soc., Dalton Trans., 308 (1980). – ⁽⁷⁾ A. J. Chalk, J. Organometal. Chem., 21, 207 (1970). – ⁽⁸⁾ I. J. Harvie and F. J. McQuillen, J. Chem. Soc., Chem. Commun., 369 (1976). – ⁽⁹⁾ H. B. Tinker and D. E. Morris, J. Organometal Chem., 52, C55 (1973). – ⁽¹⁰⁾ K. A. Brady and T. A. Nile, J. Organometal Chem., 206, 299 (1981).

⁽¹¹⁾ M. S. Wrighton and M. A. Schroeder, J. Am. Chem. Soc., 96, 6235 (1974). – ⁽¹²⁾ C. F. Allen and A. Bell, Org. Synth., Coll. Vol. 3, 312 (1955).

(Received June 29th, 1983)

TMC 1003

Ligand Function and Substrate Effect on Metal-Oxygen Stretching Frequencies in some *cis*-Dioxomolybdenum(VI) Complexes of Bivalent Tridentate Schiff Bases

Chathakudam P. Prabhakaran* and Balakrishnan G. Nair

Department of Chemistry, University of Kerala, Trivandrum-695034, Kerala, India

Summary

New dioxomolybdenum(VI) complexes [MoO₂LD] (LH₂ = Schiff base derived from isonicotinylhydrazide and salicylaldehyde, 2-hydroxynaphthaldehyde and 2-hydroxyacetophenone and benzoylhydrazide and 2-hydroxyacetophenone; $D = H_2O$, HCONMe₂, C₅H₅NO, C₄H₈O or Me₂SO) have been synthesized and characterized. The complexes contain a *cis*-MoO₂ moiety. The difference between v_{sym} and v_{asymm} of MoO₂ is related to the basicity and ligand repulsion of the ligand (L) and the donor power of D. All the complexes decompose before melting and their thermal stability is in the order: C₄H₈O < HCONMe₂ < Me₂SO < C₅H₅NO < H₂O. The complexes are monomeric, non-electrolytes in solution in MeOH, MeCN and PhNO₂ and are diamagnetic.

Introduction

Of all the metals in 4d transition series, molybdenum has aroused considerable interest in recent years in view of its biochemical importance. It is an essential micronutrient for microorganisms, plants and animals⁽¹⁾. Schiff base complexes of first-row transition metals have been extensively investigated. Comparatively very little work has been reported on Schiff base complexes of molybdenum⁽¹⁻⁴⁾. The present paper deals with the preparation and characterization of some new dioxomolybdenum(VI) complexes of the type [MoO₂LD], with potential bianionic tridentate ligands (LH₂) and monodentate oxygen donors D such as H_2O , dimethylformamide (DMF), pyridine N-oxide (PyO), tetrahydrofuran (THF) and dimethylsulphoxide (DMSO).

$$\begin{array}{c} \begin{array}{c} & OH \\ & & & \\ & &$$

Experimental

Reagents

Ammonium molybdate was supplied by May and Baker Ltd., England. Isonicotinylhydrazide, benzoylhydrazide and pyridine *N*-oxide from Koch Light Laboratories, England were used. 2-Hydroxyacetophenone was obtained from Boehringer, Ingelheim, West Germany. Salicylaldehyde, DMSO, DMF and THF were obtained from Sisco-Chem, Bombay, India. 2-Hydroxy-1-naphthaldehyde was prepared by the procedure given by Russel and Lockhart⁽⁵⁾.

Schiff bases were prepared by condensing carbonyl compounds with stoichiometric quantities of isonicotinylhydrazide or benzoylhydrazide in the usual way.

^{*} Author to whom all correspondence should be addressed.

Synthesis of [MoO₂LD]

The complexes $[MoO_2L(H_2O)]$ were prepared by adding dropwise with stirring a hot solution of ligand in EtOH (1 mmol in 50 cm³) to a hot aqueous solution of ammonium molybdate (1 mmol, 1.24 g in 150 cm³) at pH ca. 6.5. The stirring was continued for 30 min while heating, and the coloured precipitate formed was filtered, washed first with hot H₂O followed by Et₂O and dried *in vacuo* over P₄O₁₀. [MoO₂L(DMF)], [MoO₂L(DMSO)] and [MoO₂L(PyO)] were prepared by adding the oxygen donor in small quantities to a hot suspension of [MoO₂L(H₂O)] in dry C₆H₆ till the parent complex dissolved to give a clear solution. Petroleum ether (40–60 °C) was added with stirring until the complex precipitated. The THF complexes were obtained by dissolving the aqua-complexes in the minimum of THF and precipitating the product with petroleum ether. The precipitated complexes were filtered, washed with petroleum ether and dried *in vacuo* over P_4O_{10} . The complexes are insoluble in H_2O and fairly or slightly soluble in almost all organic solvents. All of them decompose without melting.

Molybdenum was estimated gravimetrically as oxinate⁽⁶⁾. For this, the complexes were first decomposed with conc. H_2SO_4 and a few drops of $HClO_4$ to yield a clear and colourless solution. Using a Perkin-Elmer apparatus, the contents of the substances D were estimated by thermogravimetry. A typi-

Table 1. Colour, analytical, molecular weight and TG data of dioxomolybdenum(VI) complexes.

Complex	Colour	Found (Calcd.)% Mo D		Mol.wt.	Temp. range °C First stage dec. From To		Second stage dec. From To		Found (Calcd.)% Total Final wt. loss residue	
[MoO ₂ (INHSAL)(H ₂ O)] C ₁₃ H ₁₁ N ₃ O ₅ Mo	orange- yellow	24.6 (24.9)	4.8 (4.7)	376.8 (385.2)	196	272	294	468	67.3 (62.6)	32.7 (37.4)
$\begin{array}{l} [\text{MoO}_2(\text{INHNAL})(\text{H}_2\text{O})] \\ \text{C}_{17}\text{H}_{13}\text{N}_3\text{O}_5\text{Mo} \end{array}$	red	22.0 (22.0)	4.0 (4.1)	427.4 (435.3)	261	303	310	470	68.0 (66.9)	32.0 (33.0)
$\begin{array}{l} [MoO_2(INHAP)(H_2O)] \\ C_{14}H_{13}N_3O_5Mo \end{array}$	yellow	24.1 (24.0)	4.6 (4.5)	365.2 (399.2)	212	305	309	513	63.0 (63.9)	37.0 (36.0)
[MoO ₂ (BHAP)(H ₂ O)] C ₁₅ H ₁₄ N ₂ O ₅ Mo	light yellow	24.1 (24.1)	4.5 (4.5)	367.4 (398.2)	287	292	295	545	66.0 (63.8)	34.0 (36.1)
$\begin{array}{l} [MoO_2(INHSAL)(PyO)] \\ C_{18}H_{14}N_4O_5Mo \end{array}$	bright yellow	20.3 (20.8)	19.3 (20.5)	448.6 (462.3)	210	312	325	530	80.7 (68.9)	19.3 (31.2)
$[MoO_2(INHNAL)(PyO)] \\ C_{22}H_{16}N_4O_5Mo$	yellowish red	18.5 (18.7)	18.5 (18.6)	545.0 (512.4)	192	325	335	530	71.0 (71.9)	28.9 (28.1)
[MoO ₂ (INHAP)(PyO)] C ₁₉ H ₁₆ N ₄ O ₅ Mo	bright yellow	20.0 (20.1)	19.8 (20.0)	464.8 (476.3)	150	275	295	540	65.4 (69.8)	34.3 (30.2)
$[MoO_2(BHAP)(PyO)] \\ C_{20}H_{17}N_3O_5Mo$	yellow	20.2 (20.2)	19.3 (20.0)	467.0 (475.3)	210	265	275	510	70.5 (69.7)	29.0 (29.5)
$\begin{array}{l} [MoO_2(INHSAL)(DMF)] \\ C_{16}H_{16}N_4O_5Mo \end{array}$	bright yellow	21.0 (21.8)	16.1 (16.6)	449.2 (440.3)	189	302	310	480	85.2 (67.3)	14.8 (32.7)
$[MoO_2(INHNAL)(DMF)] \\ C_{17}H_{18}N_4O_5Mo$	dark red	19.4 (19.6)	15.0 (14.9)	494.6 (490.4)	143	182	302	520	70.0 (70.6)	30.0 (29.3)
[MoO ₂ (INHAP)(DMF)] C ₁₇ H ₁₈ N ₄ O ₅ Mo	bright yellow	21.0 (21.1)	15.4 (16.1)	460.2 (454.3)	142	296	307	550	65.4 (68.3)	34.6 (31.6)
[MoO ₂ (BHAP)(DMF)] C ₁₈ H ₁₉ N ₃ O ₅ Mo	brownish yellow	21.1 (21.2)	15.5 (16.1)	448.4 (453.3)	172	282	292	540	64.7 (68.2)	35.3 (31.8)
$[MoO_2(INHSAL)(THF)] \\ C_{17}H_{17}N_3O_5Mo$	orange yellow	21.1 (21.8)	16.0 (16.4)	427.3 (439.3)	145	254	305	470	74.0 (67.2)	26.0 (32.8)
$[MoO_2(INHNAL)(THF)] \\ C_{21}H_{19}N_3O_5Mo$	yellowish red	19.6 (19.6)	15.2 (14.7)	491.7 (489.3)	126	326	332	485	70.7 (70.6)	29.3 (29.4)
[MoO ₂ (INHAP)(THF)] C ₁₈ H ₁₉ N ₃ O ₅ Mo	bright yellow	21.1 (21.2)	17.8 (15.9)	445.6 (453.3)	133	300	326	520	67.8 (68.2)	32.2 (31.8)
$[MoO_2(BHAP)(THF)] \\ C_{19}H_{20}N_2O_5Mo$	brownish red	21.2 (21.2)	16.3 (15.9)	464.8 (452.3)	126	295	303	530	69.4 (68.2)	30.6 (31.8)
$[M_0O_2(INHSAL)(DMSO)] \\ C_{15}H_{15}N_3O_5SM_0$	orange yellow	21.1 (21.6)	16.8 (17.6)	426.2 (445.3)	181	317	329	482	80.0 (67.7)	20.0 (32.3)
$\begin{array}{l} [MoO_2(INHNAL)(DMSO)] \\ C_{19}H_{17}N_3O_5SMo \end{array}$	yellowish red	19.3 (19.4)	15.3 (15.8)	501.0 (495.4)	. 184	290	325	510	77.2 (70.9)	22.6 (29.1)
[MoO ₂ (INHAP)(DMSO)] C ₁₆ H ₁₇ N ₃ O ₅ SMo	bright yellow	20.6 (20.9)	18.0 (17.0)	455.1 (459.3)	299	320	325	510	66.7 (68.7)	33.3 (31.4)
[MoO ₂ (BHAP)(DMSO)] C ₁₇ H ₁₈ N ₂ O ₅ SMo	orange yellow	21.0 (20.9)	18.0 (17.1)	463.0 (458.3)	127	185	250	540	69.0 (68.6)	31.0 (31.4)

cal complex [MoO₂(INHSAL)(H₂O)] was analysed by the Australian Microanalytical Service. (Found: C, 41.3; H, 3.0; N, 10.2. Calcd.: C, 40.5; H, 2.9; N, 10.9%.) Molecular weights were determined by Rast's method⁽⁷⁾, using biphenyl as solvent. Molar conductance in solvents such as methanol, acetonitrile and nitrobenzene and magnetic susceptibility measurements were made at room temperatures as described earlier⁽⁸⁾. I.r. spectra were recorded in KBr using a Perkin-Elmer 397 spectrophotometer.

Results and Discussion

The compounds analyse as $[MoO_2LD]$. The molecular weights correspond to monomers (Table 1). All are nonelec-

Table 2. I.r. spectral data of dioxomolybdenum(VI) complexes (cm⁻¹).

trolytes in solvents such as methanol, acetonitrile and nitrobenzene and are diamagnetic as expected.

The i.r. spectral data of the complexes are typical of coordinated anionic Schiff bases and oxygen donors (Table 2). The v(C=O) at 1640–1685 cm⁻¹ of the Schiff bases disappears in complexes suggesting enolization of ligands and the reaction of the enol form with the metal with the elimination of a proton^(3, 4, 9). A new band in the complexes at 1260–1300 cm⁻¹ may be due to the enolic v(C–O)⁽⁴⁾. There is no v(N–H) in the spectra of the complexes⁽¹⁰⁾. No new =N–N-stretching^(11, 12) bands were observed, but there are more intense bands of the *cis*-MoO₂ oxocation in the same region^(13–15). The complexes do not show phenolic v(OH)⁽²⁾. The v(C–O) bands at

Complex (Ligand)	v(C=N)	v(C-O) Phenolic	v(C-O) Enolic	v _{sym} (O=Mo=O	v _{asymm})(O=Mo=O)	ν(Mo-N)	ν(Mo-O)	D bands	$\Delta \nu (MoO_2)$ (ν_{sym} - ν_{asymm})
[MoO ₂ (INHSAL)(H ₂ O)] (INHSALH ₂) ^{a)}	1595vs (1615)s	1548s (1540)vs	1260s	922s	898vs	590m	550w	3450Sb, - v(OH) (H ₂ O)	24
[MoO2(INHSAL)(DMF)] (INHSALH2)	1600vs (1615)s	1550s (1540)vs	1260s	932s	908vs	590m	550w	1650vs, -v(C=O) (1680)vs) 24
[MoO2(INHSAL)(PyO)] (INHSALH2)	1595vs (1615)s	1550s (1540)vs	1260s	926s	904vs	585s	545m	1195vs, -v(N=O) (1250)vs	22
[MoO2(INHSAL)(THF)] (INHSALH2)	1595vs (1615)s	1550m (1540)vs	1265s	9288	912vs	590m	555w	1005m, -v(C-O-C (1065)vs	C) 16
[MoO ₂ (INHSAL)(DMSO)] (INHSALH ₂)	1595vs (1615)s	1550m (1540)vs	1260s	910s	894vs	590s	555w	1000m, -v(S=O) (1040)vs	16
[MoO ₂ (INHNAL)(H ₂ O)] (INHNALH ₂) ^{b)}	1595vs (1625)s	1545s (1540)vs	1275m	928s	902vs	585s	540w	3450Sb, -v(OH) (H ₂ O)	26
[MoO ₂ (INHNAL)(DMF)] (INHNALH ₂)	1595vs (1625)s	1545s (1540)vs	1275s	924s	898vs	585s	540w	1640vs, -ν(C=O) (1680)vs	26
[MoO2(INHNAL)(PyO)] (INHNALH2)	1595vs (1625)s	1546s (1540)vs	1275m	920s	898vs	585s	540w	1210s, -v(N=O) (1250)vs	22
[MoO2(INHNAL)(THF)] (INHNALH2)	1595vs (1625)s	1548s (1540)vs	1275s	930s	908vs	585s	540w	1005m, -ν(C-O-C (1065)vs	C) 22
[MoO2(INHNAL)(DMSO)] (INHNALH2)	1595vs (1625)s	1546s (1540)vs	1275s	918s	900vs	590s	540w	990m, -v(S=O) (1040)vs	18
[MoO2(INHAP)(H2O)] (INHAPH2) ^{c)}	1585vs (1605)vs	1545s (1540)vs	1300s	934s	908vs	600m	525w	3375Sb, -v(OH) (H ₂ O)	26
[MoO2(INHAP)(DMF)] (INHAPH2)	1585vs (1605)vs	1545s (1540)vs	1295s	930s	904vs	600s	525w	1665vs, -v(C=O) (1680)vs	26
[MoO2(INHAP)(PyO)] (INHAPH2)	1585vs (1605)vs	1545s (1540)vs	1295s	926s	900vs	600s	545m	1200s, -v(N=O) (1250)vs	26
[MoO2(INHAP)(THF)] (INHAPH2)	1585vs (1606)vs	1545s (1540)vs	1300s	932s	908vs	600m	525w	1010m, -v(C-O-C (1065)vs	C) 24
[MoO2(INHAP)(DMSO)] (INHAPH2)	1590vs (1605)vs	1545s (1540)vs	1300s	930s	906vs	600s	525m	1010m, -v(S=O) (1040)vs	24
[MoO ₂ (BHAP)(H ₂ O)] (BHAPH ₂) ^{d)}	1605vs (1615)vs	1555s (1525)vs	1290s	870s	846vs	580m	520w	3400sb, -v(OH) (H ₂ O)	24
[MoO ₂ (BHAP)(DMF)] (BHAPH ₂)	1595vs (1615)vs	1550s (1525)vs	1290s	906s	894vs	600m	520w	1640vs, -v(C=O) (1680)vs	12
[MoO2(BHAP)(PyO)] (BHAPH2)	1595vs (1615)vs	1555s (1525)vs	1295s	908s	896vs	595s	545m	1200s, -v(N=O) (1250)vs	12
[MoO ₂ (BHAP)(THF)] (BHAPH ₂)	1605vs (1615)vs	1555s (1525)vs	1290s	870m	848vs	585m	515w	1020, -v(C-O-C) (1065)vs	22
[MoO ₂ (BHAP)(DMSO)] (BHAPH ₂)	1595vs (1615)vs	1550s (1525)vs	1290s	908s	898vs	600s	520w	990s, -v(S=O) (1040)vs	10

^{a)} v(N-H) 3175Sb; v(OH, phenolic) 3000sb; v(C=0) 1685vs; ^{b)} v(N-H) 3200mb; v(OH, phenolic) 3030mb; v(C=O) 1675vs; ^{c)} v(N-H) 3100mb; v(OH, phenolic) 2950mb; v(C=O) 1670vs; ^{d)} v(N-H) 3200sb; v(OH, phenolic) 3000mb; v(C=O) 1660vs and 1640vs.

1525–1540 cm⁻¹ of the ligands shift to higher frequencies by 5–30 cm⁻¹. These are all suggestive of the coordination of phenolic C–O groups^(3, 4, 9). The v(C=N) at 1605–1625 cm⁻¹ of the ligands exhibit a negative shift of 10–30 cm⁻¹ in the complexes and this indicates the coordination of azomethine nitrogen to molybdenum^(3, 4, 9). Bands at 585–600 and 515–555 cm⁻¹, respectively^(2, 13, 16) are assigned to v(Mo–N) and v(Mo–O). Thus the i.r. data suggest bivalent tridentate ONO donor behaviour for the ligands L.

The broad bands at $3\overline{375}$ -3450 cm⁻¹ in the spectra of [MoO₂L(H₂O)] are due to v(OH) of coordinated H₂O^(3, 4). The water was retained even on heating to a temperature of 120 °C for several hours. Negative shifts of 15–40, 45–50, 40–60 and 40–50 cm⁻¹ from 1675, 1250, 1065 and 1040 cm⁻¹ exhibited by v(X=O) of DMF⁽¹⁷⁻¹⁹⁾, PyO⁽¹⁷⁾ and DMSO⁽¹⁷⁾ and v_{asymm}(C–O–C) of THF⁽³⁾, respectively, are suggestive of their coordination through oxygen atoms.

The tendency of $MoO_2^{2^+}$ to form a *cis*-configuration is well established, and is attributed to the maximum utilization of the available d π orbitals for bonding with the oxo-groups⁽²⁰⁾. Dioxomolybdenum(VI) complexes with a *cis*-MoO₂ moiety exhibit two strong bands at 905–948 and 875–914 cm⁻¹ assignable to the v_{symm}(O=Mo=O) and v_{asymm}(O=Mo=O), respectively⁽¹³⁻¹⁵⁾. A *trans*-MoO₂ species would show only one i.r.active band. All the complexes exhibit bands in the regions 870–934 and 848–908 cm⁻¹ indicating the presence of a *cis*-MoO₂ moiety. On the basis of the evidence presented here, the following structure is proposed for the complexes.

It is interesting to note that the separation between the v_{symm} and v_{asymm} (Δv) decreases in the following order for the ligands; L: INHAP > INHNAL > INHSAL > BHAP. For the ligand D it increases in the following order: DMSO < THF < PyO < DMF < H₂O. This parallels changes in v(C=N) and phenolic v(C-O) of the complexes, which decreases with increase in Δv as L changes. Neither v(C=N) nor v(C-O) change with D.

Thermogravimetric studies show that the complexes [MoO₂LD] decompose in two well defined stages leaving a

final residue approximating to MoO₃. The elimination of D from the complexes is found to occur at a temperature lower than the boiling point of D in some cases. Weight loss in the first stage (126–326 °C) corresponds to the quantitative elimination of D, and the second stage (250–550 °C) shows the decomposition of the complex to MoO₃. Lower values for the final residue are observed in the cases of [MoO₂(INHSAL)D]. Independent pyrolysis experiments at *ca*. 550 °C show that all the complexes except [MoO₂(INHSAL)D] yield quantitatively MoO₃ as the final residue. [MoO₂(INHSAL)D] always gives varying lower weights of residue.

Work on different D and with various L is in progress.

Acknowledgements

One of the authors (B.G.) is grateful to the U.G.C., New Delhi, for the award of a teacher fellowship.

References

⁽¹⁾ E. I. Stiefel, *Prog. Inorg. Chem.*, 22, 1 (1977) and refs. therein. – ⁽²⁾ K. Dey, R. K. Maiti and J. K. Bhar, *Transition Met. Chem.*, 6, 346 (1981). – ⁽³⁾ A. Syammal and D. Kumar, *Transition Met. Chem.*, 7, 113 (1982) and refs. therein. – ⁽⁴⁾ A. Syamal and D. Kumar, *Indian J. Chem.*, 21A, 534 (1982) and refs. therein. – ⁽⁵⁾ A. Russel and L. B. Lockhart, Org. Synth., 22, 63 (1942). – ⁽⁶⁾ A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, 3rd. Edit., 1961, p. 508. – ⁽⁷⁾ F. G. Mann and B. C. Saunders, *Practical Organic Chemistry*, Longmans, London, 1961, p. 435. – ⁽⁸⁾ S. Sarasukutty and C. P. Prabhakaran, J. Inorg. Nucl. Chem., 39, 374 (1977). – ⁽⁹⁾ A. Syamal and K. S. Kale, Indian J. Chem., 16A, 46 (1978). – ⁽¹⁰⁾ K. Nagano, H. Kinoshita and A. Hirakawa, Chem. Pharm. Bull. (Tokyo), 12, 1198 (1964); Chem. Abs., 62, 2758 (1965).

⁽¹¹⁾ L. Sacconi and A. Sabatini, J. Inorg. Nucl. Chem., 25, 1389 (1963). – ⁽¹²⁾ A. Braibanti, F. Dallavalle, M. A. Pellinghelli and E. Leporati, Inorg. Chem., 7, 1430 (1968). – ⁽¹³⁾ F. A. Cotton and R. M. Wing, Inorg. Chem., 4, 867 (1965). – ⁽¹⁴⁾ M. L. Larson and F. W. Moore, Inorg. Chem., 5, 801 (1966). – ⁽¹⁵⁾ W. P. Griffith and T. D. Wickins, J. Chem. Soc. (A), 400 (1968). – ⁽¹⁶⁾ G. C. Percy and H. S. Stenton, J. Chem. Soc., Dalton Trans., 2429 (1976). – ⁽¹⁷⁾ K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd. Edit., 1978. – ⁽¹⁸⁾ T. Miyazawa, T. Shimanouchi and S. Mizushima. J. Chem. Phys., 29, 611 (1958). – ⁽¹⁹⁾ O. A. Rajan and A. Chakravorthy, Inorg. Chem. Acta, 37, L503 (1979). – ⁽²⁰⁾ E. I. Stiefel, Prog. Inorg. Chem., 22, 1977, p. 34.

(Received June 22nd, 1983)

TMC 994