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O. Introduction 

This paper is a sequel to van Duijn and Knabner (1992a). It contains the analysis 
of travelling wave solutions for the situations discussed in Part 1. All definitions 
and notation remain in force and the numbering is continued. A considerably more 
detailed version of this paper containing further indications of mathematical proofs, 
case studies and numerical examples is available (van Duijn and Knabner 1990). 

The paper is organized as follows: Section 3.l is devoted to the existence of 
travelling-wave solutions for problem TW, introduced in Section 1 of van Duijn 
and Knabner (1992). The existence is characterized by a condition (C), the 
wave-speed is given by (3.4). In Section 3.2, the relation between the classification 
of isotherms and condition (C) is discussed and combinations of convex and 
concave isotherms are investigated with respect to (C). Section 3.3 contains 
numerical computations of  travelling waves. In Section 4, the phenomenon of 
finiteness is studied. By finiteness we denote the existence of  a moving front, beyond 
which there is no mass. On the contrary, an infinite wave exhibits the physically 
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inconsistent property that mass is distributed all the way downstream. In Section 5.1, 
the limit process k ~ oe is considered, k being the rate parameter of the nonequi- 
librium adsorption. The convergence to the limit problem TWE and distinctions 
between TW and TWE are pointed out. Section 5.2 parallels this analysis for the limit 
process D ~ 0, D being the diffusion-dispersion coefficient. The new aspect of the 
limit problem TWH is the possibility of shocks, i.e. of jumps in the dissolved 
concentration. Appendix C contains some closed form solutions for limit cases. 

The enlarged version (van Duijn and Knabner, 1990) also contains a description 
of a numerical method for the computation of travelling waves. 

3. Travelling Waves 

Here we discuss the analysis needed to prove the existence and some properties of 
solutions of Equations (1.24) and the boundary conditions (BC). This we do first 
in Section 3.1. For more details and proofs, we refer to van Duijn and Knabner 
(1991). We recall that all isotherms ~ are assumed to fulfill (1.10) (ii)-(iv) and all 
rate funct ionsfwith  their associated isotherm ~p are assumed to fulfill (1.10) (i)-(iv) 
(see also (1.22), (1.23)). In order to carry out the analysis, a crucial condition on 
the isotherms ~p and ~b is needed. This condition is discussed separately in Section 
3.2. Some examples are given in Section 3.3. 

3.1. THE ANALYSIS 

Because the function ~ in Equation (1.24a) need not be differentiable in every point 
of [0, Urn], solutions of this equation may be nonsmooth. We, therefore, have to 
interpret solutions of (1.24) in a weak sense. This we do as follows. 

We first require that u and v are continuous functions in ~ (i.e. belong to the space 
C(R)). From Equation (1.24b) and the continuity of the rate function f ,  it then 
follows that v is also continuously differentiable in R. (v ~ C1(~)). Using this in 
(1.24a) gives 

(q - a)u - a6(u)  - D u '  e CI(~). 
From this observation and from the continuity of u and 6(u), we then obtain that 
u is also continuously differentiable in R. We therefore use the following definition 
for solutions of problem TW: 

DEFINITION 3.1. A triple {u, v, a}, with u and v being nonnegative functions 
defined on R and a a real number, is called a travelling wave for the boundary 
condition (BC) if 

u, v ~ C~(~), 

Du" + ate(u) e Cl(R), 

(Du '  ? rap(u))' = (q -- a)u '  -- av" t (3.1) 
- -av  = k f (u ,  v) j in R, (3.2) 

u and v satisfy the boundary conditions (BC). 
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If ~b is a smooth function (e.g. ~ ~ C1([0, Urn])), then 0(u) e Ca(N) and, thus, 
u �9 C2(R). For such cases, the pair (u, v) forms a classical solution of Equations 
(1.24) and of (1.20) as functions of  x and t. 

We first integrate Equation (3.1). This gives the first-order equation 

D u '  + a O ( u  ) = (q - a ) u  - av  + A inN,  (3.3) 

where A is a constant of integration. Applying the boundary conditions (BC) yields 

a O ( u * )  = (q - -  a ) u *  - -  a v *  + A ,  

a q t ( u , )  = (q  - a ) u ,  - a v ,  + A .  

We solve these equations for a and A. Using the notation of (1.28), we find for the 
wave speed 

Au 
a = Au + AO + Av q (3.4) 

and for the integration constant 

A = a (  - ~ - ~  ) u , + v , + O ,  . a 

Note that in the original variables, the wave speed a reads 

q* 
a -  

o{1 + H(21(A /a ) + 22)}' 

where H is given by (1.15) and AW = W(c*) - W(c,). 
In this expression, q * / |  denotes the interstitial water velocity. Observe that the 

chemicals are being transported at a speed which is reduced by a factor 
{1 + H(21 A W / A s  + 22) } caused by reactions at sites A 1 and sites A 2. 

We are left with the two first-order equations 

a t 
u ' =  ( .  - u , )  - ( o ( . )  - o , )  - - D [ Au 

k in ~, (3.5) 
v" = - f ( u ,  v) 

a 

where u and v satisfy conditions (BC). 
We look for a solution of  these equations in the form of an orbit 

{(u(r/), v(t/)) I - oo < t /<  oo} in the u, v plane (i.e. in the phase plane), connecting 
the boundary points (u*, v*) and (u , ,  v,) .  The existence of  this orbit follows from 
certain invariance properties in the phase plane. To see this, we reverse the 'time' 
coordinate in (3.5). Setting { = - r /  and writing now ' for d/d~, we find 

u' a A~ +AV(u ] 
= ~  { O ( u ) - - O , - l - V - - V ,  Au - - u * ) } = :g l (u ' v )  

in ~. (3.6) 

v '  = Z f ( u ,  v) ="g2(u, v) a 
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We now look for an orbit {(u({), v ( { ) ) [ - o o  < { < oe} connecting the reverse 
boundary points (u , ,  v , )  and (u*, v*). We first consider the sign of u' and to'. For 
this purpose, we introduce the function 

E(u),=v,+AT___AV(u~l14- - u , )  - (O(u)  - ~ , )  for 0~<u ~<u*, (3.7) 
Au 

which satisfies f ( u , )  = v ,  and f(u*) = v*. In general, it is not monotone increasing. 
For example, if u , = 0  and if ~ is of type (H) or of type (L), with ~9'(0+) 
sufficiently large, then f is decreasing in a neighborhood of u ,  = 0 (see Section 5 for 
more details). Depending on the behaviour of the isotherm 0, there may also be 
other intervals in [u, ,  u*] in which f is decreasing. From the first equation in (3.6), 
we find 

v > f(u) implies gl (U, f)) > 0 and thus u' > 0 

and 

to < f(u) implies gi (u, to) < 0 and thus u' < 0. 

From the second equation, we obtain for the isotherm ~0 related to f according to 
(1.10) 

v > q~(u) implies g2(u, v) < 0 and thus v' < 0 

and 

v < ~o(u) implies g2(u, to) > 0 and thus to' > 0 

Observe that q ) ( u , ) = # ( u , )  and (o(u*)=#(u*) (use (1.25)). We now make an 
assumption about the behaviour of the isotherms q~ and 0 which we need for the 
existence. Suppose 

I AO+Ato(u-u,)+v,+g,,, foru.<u<u*,  o0,) + 00,) > 

(C) l o r  equivalently 

(0(u) > E(u), for u ,  < u < u*. 

Because (p is strictly increasing, condition (C) also implies that 

~0(u) > _f(u) = max{#(s) I u ,  ~< s ~< u}, for u ,  < u < u*, 

where _~ is now monotonically nondecreasing (see Figure 2). Then we can introduce 
the set 

s = {(u, to) I u ,  < u < u*,  _f(u) < to < 

In Lemma 2.3 of van Duijn and Knabner (1991) we proved that S is positive 
invariant. By this, we mean that if we take any pair (uo, too) e S and if we consider 
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the initial value problem 

Ib/" = gl (U, V)} 
P ~ v '  =g2(u ,  v) for ~ > 0, 

I 
[ u ( O )  = Uo, v(O) = Vo, 

then (u(~), v(~)) e S for all ~ > 0 (i.e. the emerging orbit lies entirely in the set S). 
In addition, u(~) and v(~) are strictly increasing in ~ > 0, because gl > 0 and g2 > 0 
in S. With this invariance property, we can now prove the existence of an orbit 
connecting (u . ,  v . )  and (u*, v*). 

If  (u . ,  v . )  = (0, 0), then the boundary values may be reached for some finite 
negative value of 4. This may happen if the functions ~ or f are not Lipschitz 
continuous at the origin. This will result in a finite travelling wave. We give precise 
results about this behaviour in the next section. 

Returning to our original variable q we have now the following result. 

THEOREM 3.2. Let  condition (C) be satisfied. Then for  any 0 <<, u .  < u* <~ Um and 

v.  = ~0(u.), v * =  ~o(u*), there exists a monotone travelling wave {u, v, a}, with a 

given by (3.4), which satisfy u" < 0 and v' < 0 on the set where u > u .  and v > v . . 

Consequently 

lim (u(r/), v(q)) = (u*, v*). 
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I f  u ,  > O, then u' < 0 and v" < 0 on the whole real line and 

lim (u(t/), v(tt) ) = (u , ,  v , ) .  
r/-+ + oz 

I f  u ,  = O, then a finite wave may exist, i.e. there may exist a number L, with 

- oo < L < 0% such that 

lim (u(q), v(tt)) = (0, 0), 

and 

(u(t/), v(q)) = (0, 0), for ~//> L. 

In van Duijn and Knabner  (1991), we showed that in fact condition (C) is not only 
sufficient but also necessary for the existence of  a connecting orbit, i.e. for the 
existence of a travelling wave. 

3.2. THE EXISTENCE CONDITION 

In order to carry out the existence proof, we introduced in the previous section a 
condition on the behaviour of the sum of the isotherms ~o and ~,. In terms of the 
original variables, this condition (C) reads 

21 A~  + 22 As 
21 kI/(c) -Jr- /~2(I)(c) > AC (e - -  c , )  q- J~lu-xt(c,) q- ~.2s, ,  

for c ,  < c < c*. 

This shows that condition (C) is a condition on the overall averaged isotherm only 
(compare (2.27)). Moreover, it is a global condition on the interval [c , ,  c*], with 

the following geometrical interpretation: Given in the boundary conditions c*, s* at 
x -- - oo and c , ,  s ,  at x = + 0% a travelling wave occurs if and only if the overall 

averaged isotherm )~lttu(e)-t-22(I)(c ) is above the chord between c ,  and c* for all 
intermediate values of  concentrations c. 

As the classification of  isotherms only takes into account their properties at 
c = 0, there can be only a loose relation between the classification and the validity 
of  condition (C) and only for c , - - 0 .  Returning to the scaled variables, we set 

u ,  = 0, z (u)  ,=  ~o(u) + ~,(u). 

We note some relations: 

�9 If Z is of type (H) or (L), then 
condition (C) holds for small u* > 0. 

�9 If Z is strictly concave for all u > 0, in particular of  type (H) or (L), then 
condition (C) holds for any u * >  0 (Figure 1, H/L(a)).  

�9 Assume Z ~ C1[0, oe), Z is bounded, strictly concave for large u (u ~> L for 
some L > 0), and (3.8) 
X'(u) > 0 for u/> 0, then 
condition (C) holds for large u* > 0. 
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�9 If )~ is of  type (S), then 
condition (C) does not hold for small u* > 0. 

If Z'(0) = 0, then 

condition (C) does not hold for any u* > 0. 

The properties described by statement (3.8) are fulfilled by the isotherms arising in 
both examples of class (S) from Section 2.1. 

It is easy to check condition (C) using a plot of X and a ruler, but possibly 
difficult by inspecting a formula for Z. The following observations may be helpful. 
Assume Z ~ C~(0, oo) and u ,  = 0. 

�9 If Z'(u) < Z(u)/u for 0 < u < a, then 
condition (C) holds for 0 < u* ~< a. (3.9) 

Note that Z ' (u )<  Z(U)/U is equivalent with d /du (x (u ) / u )<  0 and, thus, Z(u)/u is 
strictly decreasing in [0, a]. By an analogous argument, we get 

�9 If X'(u) > Z(u)/u for a < u < b, then 
condition (C) does not hold for a < u* ~< b. 

We apply (3.9), (3.10) to the following cases: 

Case 1. Z(u) = A i u  pl + A2u p2 with AI, A2, Pl, P2 > 0. 

Using 

Z,(U ) = A l p l u p l -  1 + A2p2uPZ 1, 

we obtain from (3.9) and (3.10): 

X(U)/U = A1 up' l + A2uPz-1 ' 

(3.1o) 

Pl < 1, P2 ~< 1: Condition (C) holds for any u* > O. 

Pl < 1, P2 > 1: Set 

* : = ( ( 1 - - P l ) A l ~  1/(p2-pl) 
"m �9 (3.11) 

Then condition (C) holds for 0 < u* ~< u* and does not hold for u* > u*. 
Here one of the isotherms is of type (H), the other of type (S), Z is of type (H) 
(Figure 1, H(b)). 

Pl ~> 1, P2 ~> 1: Condition (C) does not hold for any u* > 0. 

For  Pl < 1, P2 > 1, the result is a consequence of 

U(u) ~Z(U)/U ",* u ~um. 

Note that for Pl < 1, P2 > 1 Z is strictly concave for 0 ~ u ~ u* and strictly convex 
for u > uc,* where 

(pl~ 1/(p2-pl) 
"* '= ~,~/ "*m (<u*). 

This shows again that curvature of Z and condition (C) are not strictly related. 
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Case 2. 

Z(u) -- A t uP + - -  
A2u 

1 + A2u 
with A1, A2, A3, p >0 .  

The analysis of this case is more involved and can be found in van Duijn and 
Knabner (1990) and in van Duijn et al. (1992). 

Finally, condition (C) also implies the shock (or entropy) inequalities for the 
limit case k ~ ov and D ~ 0. This limit case is considered in Section 5. Formally, 
it results in the hyperbolic partial differential equation (see also (1.20)) 

L {u + O(u) + ~o(u)} + q~--~u = O. 
3t 

Writing w = u + ~ ( u ) +  ~0(u) and introducing the inverse function u = h(w), we 
obtain the scalar conservation law 

+ q ~--~ h(w) = O. w 

We know that equations of this type may have discontinuous solutions. In order to 
ensure uniqueness and to distinguish the 'physical' solution from all other possible 
solutions, one introduces an additional condition. In the theory of shock waves, this 
condition is called the Oleinik entropy condition. It has the form 

h ( S )  - -  h ( w r )  h ( w g )  - h ( w r )  
~< (3.12) 

S - -  W r Wg  - -  W r 

for all s between wr and wt. Here w~ and wr denote the values of  w just left and right 
to the shock. 

Observe that our condition (C) corresponds to condition (3.12) with a strict 
inequality sign and with 

w~ = u* + ~(u*) + cp(u*) and wr -- u ,  + ~9(u,) + ~p(u,). 

For  the limit case k ~ ~ and D "~ 0, this means that inequality (C) implies the 
proper entropy condition at discontinuities. 

3.3. EXAMPLES 

We show here some typical examples of travelling waves as they arise in the 
different models. The discussion of further examples covering the whole range of 
possibilities is contained in van Duijn and Knabner (1990). We give both the 
representation of the waves as orbits in the phase plane and the more usual 
representation of the waves as function of the variable ~ = x - at. In van Duijn and 
Knabner  (1990) we give some details about the computational method used in these 
examples to obtain the waves as functions of q and from these the connecting orbit. 
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As in the preceding subsections, we present here the results in terms of the scaled 

variables (1.19). In all the examples, we have taken 

D = 3 ,  q = 5 ,  k = 0 . 5  

and 

u ,  = O, u* = 1. 

This implies that 

v ,  = ~ ( o )  = o, v*  = ~ ( 1 ) ,  

and 

g , ,  = ~ ( o )  = o, ~ *  = 0 ( 1 ) .  

Consequently, the wave speed a is given by 

q 
a - -  

l + ~ * + v * "  

In each of the following examples, we have ~* + v* = 3 and, thus, a = 1.25. 
These and the subsequent parameters are typical for colmnn studies with slow 

flow and low dispersion length for contaminant transport, if one uses the following 
units for the unsealed variables: For  length [cm] and for time [hr], for concentration 
in solution a unit in the range 1 -100#g /ml  and, correspondingly, for adsorbed 
concentration 1-100 #g/g. | = 0.5 and p = 1.5, then, corresponds to a representa- 
tive loam. Note that K = 0.06 for the dimensionless rate parameter (1.16), i.e. it is 
to be expected that nonequilibrium effects are significant. We consider the ease 

is of type (H): ~(u) = 1.5u 1/2, i.e. ~* = 1.5. 

f i s  of type (E): f (u ,v)  =~(u )  - v  with ~(u) = 1.5u p, i.e. v * =  1.5. 

This choice corresponds to the situation discussed in Case 1 of Section 3.2. We 
distinguish 

(1) p = 1/2, i.e. ~ is of  type (H). 
Here condition (C) holds for any u * >  0. In this case, we may use either 
Theorem 4.3 or Theorem 4.5 to see that finiteness must occur. Referring to 
the Example in Section 4.1, which applies here with ~ = 1, we obtain that 

u(~/) ~< cg 1 (L - q) 2 for q ~< L. 

The constant ~1 is given in the Example. Due to this smooth way in which 
u vanishes the appearance of finiteness is not so prominent. The computa- 
tional results are given in Figures 3a-c. Note that the arrows in the phase- 
plane picture (Figure 3a) are pointing in the opposite direction according to 
the transformation ~ -- -~/. It clearly demonstrates the invariance of  the set 

S. 
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Figs. 3a-c.  Phase diagram and travelling wave as function of  t/ for Example 1 (scaling factor vector 
field: 0.25). 

(2) p = 3/2, i.e. (p is of type (S). 
Using Equation (3.11), one finds that u* = 1 is precisely the maximal value 
for which condition (C) holds. This accounts for the cusp in the invariant set 
S (see Figure 4a). Here Theorem 4.3 tells us that the wave is finite. The 
computations are shown in Figures 4b and c. Note that both the dissolved 
and the adsorbed concentration reach their equilibrium value very slowly. 
For this reason, we show here an t/interval of the length 52, while in Figure 
3, the length of the q-interval is 26. 

In both cases the displayed u-interval is [0, 1], the v-interval is [0, 1.5]. 
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Figs. 4a-c. Phase diagram and travelling wave as function of t/ for Example 2. 

4. Finiteness 

In Section 3, we constructed a solution to problem TW in the sense of  Definition 
3.1. This solution was obtained by considering the two first-order equations (3.5) 
and by studying their solutions in the u, v-phase plane. From the Picard-Lindel6f  

theorem (Appendix A), we obtain that through each point (u0, vo) of  the phase 
plane, with 0 < u0 < u,, and 0 < v 0 < vm, a unique orbit (u(q), v(t/)) passes where the 
functions u and v satisfy Equations (3.5) in an appropriately chosen interval. This 
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follows directly from the Lipschitz continuity of  the functions r and f near (uo, Vo). 
However, when (uo, v0) --(0,  0), this may no longer be true. In particular, when 
u .  = 0 and, thus, r  = 0 ( 0 ) =  ~0(0)= 0, Equations (3.5) have the solutions u - 0  
and v - 0. However, the construction in Section 3 shows that there may also exist 
a solution (u, v) which passes through the origin and which is nontrivial. This will 

lead to f in i te  travelling waves. We examine this phenomenon in detail in this 
section. Again we refer to van Duijn and Knabner (1991) for the mathematical 
proofs. 

Throughout  this section, we assume that u ,  = 0  and that condition (C) is 
satisfied, so that the results of Theorem 3.2 hold. 

We first note that if u(t/o) = 0 for some t/o e ~, then, since u >~ 0, also u'(t/o) = 0. 
The first equation in (3.5) gives v(t/o) = 0 and the monotonicity u(t/) = v(tl) = 0 for 

t/>~ t/o. Conversely, if v(t/o) -- 0, then v'(t/o) = 0 and the second equation in (3.5) 
gives 0 =f(u(t/o), 0). Consequently, 0 = (p(u(t/o)) and, thus, u(t/o) = 0. This leads to 
the following definition. 

D E F I N I T I O N  4.1. A travelling wave {u, v, a} is called f in i te  if 

L = sup{t/ e N I u(t/) > 0} = sup{t/ ~ N Iv(t/) > 0} < oo. 

We first consider finiteness for general rate functions f of the form (1.10). There- 
after, we treat the case where f is of explicit type (E). This latter case, being of a 
special form, allows us to obtain more detailed information and sharper results 
concerning the occurrence of finiteness and the behaviour of  u near the point L. 
Our conditoins will be in terms of the integrability near u = 0, i.e. on an interval 
(0, e) for some small number e > 0, of  the reciprocal of a function a = ~(u), 
fulfilling o-(0)= 0. Then 1/o- is singular at u - - 0  and the integrability condition 
restricts the growth of 1/e or, equivalently, the decay of  o- for u ~ 0 .  Consider the 
example e(u) = u p for p > 0, where 

l/or is integrable near u = 0 exactly in the case p < 1. 

The proofs of the following result are worked out in van Duijn and Knabner  
(1990). The functions Z and f are defined as in Section 3. 

4.1. GENERAL RATE FUNCTIONS 

�9 Finiteness can only occur if the isotherms rp and r do not tend to zero too 
fast: we have 

T H E O R E M  4.2. Le t  L < oo. Then 1/Z is integrable near u = O. 

�9 If  the isotherm r describing the equilibrium adsorption, tends to zero 
sufficiently slow, then finiteness occurs. We have 

T H E O R E M  4.3. L e t  0 be o f  Freundlieh type (H). Then 

1/0 integrable near u = 0 ~ L < oo. 
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Note that this situation occurs in the examples of  Section 3.3. Whenever ~ is of the 

form O(u) = Au p with A > 0 and p ~ (0, 1), then 

fO'~ ~@S) - - - -  l 1-p ds A ( 1 - p )  u < oe 

and finiteness appears. This is independent of  the behaviour of the nonequilibrium 
adsorption isotherm ~o (that is, as long as condition (C) holds). Note, however, that 
the figures displaying u and v, do not clearly demonstrate the finiteness. This is due 
to the fact that when r / / 7  L, u(r/) tends to zero rather smoothly. There is an upper 
bound for the rate of  decay of the function u near the point L (if it exists): 

CO ROLLAR Y 4.4. Let L < oe and let 

Then 

/'u(,7) 1 
w(,) -'= Jo ~ d s ,  f o r q ~ .  (4.l) 

a 
w(q) <~ D (L -- q), for q <<. L 

and in particular, 

a 

w'(L - ) >~ - - -  
D" 

(4.2) 

EXAMPLE.  Let O(u) = Au p with A > 0 and p ~ (0, 1) and let there exist a constant 
cg > 0 such that ~0(u) ~< egO(u). Further, let condition (C) be satisfied. Then 

Z(u) ~< ( 1 + cg)0(u ) = ( 1 + Cg)AuP 

and, thus, 

1 
w(t]) • (U(/~)) 1 P, for t / e  ~. 

A(1 - p ) ( 1  + cg) 

Corollary 4.4 now implies 

u(rl) << {aA( l - p ) (  l + Cg)} 1/(1-p) D (L _•)l/(1-p) for t/~<L, 

which shows the smooth behaviour of u near L. 
Due to the smoothness of u, the difference between finiteness and nonfiniteness in 

practical terms is not so big: from the computations the distinction is hard to make. 

4.2. RATE FUNCTIONS OF EXPLICIT TYPE (E) 

In this case the equation for v in (3.5) becomes 

k 
v ' = - ( v - q ) ( u ) )  in ~. 

a 
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This equation is linear in v. Then the two first-order equations for u and v can be 
combined into one second-order equation for u only. The result is 

( a )  ( D u ' + a • ( u ) ) ' =  q - a +  u ' + k  )C(u) q a  u in ~. (4.3) 

In Section 3 of van Duijn and Knabner, (1991), a detailed analysis based on 

Equation (4.3) is given to characterize the finiteness for this special case. The result 
is presented in the next theorem. 

T H E O R E M  4.5. Let  there exist a 6 ~ (0, u*) such that )~ is concave in (0, 6). Then 

L < oo ~ 1 / { ( P z ) I / 2 + ~ }  is integrable on (0, 6). 

Here we use the notation P)~ for the primitive 

fo ;o Px(u) '= Z(s) ds = {q)(s) + @(s)} ds. 

This theorem gives the necessary and sufficient condition for finiteness. In this 
respect, it is much stronger than Theorem 4.3 which it contains as a special case: 
Since ~ <~ ( P j  1/2+ ~, we have 

1/~ integrable ~ 1/{(Pz)I/2+ ~} integrable =~ L < oe. (4.4) 

Theorem 4.5 can be reformulated into a statement involving one isotherm only if 

we can control the decay near u = 0 of the other: in particular, if the other isotherm 
is of type (L) of (S). 

CO ROLLAR Y 4.6. Let  there exist a 6 e (0, u*) such that )~ is concave in (0, 6) and 
let q~ be Lipschitz continuous at u = 0 ( for  example o f  type (L) or (S)). Then 

L < oe <:~ 1/~ is integrable on (0, 6). 

CO ROLLAR Y 4.7. Let  there exist a 6 e (0, u*) such that Z is concave in (0, 6) and 
let ~ be Lipschitz continuous at u = 0 ( for  example o f  type (L) or (S)). Then 

L < oe ~ 1/(P(o) in is integrable on (0, 6). 

Here Pg(u). '= ~q~(s) ds for  u >10. 

One can also use Equation (4.3) to obtain a precise result about the behaviour of 
u near L (if it exists) in the absence of equilibrium adsorption, that is, when ~ -- 0. 
Let (p be such that the finiteness condition of Corollary 4.7 holds. Define the 
function 

_ ( 'u (~ )  1 
w(t/) '=Jo ds, for t / e  ~, (4.5) ' /2 

where u satisfies Equation (4.3). Clearly, ~ is well-defined and ~(~/) = 0 for ~//> L. 
In Theorem 3.4 of van Duijn and Knabner  (1991), the following two results for the 
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funct ion ~ are given 

~ ' ( t / ) > -  , f o r q < L  

~, ( / ;_)=_ _ . 

Consequent ly ,  

# ( t / ) <  - -  ( L - ~ / ) ,  for r / < L  

and 

213 

(4.6a) 

(4.6b) 

(4.6c) 

and 

ff~ = ~ - P  u(1 -p)/2 (4.7b) 

This implies 

~ 2 = 4  I + P  w 
1 - p  

and with (4.6b), it follows that  w ' ( L  - )  = O. 

This shows that  the est imate (4.2) for  w'  is far  f rom optimal .  Note ,  however,  that  

the est imate of  (4.6) becomes worse  when k ~ oo and has no meaning  for  the limit 
case k = 0% whereas est imate (4.2) for  w is independent  o f  k. In Section 5, we show 

for  the limit case k = oo that  the funct ion w satisfies the lower bound  in (4.2), i.e. 
w ' ( L  - ) = a iD.  This clearly illustrates the regularizing effect o f  the nonequi l ibr ium 

adsorpt ion.  We re turn to this subject in Section 5. 

In the case when # is given by (4.7b), we obtain  f rom (4.6c, d) for  u 

u(t/) < Cgo(L - t/) 2/(1 -P), for  q < L 

lim u(t/) 
,,L (L - t/) 2/(I p) - % '  

W I _ _  

and 

1 
u 1 - P  (4.7a) 

A(1 - p )  ' 

E X A M P L E .  Let  ~b = 0 and let ~0(u) = A u  p with A > 0 and p E (0, 1). In  this case, 

we compare  the results for the funct ion w f rom (4.1) and the funct ion ~ f rom (4.5). 

We have 

lira #(~/) (~___k) 1/2 .~L L -- t/ - " (4.6d) 
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where 

~0 = ((12A k ~1/(1 p) _ +p) j (!ve)2J l 
It  implies that u tends to zero very smoothly: for instance, p = 1/2 gives 
U(t/) ~ ( L - / , / ) 4 .  This behaviour confirms an earlier remark that the difference 

between finiteness and nonfiniteness, although of great mathematical  interest, is 
small as far as the practical implication and computat ion are concerned. 

It  is possible to expand # near q = L. The result is 

cS(q) = a(L - , )  + fl(L - ,)2 + ..., for t/~< L, (4.8) 

where 

(~--~k) '/2 2(3+p)l-P ( k D ~ f 2 k ~  1/2 
c~= and f l -  q - a  + ~ - j \ ~ 5  j . 

Again, this can be translated in terms of the solution u. 

In terms of  the original variables c = c(x, t), s = s(x, t) in Equations (1.7), the 

phenomenon of finiteness leads to regions in the x, t-plane, where c = s = 0. Finite 
travelling waves, with c .  = s .  = 0, give a linear front in the x, t plane across which 

the concentrations vanish, for example 

and 

c ( x , t ) , s ( x , t ) > O ,  for x < a t + L  

c(x, t) = s(x, t) = O, for x >l at + L. 

In this respect, we speak of a free boundary problem, the free boundary being the 

line x = at + L. Note the speed a of  the free boundary only appears in the 

higher-order terms of  the expansion of  #. 

5. Limit Cases 

In this section, we study the limit cases 

(1) k --* ~ ,  D > 0: In this limit we expect both kinds of  adsorption sites to be in 

equilibrium and call this situation the equilibrium limit case. 
(2) k < ~ ,  D ~ 0: In this limit we neglect molecular diffusion and mechanical 

dispersion and call this the hyperbolic limit case. 

In particular we want to justify the formal limit equation, and examine the change 
in the qualitative behaviour of  the solutions. I f  it is also possible, we estimate the 
rate of  convergence. This leads to quantitative criteria for the feasibility of  the limit 
formulation. Closed-form solutions are available for some typical examples. The 

most  simple ones are reviewed in Appendix C. 
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We assume throughout the section that condition (C) is satisfied. We will 

consider those solutions of the problem TW ((1.24)), whose existence is guaranteed 
by the considerations of Section 3.1. To distinguish this travelling wave from the 

limit problems, we will speak of a travelling wave for k < oe or for D > O, 
respectively. 

5.1. THE EQUILIBRIUM LIMIT CASE 

Formally, we expect for k--+ oo the limit equations 

f (u ,v )  = 0  and thus v =(p(u) by (1.10), 

and (1.20a) to remain unchanged, i.e. 

8 8 8 2 8 
o-t u + ~ (O(u) + ~o(u)) - 1) ~  ~ u + q ~x u = o. (5.1) 

We consider the problem TW defined in Section 1, where all data with the exception 
of the rate parameter k are fixed. For  k, we take a sequence k = k, ~ ~ and the 
corresponding travelling wave solutions un, vn, which all have the wave speed a 
according to (3.4). As travelling waves are only unique up to translations, we 
cannot expect convergence of  u,, v, in general. Therefore, some ~7 e (u . ,  u*) is 
chosen and u~, is translated such that 

un(0) = ~, for all n. (5.2) 

In the phase plane, all orbits (un, v,,) belong to the same bounded set S (compare 
Section 3.1) and the v,, = v,(q) are decreasing. There is a mathematical argument 
which leads to the convergence of u, and v n to some functions u and v. The limit 
functions satisfy the first equation in (3.5), which we write with (3.7) as 

a 
u ' = g ( d u )  - ~ )  

and 

f ( u , v ) = O ,  i.e, v = o ( u ) .  

Consequently, 

a 
u" = ~ (~(u) - ~o(u)). (5.3) 

Clearly, the limit orbit (u, v) belongs to 8S2w {(u,,  v , ) ,  (u*, v*)}. The boundary 
conditions (BC) can be verified. 

A more rigorous version of  this argument (cf. van Duijn and Knabner, 1991) 
leads to: 
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T H E O R E M  5.1. Consider a sequence {un, vn, a} o f  travelling waves for  rate parame- 
ters kn --* oo and all other data being the same, which satisfies (5.2). Then 

lim u,(t/) = u(~/), l im v,(t/) = v(q), for  all ~ e R. 
//---* o o  n ~ o O  

The triple {u, v, a} is a travelling wave solution for  k = oo in the sense: 

~u e C l (~ ) ,  v e C(~) ,  

] Du q- aO(u) + aq~(u) ~,CI(N),  , (5.4) 
T W E  | (Du + ar  + a~o(u)) = (q - a)u in ~, 

~ u and v = qo(u) satisfy the boundary conditions (BC). 

u and v are strictly decreasing as long as uOl ) > O. 

The solutions of  T W E  are less regular  than  the solutions of  T W  (cf. (3.1)): Here  
v = (p(u) satisfies v e C1(~)  only for  smoo th  (p, e.g. ~o e C l ( [ u , ,  u*]). The  limit 

functions are a classical solution of  (5.1), if  bo th  qo and O are smooth .  Lacking  
smoothness  of  p or r has the following consequences: Kinks  in q) or r at some 

~/e (u , ,  v*) lead to j umps  o f  u" at  ~, where u(~) = ~. 
In  the case u ,  = 0, the possible finiteness of  u is ano ther  source of  lacking 

smoothness .  So we first turn  to the characterization o f  finiteness for  TWE.  In  van  
Duijn and  K n a b n e r  (1990), we prove: 

T H E O R E M  5.2. Let  Z be o f  type (H)  and let u ,  = O. Then i f  u satisfies T W E  

L < oo ~=~ 1/Z is integrable near u = 0. (5.5) 

Since 1/)~ is bounded  above  by either 1/~0 or 1/r we have as an immedia te  corol lary 

C O R O L L A R Y  5.3. Let  Z be o f  type (H).  Then 

I/q) or 1/~9 integrable near u = 0 ~ L < oo. (5.6) 

Again  the singular behav iour  of  one of  the isotherms is sufficient for  finiteness. Fo r  

q0 or ~ being o f  the fo rm Au p with A > 0 and p > 0, the integrabili ty condi t ion is 
equivalent  to p < 1. Consequent ly ,  p < 1 ~ L < oo. In  general, the requirements  for  

finiteness are s t ronger  for  k < oo. 

C O R O L L A R Y  5.4. Let  )~ be o f  type (H).  I f  a travelling wave for  k < Go is finite, 
then the travelling wave for  k = oo is also finite. 

The assert ion is a consequence of  Theorems  4.2 and 5.2. 
The  reversed implicat ion is generally wrong.  A counter  example  is worked  out  in 

van  Dui jn  and K n a b n e r  (1990). 
As in Section 4, we can investigate the behaviour  o f  a finite wave, with k = 0% 

near  the front.  To  this end, we write Equa t ion  (5.3) as 

q a( ) u -- u ,  -- - -  (;g(u) -- X(u,))  �9 (5.7) 
q - a  

In  van  Duijn and K n a b n e r  (1990), we conclude f rom this for  the t r ans fo rmat ion  w, 

defined in (4.1): 
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P R O P O S I T I O N  5.5. Let  u be a f inite wave fo r  k = ~ .  For w, given by (4.1), we have 

a a 
w'(q) > - ~  , f o r  q < L and w ' ( L  - ) = - ~ .  (5.8) 

The  wave profiles for  k = ~ are steeper than  for  k < ~ ,  as can be seen f rom the 

following proposi t ion.  

P R O P O S I T I O N  5.6. Let  {uk, vk, a} and {u, v, a} be travelling waves f o r  the same 

data f o r  k < o~ and k = 0% respectively, such that u~(O) = u(O) =,~ E ( u . ,  u*). Then: 

u(~) > uk(q), for  ~ < O, 

u(q) < uk(q), for  ~ > 0  and uk(~) > 0 ,  and (5.9) 

u(q) = uk(~l) = O, otherwise. 

We prove  this p ropos i t ion  as follows: Let  

p(u) . '=D (rp(u) - d(u)), for  u ~ [u . ,  u*], (5.10) 

then, by (5.3) and the discussion o f  Section 3.1, 

u'(~)  = - p ( u ( ~ ) ) ,  

a 

u~(~) = - p ( u ~ ( ~ ) )  + ~ (~o(u~(~)) - vk(~)) > -p(u~(~)), (5.11) 

for  q such that  uk(~/) > 0. 
Thus  u ' (0)  < u~(0) implying the assertion. 

F o r  the explicit type (1.11) a convergence rate can be established in a typical 

special case. The assumpt ions  are the same as in Propos i t ion  5.6. 

T H E O R E M  5.7. If, in addition, f is o f  explicit type, i.e. f (u ,  v) = k(go(u) - v), and p 

f r o m  (5.10) is increasing in [u . ,  ~ and decreasing in [~, u*], then 

a 2 

lu(q) - uk(q) I <<. ~ (v* - v , )  f o r  all q ~ ~. (5.12) 

F o r  a proof ,  consider q > 0. F r o m  (5 .9) - (5 .11) ,  we get 

0 < u~(~) - u(,l) 

;o' = (u;  - u')(s)  ds  

= - p(u~(s)) - p(u(s)) ds + D a , ds 

a 2 a 2 

~ < ~  (v~(0) - v~(~)) ~< ~ (v* - v , ) ,  

as u(s) <~ uk(s) < ~ for  s > 0. The  a rgumen t  for  r / <  0 is similar. 
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In unscaled variables, (5.12) reads 

)~2 H 1 Ac, 
Jc( ) - e (n)l [1 + H( l(a'e/as) + 42)12/< 

where H and K are defined in (1.15) and (1.16). Therefore, the magnitude of the 
dimensionless parameter K is significant for the feasibility of a kinetic approximation 
or a quasi-stationary approximation. Here, we denote, with the first notion, the 
substitution of an equilibrium model, i.e. (5.1), by a nonequilibrium model, i.e. 
(1.20) wi th fbe ing  of explicit type and the corresponding isotherm ~o. Analogously, 
the second notion denotes the reversed procedure. 

For Iv(r/) -vk0/)[,  we get an estimate similar to (5.12) only for smooth ~0. For 
q~(u) =Au p, A > 0 ,  0 < p  < 1, for example, a2/(kD) has to be substituted by 
(a2/kD) p (compare van Duijn and Knabner (1991) for details). 

5.2. THE HYPERBOLIC LIMIT CASE 

Here we expect for D ~ 0 the limit equation 

O 0 
~ u  +~t ~(u) + ~tv + q ~ x u  =O (5.13) 

and (1.20b) to remain unchanged, i.e. we arrive at a first-order system. The 
argument for the convergence parallels, in principle, the one of Section 5.1 with the 
roles of u, v interchanged. Now the limit orbit (u, v) satisfies (1.20b) and belongs to 
~&w{(u , ,  v,),  (u*, v*)}, i.e. v =_#(u). If  ~ is not strictly increasing, there are 
subintervals of [u, ,  u*], on which _# is constant. If u would run smoothly along 
these parts, v would be constant for the corresponding q-interval. This leads to a 
contradiction: v = constant and (1.20b) imply f(u, v) = 0 and with (1.10) v = q~(u). 
On the other hand, v = _f(u). This contradicts condition (C). Thus, in this situation, 
u has to be discontinuous, i.e. to develop shocks. To express this fact, we consider 
the inverse E 1 of _E. For a (maximal) subinterval of [u, ,  u*] on which _f is 
constant, we take the left boundary point, i.e. 

E l(v).'=min{u ~ [u,,  u*] If(u) = v}, for v ~ [v,, v*]. (5.14) 

We assume that Y has, at most, finitely many changes from increasing to decreasing 
and vice-versa. Then Y-~ is strictly increasing and continuous with the possible 
exception of finitely many jumps, where it is left-sided continuous. 

The sketched argument ends up with 

THEOREM 5.8. Consider a sequence {u,, v,, a} of travelling waves for diffusion/ 
dispersion coefficient s D, ~ O, and all other data being the same, which satisfy the 
normalization 

v,(O) = ~, for all n and some ~ ~ (v,,  v*). 
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Then there are functions u and v, defined on ~,  such that 

v ~ C(~) ,  u and v" are continuous in ~ with 

the possible exception o f  f initely many points, 

where they are continuous f rom the right 

and 
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lim v,(~/) = v(t/), f o r  all ~1 ~ ~, 
n ----~ o o  

lira un(t/) = u(t/), with the exception o f  the 
t l  ~ o o  

points o f  discontinuity. 

The triple {u, v, a} is a travelling wave solution fo r  D = 0 in the sense 

f - a v '  = k f ( u ,  v) in •, (5.15a) 
u = f - ' ( v )  in ~, (5.15b) 

TW H - av'  + ( - aO(u) + (q - a)u)" = 0 in ~, (5.15c) 

[.  u and v satisfy the boundary conditions (BC). 

u and v are strictly decreasing as long as v ,  < v(q) < v*. 

More explicitly: In equation (5.15c) the functions - a O ( u )  + (q - a ) u  is continuous 

on ~, i.e. the jumps of u and - a / ( q  - a)O(u ) cancel, and the derivative has to be 
understood in the same piecewise sense as v'. The points of discontinuity are the 

same for u and v' and they are exactly those ~, for which [ - '  is discontinuous at 
:=v(q). The jumps are 

u ( q )  - u( ,~  - ) = ~ - ~ ( ~ )  - ~ 1 (~  + ), 

v'(O ) - v'(q - ) = __k ( f (~  ,(~), ~3) - f ( #  ~(~ + ) ,  t3)). (5.16) 
a 

Obviously, the solutions of TWH are less regular than the solutions of TW: At 
points where u and v' are continuous, u is continuously differentiable only if 0 is 
smooth. The more significant distinction, however, is the possibility of jumps of  u 
and v'. This we will examine here. We will concentrate on such profiles for 0, which 
appear in adsorption models according to Section 2. For  simplicity, we assume that 
0 E Cl ( (u , ,  u*]), i.e. isotherms of the Freundlich type are allowed. Before we 
consider the various possibilities, we make two general observations. One is that 
condition (C) implies that E'(u*)>~0 and # is strictly increasing near u*. In 
particular, # 1 is continuous at v = v*. The other is that # is (strictly) convex if and 
only if 0 is (strictly) concave and the same vice-versa. 

Below, we distinguish a number of possibilities for the function 0. To illustrate 
the effect in the phase plane, in Figure 5 we present small sketches of the function 

involved. 
Let 0 be convex in [u , ,  u*]. This implies that Y'(u) > 0 for u ,  < u < u* and, thus, 

�9 If  0 is convex in [u , ,  u*], then no jumps in # ~ appear (Figure 5a and Figure 
1, S(a) for 0). 
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Fig. 5. Possible shapes of ~. 
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For  concave ~k a jump of  # - i  at v = v ,  is possible depending on 
~ ' (u , )=(AO+Av) /Au-O ' (u , ) .  But for u > ~ , = ~ - l ( v , + )  we have f ' ( u ) > 0  

and, thus, no further jump is possible. In detail: 

�9 Let ~ be concave in [u , ,  u*] (Figure 1, L/H(a)).  

The only possible jump of  f - ~  is at v = v , .  

There is a jump in each of the following cases: 

O ' (u , )  > (AO + Av)/Au (Figure 5b) or 
O ' (u , )  = (A0 + Av)/Au and ~ is linear near u = u ,  (Figure 5c). 

There is no jump in the remaining cases. 

(5.17) 

Note that in particular 0 ' ( u , )  = + oo leads to a jump. 
In simple cases, 5 can be explicitly calculated, e.g. for ~9(u) = Au p, A, p > 0, and 
u ,  = 0. We have: There is no jump for p >~ 1 and a jump at v = 0 with ~7 = (Au*/ 
(O(u*) +v*)) 1/~ for p < 1. Computat ions  for this example are displayed in 

Figures 6a -c .  For  a sequence of decreasing D (D = 3, 0.3, 0.03) and all other data 

the same as in example 1 of  Section 3.3, the orbits are shown in Figure 6a together 
with the curves q), ~ and _#. Figures 6b and c show the corresponding u and v 
components in dependence of  r/, translated such that u(0) = 0-25 and v ( 0 ) =  0.75. 

-1(0 + ) =  0.25 is the height of  jump to be expected for D = 0 and the conver- 
gence to such a discontinuous limit is clearly to be seen. 
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Fig. 6. (a) Phase diagram for decreasing D. Dissolved phase (b) and adsorbed phase (c) for decreasing 
D. 

A typical i so therm 0 of  type (S) is often convex-concave,  i.e. 0 is convex in 
[u , ,  u'] and concave in [~7, u*] for  some ~ e ( u , ,  u*). Then: 

�9 Let  ~ be convex-concave  (Figure  1, S(b)). 
Then  # 1 has a j u m p  at v = v ,  if and only if ~9'(u,)  ~> (AO + Av)/Au (Figure  

5d). 

In this case no fur ther  j u m p  is possible. 
I f  O ' ( u , ) < ( A  0 +Av)/Au, then g - ]  m a y  have one j u m p  at  a point  
v = ~ e (v , ,  v*) (Figure  5e). The  character izing condi t ion is: 

= :(4),  0 ' (4)  = (AO + av) /Au,  
0 ' (u )  < (A0 + Av)/Au for  u e [u , ,  4), and (5.18) 
there is a ~ > 4 such tha t  0'(~7) = (A0  + Av)/Au. 
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To the contrary, a concave-convex isotherm exhibits the same behaviour as a 
concave isotherm: 

�9 Let ~ be concave-convex (Figure 1, L/H(b)).  

The only possible jump of ~ - 1 is at v = v ,  and the characterization is given by 
(5.17) (Figure 5f). 

An example of  this type is ~k(u) = A1 up1%- A2u p2 with A1, A2 > 0, 0 < P l  < 1 <P2,  
discussed in Section 3.2: Here the jump always appears. 

In general, an additional convex part  does not change the possibility of  jumps in 

E 1, while an additional concave part  makes an additional jump possible. For  
example: 

�9 Let ~ be concave-convex-concave (Figure 1, L/H(c)). 

Then f 1 may have a jump at v = v , ,  characterized by (5.17), and a jump at 
a point v = ~ ~ (v , ,  v*), characterized by (5.18) (Figure 5g). 

An isotherm of this type appears in the Example of  Section 2.1 (for n/> 6). 

Next we consider the c h a r a c t e r i z a t i o n  o f  f i n i t e n e s s  for TWH. We get immediately 
for u ,  = 0: 

�9 If f -  1 has a jump at v = 0, then a solution of T W H  is finite (L < oe according 
to Definition 4.1). 

I f  f - 1  is continuous at v = 0, then: 

L < oc r 1 / f (~ - l (  �9 ), �9 ) is integrable near v = 0. (5.19) 

Restricting ourselves to f b e i n g  of explicit type (E) and for ~ ~ Cl(0, 6) for some 

6 > 0, (5.19) implies the more accessible condition 

�9 L < oe r •'/(q) - 0 is integrable near u = 0. 

From this, assuming in addition that, Z is of  type (H), we obtain here the same 

results as in (5.5), Corollary 5.3 and 5.4 (with 'k = m '  substituted by 'D = 0'). In 

particular, this applies to ~ =-0. In this case, (5.12) can be rewritten as 

= - u - u ,  - - -  (Z (u )  - Z ( u ,  �9 (5.20) 
a q - a  

This equation is identical with (5.7) after the substitution of  ( q -  a ) / D  by k / a .  

Thus, we conclude in the same way about  the behaviour near the front for w 
defined by (4.1): 

u * k  
- - - -  for ~/< L, w'(~)> v*a'  

u * k  
w ' ( L  - ) v *  a "  (5.21) 

Returning to the case of  general f ,  again we can compare the shapes for D > 0 and 
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D = 0, but here for v instead of  u (cf. Proposition 5.9 in van Duijn and Knabner 

(1990)). 
Finally, we can consider the limit D ~ 0 also after the limit k ~ o% i.e. for the 

solutions of TWE. A scaling argument (van Duijn and Knabner, 1989), shows that 
the travelling waves then reduce to piston flow profiles. 

6. Conclusions 

We investigated a general model for transport and adsorption in porous media 
including most of  the aspects discussed nowadays. We concentrated on a prototype 
situation by studying travelling wave solutions which correspond to the limit profiles 
for continuous feed and uniform water flow. 

Due to the nonlinear nature of the problem, also in this restricted situation, no 
closed form solutions are available, apart from some simple examples for limit cases. 
Nevertheless, by means of contemporary mathematical analysis, travelling wave 
solutions can be completely studied. The knowledge gained about their qualitative 
behaviour is as detailed as that obtained by considering closed form solutions. 

Finiteness is a qualitative aspect which strengthens the consistency of the model, 
although it may not be prominent in numerical terms. It can only occur if the overall 
averaged isotherm and the rate function have some singular behaviour near zero 
concentration. In particular, different rate functions, e.g. Langmuir-type rate func- 
tions versus explicit type rate functions with the same isotherms, may lead to different 
conclusions with respect to finiteness. 

The relation to the limit problems k ~ ~ and D - ~ 0  is clarified, including the 
precise order of the convergence estimates. This gives a criterion to estimate the 
validity of  an approximation of one situation by the other (quasi-stationary 

approximation and kinetic approximation, respectively). 
Finally, travelling waves can be numerically approximated with minor efforts to 

high accuracy. Thus, they can serve as 'explicit' solution, e.g. to check numerical 
algorithms designed for general complications. 

Appendix C: Some Closed Form Solutions 

In (5.7) and (5.20), we arrive at 

u'  = ~ u - u ,  z ( u * )  - z ( u , )  ( z ( u )  - z ( u , ) )  , 

u ( -  oo) = u * ,  u ( +  oo)  = u , ,  

where we have the two cases 

(i) k ~ :  7 q - a  = - , z = ~ o  + 0 ,  
D 

k 
a 

(c.1) 

(ii) D = 0, f of explicit type, 0 - 0: X = ~o. 
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For  u ,  = 0, Z(u) = A u  p,  A > 0, 0 < p  < 1, the solution o f  (C.1) up to translation is 

u(0) = u*(1 - exp((1 - p ) 7 0 ) )  1/(1-p), for 0 ~ 0, 

u ( 0 ) = 0 ,  for  0 > 0 .  (C.2) 

This can be easily seen, as for w(0). '=u(0) 1 P, (C.1) becomes linear: 

w'  = (1 - p)7(w - u *0 -P)). 

For  (ii) and the Langmui r  isotherm (see (2.6) for # = 1) Z(u) = Vmaxbo/(1 + bu) with 

v . . . .  b > 0, we have 

(u - u , ) ( b / -  u*) 
u '  =Tb  

1 +bu 

and f rom this, by the method  of  separat ion o f  variables, we obtain 

- 7 b  Ab/(02 - -  01) 

= ( 1  + bu,)ln(u(02) -u , )  (b/* -- b/(02)x~ \u(01) - (1 + bu*)ln u(01)/  

for  arbi t rary 01, 02, (C.3) 

where Au = u* - u , .  

I t  is instructive to compare  this result with the solution obtained f rom the 

'original '  Langmui r  formulat ion,  (2.4) for Y = 1, for the same situation D = 0, 

~b - 0 .  The rate funct ion in this case is 

kf(u, v) = ka(1 -/)//)max)b/ -- kav/Vmax 

= k ( b ( v m a x  - v ) u  - v ) ,  ( C . 4 )  

where k .'= kd/v . . . .  b ..= ka/ka. The reason for this definition o f  k is to have at least 

the same desorpt ion rate, if in (ii), with the same isotherm, this rate parameter  is 

used. 

Let u ,  = 0. Because o f  v(0) = v*/u*u(o), (C.4) leads to 

b/' = 7(bb/2 - -  bb/*b/), ( C . 5 )  

again with 7 = k/a. F r o m  this we conclude 

-?bu*(02 - 01) = In \u--~-~)J - in \u(01) - ~ - ~  for  arbi t rary 01 ,02- (C.6) 

Compar ing  (C.3) and (C.6) with respect to their behaviour  near u* and u ,  -- O, we 
see that  in bo th  cases 

u(o) ",~ e x p ( - T b u * o ) ,  for 0 ~ + o %  
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but 

for (C.3): 

for (C.6): 
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u*  - u(tl) ~ e x p ( T b u * / ( 1  + bu*)t l ) ,  for tl ~ - o% 

u* - u(tl) ~ exp(Tbu*~), for q ---> - o o .  

Observe that, in the first case, the convergence of towards u* is slower than in the 

second case. 
These results could also have been derived directly from the differential equa- 

tions, without going through the solution procedure. 

Similar remarks can be found in Ruthven (1984). 
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