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Abstract. A mathematical model is developed for saturated flow of a Newtonian fluid in a thermoe- 
lastic, homogeneous, isotropic porous medium domain under nonisothermal conditions. The model 
contains mass, momentum and energy balance equations. Both the momentum and energy balance 
equations have been developed to include a Forchheimer term which represents the interaction at 
the solid-fluid interface at high Reynolds numbers. The evolution of these equations, following an 
abrupt change in both fluid pressure and temperature, is presented. Using a dimensional analysis, four 
evolution periods are distinguished. At the very first instant, pressure, effective stress, and matrix 
temperature are found to be disturbed with no attenuation. During this stage, the temporal rate of 
pressure change is linearly proportional to that of the fluid temperature. In the second time period, 
nonlinear waves are formed in terms of solid deformation, fluid density, and velocities of phases. The 
equation describing heat transfer becomes parabolic. During the third evolution stage, the inertial and 
the dissipative terms are of equal order of magnitude. However, during the fourth time period, the 
fluid's inertial terms subside, reducing the fluid's momentum balance equation to the form of Darcy's 
law. During this period, we note that the body and surface forces on the solid phase are balanced, 
while mechanical work and heat conduction of the phases are reduced. 

Key words: Macroscopic mass, momentum and energy balance equations; Forchheimer term; saturat- 
ed flow, thermoelastic porous media; abrupt change of temperature and pressure; nonlinear wave. 

1. Introduction 

The macroscopic model describing saturated flow of a Newtonian fluid in a thermo- 
elastic porous medium, was developed, among others, by Bear and Bachmat (1990). 
This model contains mass, momentum and energy balance equations. Howev- 
er, they neglect the microscopic inertial terms at the fluid-solid interface. As a 
consequence, their averaged momentum balance equation does not contain the 
Forchheimer term (which is proportional to the velocity squared) which may be 
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significant, especially for high velocities. Bear and Sorek (1990) start from this 
model, for an isothermal case, and describe the evolution of the averaged mass 
and momentum balance equations, to more simple but approximate forms, fol- 
lowing an abrupt pressure impact exerted at the boundary of a porous medium 
domain. The same methodology is applied in the present study in order to investi- 
gate the evolution stages of the (averaged) mass, momentum, and energy balance 
equations, following an abrupt change in both the pressure and fluid temperature. 
This methodology involves mainly rewriting the (averaged) fluid and solid balance 
equations in nondimensional forms, and analyzing the relative order of magnitudes 
of the terms appearing in these equations during various time periods. This analysis 
yields four evolution of which the transport of mass, momentum, and energy are 
governed by different balance equations. In comparison to Nikolavskij (1990), the 
present theory is novel in two major aspects: (1) developing the evolving dominant 
balance equations of interacting fluid and solid phases following an abrupt change 
in fluid temperature and pressure and (2) accounting for Forchheimer terms for 
momentum and energy balances at the fluid-solid interface. 

2. Macroscopic Balance Equations 

2.1. MASS BALANCE EQUATIONS 

The macroscopic mass balance equation for the fluid phase, neglecting the disper- 
sive mass flux, is 

O ~ p f  _ - - V  . ( ~ ) p f V f  ). (1) 
Ot 

in which q5 denotes porosity, Vf denotes the fluid's velocity vector, and pf[-  
pj(P, Tf)] denotes its density. We may rewrite (1) in the form 

o4 (~ oP _ OTs', 
Ps-~ + *ps _ P - ~  + ~r-b-i- ) 

= -ps(v~ + E ) .  v r  - r  (v,. + E)  

- epf(Vr + L ) "  (]3pVP + flTVrf), (2) 

in which Vr = Vy - Vs denotes the fluid's velocity relative to that of the solid, 
and 

10ps : L o p s  , =  0Tf p' (3) 
~P pf OP T~ 

with P and Tf denoting the fluid's pressure and temperature, respectively. We 
assume that [O~/Ot[ >> IV~ - V~b I. This is equivalent to the statement that St ~ = 
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L~/t~V~ >> 1, in which St r is the Struhal number associated with the porosity, 
with L~ and t~ denoting the characteristic length and time intervals for changes in 
r respectively, and Vsc denotes the characteristic velocity of the solid. 

Under the same assumption, the mass balance equation for the solid, assuming 
that the latter's density, p,, is constant, is 

0__r162 = (1 - r  V~. (4) 
Ot 

In view of (4), and the assumption that the porous medium is homogeneous, i.e. 
Vr  = 0, we may rewrite (2) in the form 

Cps Ze-N- + Zr + CpsV- v~ + psv- v~+ 

+r + V~) . (f lpVP +/3TVTs) = O. (5) 

2.2. MOMENTUM BALANCE EQUATIONS 

The macroscopic momentum balance equation for a Newtonian compressible flu- 
id, neglecting dispersive momentum fluxes, was developed by Bear and Bachmat 
(1990). However, in their development, they failed to take into account the inertial 
term in the microscopic momentum balance equation at the solid-fluid interface. 
Hence, these effects do not appear in their macroscopic momentum balance equa- 
tion. Without their assumption of isochoric flow, but with an assumption that the 
porous medium is homogeneous, i.e., Vr  -- O, their averaged momentum balance 
equation would have taken the form: 

0 (OP OZ'~ , 
oxj (~psVs'Vs') - ~ ~ + Psg-gZ;xj )T~j+ 

+#SO Ox--~j + ( , f  + ~ . 

(6) 

In this equation, #y denotes the fluid's viscosity, ( ~  + (2/3)#]) denotes the 
secondary viscosity, g denotes gravity acceleration, Z denotes elevation, and the 
tensorial coefficients aij and T~ constitute constant macroscopic representations 
of the microscopic configuration of the solid-fluid interface, the latter is regarded 
as the tortuosity. Both are defined for an isotropic porous medium by 

~ q  - a m ~ q ,  T~} - T ; & j ,  (7) 
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where aij denotes the ijth component of the Kronecker delta, and a m and T* are 
coefficients that represent solid matrix properties. 

To include the inertial effect at the solid-fluid interface in their averaged momen- 
tum balance equation, Bear and bachmat (1990) should not have assumed that the 
drag and inertial forces at the microscopic solid-fluid interface are much smaller 
than the surface and body (gravity) forces. If, while developing an expression for the 
averaged pressure gradient at the solid-fluid interface, instead of their assumption 
(2.6.9), they would have made the assumption 

p: << + psg- xj + ,,j , (8) 

their resulting macroscopic momentum balance equation would have included an 
additional term, known as the Forchheimer term. Note that in (8) we argue that 
the microscopic surface and body forces, together with inertial forces (associated 
with spatial velocity changes) are of higher magnitude than the viscous forces 
(associated with fluid shear stress tensor, r~j) together with the inertial forces due 
to the velocity rates. The inclusion of V. VV in the RHS of (8) is significant for 
high and/or transient velocities. Many authors, e.g., Hsu and Cheng (1990), Nield 
(1991,1994), Olim (1994), often without a rigorous proof, include an expressions 
for the Forchheimer term in their macroscopic momentum balance equation. In 
the present work, we shall extend these expressions to the case in which the solid 
matrix is deformable. Thus, for the purpose of this paper, the Forchheimer term 
that we shall use, will have the form: 

CP:IV: - VsI(D, - v,,)  (9) 
V ~Y 

where, A S denotes the hydraulic radius of the pore space, and c~ denotes a shape 
factor. Note, however, that the additional Forchheimer term originates from a 
microscopic inertial term at the solid-fluid interface. This is in contradiction to 
the assumption made by other authors [Hsu and Cheng (1990), Nield (1991,1994), 
Olim (1994)] who refer to the Forchheimer term as a drag factor or in compensation 
for neglecting the inertial term associated with vorticity. 

The macroscopic fluid momentum balance equation, (6), together with the 
Forchheimer term, (9), takes the form 

~(~PfVfi) 
0 

Oxj 

+(#S + x,,~.~ 02Vs~ 
,,fly OxiOxj 

(OP Oz) , 02vs~ 
- - ( r 1 6 2  b77,  + Ps%-7 + 

: 9p:lv lv   
(10) 
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In view of (5), this equation can be rewritten as 

Cpi-~a (v,, + v~,) + Cpj(V, s + v~j) a-~(v,, + ~,) 

OP 
+r + Vsi)--~+ 

+ V,,)--~ afs / avis ~av'J ) 
q-r f ~T(Vr~ 

�9 aTy 
+r + Ys~)(V,, + Vs,)-5~j+ 

ff 
+r + v,~)(v~, + v,,)ox j + CT~ + 

02V,~ 02V~ 

-r axjOx-------~ + axr 

+ ,x'}) O2V'~ o2v,~ ] c~ v. 
OXiOXj q- OXiOXj j -'r ]-tfOLm'-'~r rl ~ y  

Cv OLin +~--~f  Cpylv, lv~, = o. (11) 

By summing the macroscopic momentum balance equations for the fluid and 
the solid phases [see Bear et al. (1992), eqs. (12) and (13)], the rate of momentum 
exchange across the solid-fluid interface is eliminated, we obtain the momentum 
balance equation for the porous medium as a whole in the form 

~ (r + pbV~) 

= - v .  [r + VrVs + V~V,) + pbV~V~]+ 
+ V .  (cr's + cry) - pbgVZ ,  (12) 

in which Pb = CPf + (1 -- r is the bulk density of the porous medium, cr~ 
denotes the intrinsic phase average stress in the a-phase (a  = f ,  s), and 

' = (1 - r - cry); withcr'si j ' O's -~ Crsji, (13) 

denotes the effective stress (=  intragranular stress) in the porous medium [see Bear 
and Bachmat (1990) and Trezaghi (1925)]. 
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The macroscopic (averaged) form of the constitutive relationship for fluid stress 
in a thermoelastic porous medium [Bear et al. (1992)] is 

T /~, Dseskel tt Dseskel 
aS = # f [Vqr+(Vqr  ) ]+ f V . q r 6 q - 2 f # f ~ + r  ) 

in which the ( )T denotes the transpose matrix, and G ( -  CV~) denotes the rela- 
tive specific flux. Note that (14) includes terms that are associated with the solid 
skeleton. They express the influence of the solid strain on the fluid stress at their 
common interface. 

The macroscopic strain tensor for the solid matrix, eskel, is defined for small 
deformations by the compatibility law 

$skel = l ( V W s  -It- ( V W s ) T ) ,  (15) 

in which w~ denotes the displacement vector of the solid matrix. The volumetric 
strain ( -  dilatation), eskel, is given by 

eske 1 = ~7 . Ws (16) 

From (16) and (4), it follows that 

_ 0 _ 1 0r Dseske, D~( ) = ( ) + Vs" V( ) ,  (17) 
V .  Vs 1 - C O t  Dt ' Dt  Ot 

with 

D s w s  
Vs - (18) 

1)t 

The macroscopic constitutive relationship for a thermoelastic solid matrix takes 
the form, (Bear et al., 1992) 

I II I 
O" s = ~ s e s k e l 6  q- 2]ZsCskel - -  ~](Ts - T s o ) ~ ,  (19) 

where Ts and Ts o denote the solid temperature and its value at a reference stage, 
respectively, A~, #Is denote the Lame coefficients of the solid matrix that have to be 
determined experimentally, and r/denotes the thermoelastic coefficient. In view of 
(5), (14), (15), (16) and (19), we rewrite the porous medium momentum balance 
equation, (12), in the form 

0 cgV~ OP 
+ + (1 - + ( G  +  ,)r ot 

v OTf + 
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+r + G,) ~ G ov~ + 
oxj + p : (G  + ')-~xj 

V, " OP 

. OT: 
+r + v~,)(v, s + v,j)-~z ~ + Cp:(v~j + vs~) (v,, + G)+ 

OG, 
+(1 - r Oxj 
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(0 2Gi 02Gi ) OP 

- (" :  + AT) + OxiOx---5 + 
y, o ( 1 - r  o ( o z  

(20) 

2.3. ENERGY BALANCE EQUATIONS 

In writing the macroscopic energy balance equations for the fluid and the solid, we 
assume linear thermodynamics. Furthermore, the specific heat at constant volume 
for the fluid, Cf, and the specific heat at constant strain for the solid, Cs, are 
assumed to be constant. In addition, we omit external energy sources and the energy 
associated with viscous dissipation is assumed to be negligible, i.e., 17- : VVfl << 
IPV. Vf I. Hence, we write the macroscopic fluid energy balance equation 

O (r + �89 

,v2,) = -v. [r + ~ : V: - r - r 

-a*H(TI -- T,) - T/ flTpT V .  (r - CT*V:. V P -  
pl: 

- ~ (/)pfIVrl cvOzm Vr" Vs (21) 
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in which, O~ *H denotes the heat transfer coefficient associated with the rate of heat 
transfer between the solid and the fluid phases, A~(~ A~:~ = )~T*6 = A~m6) 
denotes the thermal conductivity of an oz(~ f, s) phase, andD *g denotes the fluid's 
thermal dispersion tensor as suggested by Nikolaevskij (1959) defined by 

Di* j aHIVylSij + (a H -H, Vs'Vf ' 
= - - T  J I U t  

(22) 

in which aL H and a H denote the longitudinal and transversal thermal dispersivity, 
respectively. Although ~ / i s  about 10-20 times larger than aT H, for simplifing the 
present analysis we assumed, a H to be equal to a f ,  since we are interested only in 
the principle of thermal dispersion. Note that without Forchheimer term (The last 
term on the RHS), (21) can be obtained by following Bear and Bachmat (1990) upon 
including fluid mass and momentum balance equations. Forchheimer term maybe 
interpreted as a heat source at the solid-fluid interface, and was originated from the 
fluid momentum balance equation. In view of (22) and the fluid mass balance (2), 
by subracting the momentum balance equation multiplyed by the fluid's velocity 
term, the fluid's energy balance equation, (21), becomes 

' c OTs OT CpsC+TsZp~ + +pf s-aT + r 

V, ~ OTS 

OVa, OV~j 
+r + v~j)~ + CpsCsTs-g~-j + psc/rs--g~j + 

V. " OP 

lV~ + V:l x 

x psCsTs~p~-}] +psCs(I+~TTJ~)- 
2 

-r + V:l fC+(2+~TTs)~ \~] + 

OP 
+ 2pyCy~p(1 + t 3TT$)~  Oxj k 
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OP ) 2 02Tf 
+psCs~Ts ~ + psCs(1 + ~ T s ) ~ +  

.-kpfCf/3pTf 02P ] 
02Tf /~T (OFt a ogsj ~ 

+r Ox~ ,~*"(T. - Ts) + C T s ~  \ O.j + ,9.j ] + 

_~ C/'~v OLin 1 V--  pslVrlVr, : o .  (23) 

For a thermoelastic isotropic solid, the macroscopic heat balance equation as 
obtained by Bear and Bachmat (1990) is 

Ot 
aT_ 

+ (1 -- r  + (1 - dp)p, CsV,~ Oxj 

, 02T, -(1- r + 

ov,, o�89 
+,~*L'(T~ - TS) + ,TT~-ggT. j + (1 - r Oxj : O. (24) 

Altogether we have so far 8 variables (P, Tf,Ts, Vr, Vs,p.f,r To solve 
for these variables, we have 6 balance equations: (4), (5), (11), (20), (23), (24); a 
constitutive relation for the pressure and definition (18). 

Our objective in what follows, is to analyze the order of magnitude of the various 
terms of the balance equations, following an abrupt change in both the pressure 
and the temperature. 

3. Nondimensional Forms of the Balance Equations 

Our next objective is to analyze equations (4), (5), (11), (20), (23) and (24) in 
order to eliminate from them nondominating terms, i.e., ones that are much smaller 
then other ones in the same equation. To achieve this goal, we first rewrite the 
above equations in dimensionless forms. The various dependent variables that are 
appearing in the dimensionless equations as well as their derivatives, are of order 
one, if appropriate reference values are selected for them. Hence, the order of 
magnitude of a term is determined by the scalar factor that multiplies that term. By 
comparing these scalar factors for any two terms, we can determine the conditions 
under which one of these terms is much smaller or larger than the other. This 
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condition takes the form of a requirement that a certain dimensional number be 
much smaller or much longer than a unit. 

In the present case, since our aim is to compare all the terms with terms associ- 
ated with the rate of pressure changes, we (1) select a scalar for every variable and 
parameter in the balance equations. The scalar factor gives the ratio between the 
dimensionless variable, ( )*, and the dimensional one [e.g.,(Ax) = Lc(Ax*)]; (2) 
rewrite the balance equation by replacing variables and parameters by the product 
of the dimensionless variable and the corresponding scalar. In this way, each term 
in the balance equation takes the form of a product of a scalar factor involving 
various scales, and a dimensionless factor the latter is of order 1. We divided the 
equation by the scalar factor that appears in the term that includes the rate of 
pressure change. 

To simplify our symbols, we use, %, as a characteristic value of the inten- 
sive quantity, e and L~ and t~ as characteristic increments in the spatial and time 
steps, respectively, both associated with e. Furthermore, we introduce the fol- 
lowing dimensionless numbers which were obtained in the nondimensionalization 
proces s �9 

Stmhal number, St e, associated with the intensive quantity, e. 

St e _- /;~ (25.1) 
e 

weighted velocity of the in which V~c denotes the characteristic mass 
a-phase. 

Euler number, Euc~, associated with the a phase. 

& 
Eu - (25.2) 

where p~ denotes the characteristic density of the a-phase. 
Richardson number, Ri, is given by 

Ri = Fr -2 = -gLD 
(vso) 2' 

where Fr denotes the Froude number. 
Reynolds number, Re, is given by 

(25.3) 

- ( 2 5 . 5 )  Vc - -  f 
P~ 

in which the characteristic kinematic viscosity, %, is defined by 

R e -  V Y c ~  - TDDa 1/2 - vsozc , (25.4) 
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~ is a characteristic permeability given by 

etA} 
g~ - - - ,  (25.6) 

O~m Cv 

and Darcy's number, Da, is given by 
/% 

Da _= ,~ gLVS~ ~ . (25.7) 
~ c \  c ] 

Fourier number, Fo~, associated with the a-phase, is defined by 

Aamt T~ a~t T~ 
Fo~ - pcC,~(L~c, T~)2 { L T J  ~ 2 (25.8) 

Fourier number, FODis, associated with the fluid's thermal dispersion, is given 
by 

aHTr tT~ T V.[c c 
FODis -- (Lye )  2 (25.9) 

Nusselt number, Nu, associated with the fluid phase, is given by 

Nu =- Af (25.10) 

Biot number, Bi, associated witht he solid phase, is given by 

Bi _ A s  (25.11) 

We furthermore introduce some additional new scalar numbers. The character- 
istic strain, ec, is defined by 

8 
W c 

ec = ~L~'" (26.1) 

The ratio, Qe, between the solid's heat generated by deformation and its advec- 
tive heat flux is given by 

Qc = AsmtTs. (26.2) 

The ratio, F v ,  between the solid's surface force, per unit length of the solid, 
resulting from its deformation, to the fluid's inertial force, per unit volume of the 
fluid, is given by 

1 
F v  - p{ V f ~ /  v" (26.3) 



252  h. LEVY ET AL 

The ratio, FVT, between the solid's surface force (per unit length of the solid) 
resulting from its temperature change, to the fluid's inertial force (per unit volume 
of the fluid), is given by 

TS l w s 
V c ~ c (26.4) 

Fvr =- p{ Dd tov /  

The volume of the fluid added to the storage, per unit volume of the fluid, as 
the pressure changes, Ap, is defined by 

Ap = r (26.5) 

The volume of the fluid added to the storage, per unit volume of the fluid, as 
the temperature changes, ATt, is defined by 

AT) = r . (26.6) 

In view of the scalar numbers (25) and (26), the balance equations (5) for fluid 
mass, (4) for solid mass, (11) for fluid momentum, (20) for the porous media 
momentum, (23) for the fluid energy, and (24) for the solid energy can be rewritten 
using products of nondimensional terms ([ ]*) and scalar factors. 

The fluid's mass balance equation: 

r * 'lZ * 
A1 lOPs-aT j +&[Cps-5i- j -bAg "fOxd] +aLso  j + 

+ &  Cpf(v~j + ,,)~-;;,./ + A6 CpAV,; + V~, )~ .  = o, (27) 

AT, t$ 
A1 = 1, A2 - Ap tTs ' 

,.~ ~ ,  ( v~) 
A3 = CeApt(StD) - t ~  L~ ~ 1 - V i a l '  

where 

ty 
A4 = A~I (S tG) - I t~ ,  

A5 = (St ys)-I LVs lcp 
L P tD '  

A6 = ATJ (StD)-I LD tff 
Ap LTs tD" 

The solid's mass balance equation: 

[ OVs~. ] * [~ ~2 =0, B1 L 0t J [ 0~,j J 

(28) 

(29) 
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where 

(177c) t~ B1 = 1, B2 - StY; t-~" 

The fluid's momentum balance equation: 

* .0Tfl* 

+D3 [r 0 V~ ~ (  T, + v~,)]*+ 

+D4 ~r + V,~) (V~, + V~,) + D5 @s(V~, + V~,)~-jJ + 

[~z* ~ +D6 [ mOxi j + 

v, "oP]* +D7 CPs(V~, + V,,)(V~, + "')b-;s + 

v, "OTsq* +D8 Cpy(V~j + V,j)(I/~, + s,J~zjj + 

[ ~]* r~ ~.OZl* 
+D9 P](Vri + Vsi) + D10 [ p] m~xiJ + Dll[r 

-D,2 ~ t o~joxj + o~jox---Z + o~ox--Z + ox,oxj) + 

+ " v  \0z--i~j + Oz-~j]J + 

+D13[r = 0, (31) 

253 

(30) 

where 

D1 = 1, D2 - ATy t P 
Ap ttcf ' 

D3= r t~y, D4= r 
tc 



-. ,~-~ :a(+ - ~) o~j + ,~('~ + 'ta) ("A + 

+ ~(A + ~"A)("A + 

"~0 (~,~ ~.~A)Sd r ~j ~0 
+ ~Ae' "+ + "~(~- ~) ~+ * 

+, [('~A +- vtj-~ ~r+ 

:ran!pore snoJod oql jo uo!lenbo oouele q mmuomom oq, L 

,z(,? ) d~ t ~\aA [ I - (;Alg) ~] I -l~(I [dvg~) CI(]- 

o 

';A ~ d o 

, (~fA ) .(~I d o 
\ ~ - ! --r ~-( cp = u G 

0 O 

0~_ 0 0 

dl ,AT t-('AIS)7~V =sG ''~ d7 t_(,A*S) = ~ G o d SAT 

"iv ~t XAU'I V 9~; 
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where 

[ 02wsj 02ws~ 
-E,, [Ox~Ox~ + OzsOz--- ~ + #ZOxiOxj + El2 ~x~ 

[ 02V~ 02G; 
-E,3 [OzsOz s + OzsOz----~. 

255 

: 0 %  o% 
+ (' + ~:,  ~,'o;,oZ~ + b;ibx; ] ] + 

[~ [v, +),] * +EI4 1.0~:~J + El5 + 

[4 oz]* 4" ozt* 

+Et~[(1-r 

E, = I, E2- Ap t~*' 

A-I tP " -1 Euy Sty' LD tff 
z3 = .~o . ~ ,  E4 = (1 - r  ~ zY. d ; '  

_ _ t P L?  ( Ge l  A_,tstV.,tc p E5 = +oAp'(stV*) It+ ' zY~ ' -  v:~]' z6= p, ,~ ,  

E7 = ( s tV : ) - l~  tP AT:rStD~_ILV ! tff 
TD, E8 = a e '  : LY: t'Y:' 

E9 = GA~t(stVq_l t_y 7 E~o = (1 _ r Eu: (StD)_~ L~9 t~ ' = ,  zY" ,y,'  

p 

Ell = A~,Ie~FV t~, EIZ = A~Ie~FvT Lw" t; 
$ ~e: t vs 

El3 = A~1Re-IDal/2(stD)-I 1~ , 
te 

E1 t,.G ~P~G 
P ~u~St V: ~~ 

(33) 

E14 = A~tEuy(StD)-I L-~ tP 
Le tv:, 

El6 = CeA~tFr-Z(stD)-I ~ ,  
tc 
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El7 (1 -1 -2 v - lPs tP = - r Fr (St ~) :Y t~"  
Pc e 

El8 --- (1 -- r ~E--u/(StD) -1LD t~P (34) 
~u~ Lys tY'" 

The fluid's energy balance equation: 

F 1 IChor f'-'~-] 2[_ F2 [ P f W ]  "~- F3 ~)p]Tf --~ 

OTsl * 

[ * r+Tov,,1. [ v,~]* +-~5 (~P.f(Yrj + Vs j )~ j J  + -F6[ Pf ]'-~Xj J -~- F7 PIT1 + 

+Fs[r 

+ ]?'11 [r ( OVrj OV.j ~ * 
\ o~j + o~j ] ] - 

-F12 q~(Vrz + Vsz)~'~xj( ~', + OP Iv~ + v.I psTs~-~j - 

IVr + Vsl P ~ ]  - 

o v~ vs,) _OTs]* --F14 r + Vst)-~j( r, + 
Iv~ + ' ," ,1  P#~-ffgfxj] - 

~ ~-~j; - 

\~-~j]  j - F,~ cpslv~ + V~l o~j O x j  - 
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where  

-F18[@p/TclV~.+GIOT/DP]* [ ( O p ) 2 ]  * 

-~o  @slV~ + G I ~ j  -/?'21 @stslg~ + ~ ]  - 

02 P ]* [ OZT/] * 
- ~  +~,~,,v~ + v . l ~ j  - ~ .  [+TyV~. ] + 

+ F24 [@Sl V~ IGj V~5]* = o, (35) 

t~ 
F1 = 1, F2 =$cAp 1 tTf, 

AT, t P ~ g  
F 3 -  A p t  if, F4= (StD) -1LD tP 

' L~/tY" 

Fs=GA~I(stD)_ILY' t~ _ t e LY' ( Vs~ 
LY, ty, ' F6 = r S Ly. 1 - V I i i .  

F8 = (StD)-I ~ tff 
c t Y ' '  

A_lcst�89 t P 
F7 = p ~ / ~c ~ , 

F9 = Ap1NuFoj T3 TP 
t~ i f , '  

F11 = $cApl(StD)-I tP fiT 
t v ' / c s~p  

-1  tg 
Flo = Ap NuFo I .Tf , 

tc 

Ly f t P 
- - ,  El2 = FODis L c P tVf ,  

At, (LY*) 2 
r18 = 2-~-Foi~i~ tg 

(~y,)~ 
F17 = 2FODi~ i ~ * i ~  ' 

/715---- 2ATfFODis (LYI~ 2 tP 
Ap \ i~ '  J tY'' 

F13 = r LVj tP 
LP tP '  

A2 ( ~ 2  p 
F16 - Tj tr 

+~A--S F~ \ i f ,  J tY,' 

A. if'  tY" 
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El9 = [ LV' "/2 tp F20 = r t Ic T` ) tY'' 

F21 -~fODis (LYf~ 2 tP F22 =FODis (ZYf~ 2 tP 
= T f  V I ' .... , -~P \Lc ) tc t L ~ )  tys 

t P 

F23 = r t ~='U 

F24 = r -1 ty  f ^Y'~ T y 
pc ~ f  c 

(36) 

The solid's energy balance equation: 

, 

c,[ l _ + +c2 + c3 ] _ o ,  

- G  4 (1 - r Ox~ J + Gs[Tsl*- 

r o~jl* [ ov, j]* 
-G6[rf]* +C7 [Ts--~xj J +G8 ( 1 - r  Oxj ] = 0 ,  (37) 

where 

tTs )-1Lv" ttd 
G1 = 1, G2 = tO--" ~, G3 = (St V" LT " tv * ,. G4 = Fos, 

1 1 TC/FosBi, G5 = (1 - r FosBi, G6 = (1 - r tg 

1 . ,  Fos Qc (st v, )-' ~ ,  G T -  (1 -q)c) tc 
G8 = (stg') -1 tTs'' (38) 

tv, " 

Next, we evaluate the relative magnitude of the terms appearing in the phase 
mass, momentum, and energy balance equations, following abrupt changes in both 
the pressure and the temperature of the fluid, at a point within the porous media. 
Actually, to allow the investigation of simultaneous effect of fluid's pressure and 
temperature, we assume that both are of the same order, (e.g., blast or shock 
waves). 
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4. Approximate Forms of Mass Momentum and Energy Balance 
Equations 

To simplify the discussion, let us consider a fluid that is initially at rest. It should not 
affect the general methodology of determining the dominant forms of the balance 
equations at different evolution period. 

Immediately following an abrupt change in both the pressure and the tempera- 
ture, we determine the characteristic time of any intensive quantity. During a short 
period following a change, we may assume that the following time characteristic 
intervals are identical. 

t vr = t  G = t  P = t  TI = t  TS=t~ .  (39) 

Note, however, that after longer time periods, when inertia terms become smaller 
than those of dissipation, each of the e-quantities evolves at its characteristic pace. 
Hence, during a short time interval following the initiation of motion from rest, the 
average and characteristic velocities may be identical. They may be expressed in 
the form 

Lye 
= ty  , = t G .  (40) 

Note that in writing (40), we assume that Sr = l(e r r Actually, following 
(17), we note that e~k = esk(r Yet, in view of (18), we define the relation between 
ws and Vs. Hence, we may conclude that L r L G and ~ are related. However, to a ,  c We 
be consistent with the argumentation of choosing L~ related to each V~, we choose 
to develop the dominant terms in the evolving balance equations on the basis of 
the above mentioned characteristic terms. 

We now aim at constructing the various forms of the balance equations, consid- 
ering the relative order of magnitude of Amy(mf = 1 ,2 , . . . ,  6), Bm,(ms = I, 2), 
DMI(Mf  = 1 ,2 , . . . , 13 ) ,  EMp(Mp = 1 ,2 , . . . , 18 ) ,  FEf(Ff = 1 ,2 , . . . , 23 )  
and GE~(Es = 1, 2 , . . . ,  8) in (28), (30), (32), (34), (36) and (38), respectively. In 
assessing the magnitudes of these expressions, we consider the rates of change of 
fluid pressure and temperature to be of the same order of magnitude, e.g., blast or 
shock waves). This in view of (3), dictates the condition flpPc = 0 (flTT~) and will 
manifest a unit order to the factor multiplying the fluid's temperature rate. Since 
we have assumed that the rate of changes of pressure and the fluid's temperature 
are of the same order of magnitude, it follows that Ap and ATs are also of the same 
order of magnitude 

4.1. PERIOD OF UNIFORM DISTRIBUTIONS OF PRESSURE, STRESS AND 

TEMPERATURE 

Immediately following an abrupt change in fluid's pressure and temperature, we 
may assume that 

Lyr | ty  = = 0+. (41) 
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In writing t P = t TI = 0 +, we mean that the time distributions for the rise in 
fluid pressure and temperature are the same. During this period, we consider the 
nondimensional numbers Ap, ATI, Eu,~, FVT and Fv to be of orders of magnitude 
greater than one. All other nondimensional numbers appearing in (25) and (26) ore 
of order one, except Fo~ which is of order zero. Accordingly, by virtue of (28) and 
(41) we obtain 

A1 - A2 ~ A5 - A6 ~ O(1), (42) 

while all the others A are of order zero. This, in turn, yields an approximate mass 
balance equation for the fluid in the form 

OP \ Ot + flT--~-) + Cpj(V~j + V~j) ~, Oxj + fiT = O, ( 4 3 )  

This equation may be rewritten as 

D o  
r  = 0. (44) 

Dt  

In view of (32) and (41) we find that 

D 1  - -  D 2  - D 6  - D 7  ~ D 8  --- O ( 1 ) ,  (45) 

other D factors are of order zero. Hence, if we subtract (45), multiplied by the 
fluid's velocity, from (31), and account for (45), we obtain the fluid's momentum 
balance equation in the form 

OP 
fiT* Oxi - O. (46) 

By analyzing (34), in view of (41), we may conclude that 

E1 ----- E 2  --- E 7  --- E 8  --- E l l  ~ E l 2  ~ E14  - O(1), (47) 

while the rest of the E factors are of zero order. If we now subtract (43), multiplied 
by the fluid's velocity, from (33), and also substitute (46) into (33), we obtain the 
porous media momentum balance equation, in view of (47), in the form 

' 0. (48) ~ 7 . O -  s --  

B y  virtue of (36) and (41), we write 

~1 - -  if3 - -  if4 - -  F8  ~- -/;'16 ~ ff18 --- ff19 ~ 0(1) ,  ( 4 9 )  
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while the rest of the F factors are of zero order. We now subtract (43), multiplied 
by C s T  I, and substitute (46) in (35). We obtain the fluid's energy balance equation 
in the form 

CPsCsTs T  IVs + V IVTs" VTs = 0. (50) 

Since the factors in (46) and (50) are not zero, we use this result of constant 
spatial distributions of P and Ty, together with (43), and obtain 

o r  

oP OT s 
/3p 0 ~ -  fiT Ot (51) 

ops _ o. (52) 
0t 

Note that in view of (44) and (52), although the fluid is considered compressible, 
during this first time period it behaves as if it were incompressible, i.e., 

ps = const. @ t = 0 +. (53) 

Examining (38) and in view of (41), we obtain 

G1 ~ G2 ~ G3 ~ G8 - O(1), (54) 

while all other G factors are of order zero. If we now subtract (4) (which all of its 
terms are of order one), multiplied by CsTs, we obtain the solid's energy balance 
equation in the form 

DsT~ _ O. (55.1) 
( 1  - r Dt 

Hence, T~ will remain constant along characteristic curves defined by 

Dsxs 
Dt  = Vs, (55.2) 

where x~ is a position vector along the characteristic path associated with the solid 
matrix. 

The pressure and the fluid temperature impulse propagate uniformly over a 
distance obtained from the factor D6 in (32). 

L p = O (  tff ) (56) 
\p  pvJ " 
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4.2. PERIOD OF NONLINEAR WAVE PROPAGATION 

After the first time period, we let the order of magnitude of the Reynolds number, 
Re, be greater than one, while the remaining nondimensional numbers in (25) 
and (26) remain of order one. Consequently, following a procedure similar to 
that outlined in Section 4.1 above, by which the orders of magnitude of all the 
factors were determined, we conclude that the fluid's and the solid's mass balance 
equations, remain in the form (2) and (4), respectively. 

The fluid's momentum balance equation, becomes 

0 V~ ~ ,~gP C p s ~ (  ~, + v~,) + Cp+(v~j + v,j) (v~, + v,,) + CT~b-~ + 

Oz T* ~A-- ~ +r m Oxi + CpslVrIVT, = 0. (57) 

To obtain the solid's momentum balance equation, we first consider the momen- 
tum balance of the porous medium as a whole, which was obtained under the 2nd 
period assumptions. The equation takes the form 

0 OVsi OP 
Cps ~(vr, + v~,) + (1 - r + Cp~Ze(v~, + v, , )  ot 

v, "OTj +r + ~,)--~-+ 

. OT$ O~j +dppf/JT(Vr, q- Vsi)(Vrj J- Vsj)-~x j q- qJpf(Vrj q- Vsj) (Yri q- Vsi)+ 

+(1 - r Oxj 

02Wsj ! { 02Wsi 
"~tstOXiOXj ]'Zs ~ OXjOXj + - -  

OP V. 0(1 - r 
+~x~ +~'p" o7 + 

02w~ ) OT, 
OxiOxj + rl-ff~z~ + 

OV~ Oz OZ 
+(1 - r j + CP'fg-~xi + (1 - r = O. 

We now subtract (57) from (58), while assuming that 

l( 1 - r  >3, ICpy(T*m- T]m)[, 

(58) 



EVOLUTION OF THE BALANCE EQUATIONS 263 

and obtain the momentum balance equation for the solid matrix, in the form 

OVs~ OVs; 02wsj 
(1-r +(1-r j AnoxiOxj 

, { 02~,~, 02% ) OT~ 
- # "  \ ox~oxj + ox,ox-----; + ,7~+ 

. + = o .  ( 5 9 )  

The fluid's energy balance equation, becomes 

. OT s CpfCfTfflp~t + CpfCy(1 + flTT.f)---~-+ 

v, "OTs +r + flTTy)(V~, i + ~i)-~xj + 

OV~ i OVs~ OP 
+r j + PIC.fTI~x j + CpIC.fflPTI(V,.j + V~i)-~xj+ 

c[-~-~a,~ fit (OVrj + OV~j ~ + ~ 7 i  CPiiVrlV~jV~ i = O. (60) + r  \ oxj o~j / 

The solid's energy balance equation, becomes 

(1 r  + (1 '" c y, OT~ OV~ i 
- - r ~ , j  Oz---j + r l T ,  O x j  = 0 .  ( 6 1 )  

In view of the factors D6 and D10 in (26), we may estimate the length of the 
time span during which Equations (57)-(61) are valid. We find 

= 0 - -  , ( 6 2 )  

and 

(/s) (63) 

During this period of evolution, we note the emergence of nonlinear wave 
equations. Actually, the procedure for obtaining these forms is based on time 
differentiation of the appropriate balance equations in which only the dominant 



2 6 4  A. LEVY ET AL 

terms remain. By time differentiation of (2), and substitution of (57) into the 
resulting equation, we obtain a nonlinear wave equation for the specific fluid 
maSs :  

O2r ( T~ ~ 02r 
Ot 2 V]iY]j q- pfflp ] OXiOXj 

CvO~m OCps 
= I + 

(2o(DAgd _,  o z  r Ops + ~lV~tV~, 

fir O~:iOXj 

((ors, ] 2 ows, ovf, ors, 
+,~ps t t,-O-CU) + 2 V s ; ~  + + OXjOX i OXj OXi 

+ V ~  ox--7+ l V . I  ox, ) " 
(64) 

By time differentiation of (57), and substituting of (2) into the resulting equation, 
we obtain a nonlinear wave equation for the specific fluid velocity: 

02D' DkDj 02V~ 
Ot 2 OZkOXj 

Ov]~ 
= 2Yik  axk Oxj 

T~j 02p 
py OtOxj 

T*. ,3 OP Ops 4: + 
p) Oz j Ot 

+ (~;joe ~. oz'~ o . ,+ 

T ~. 

,i, OXkOXj 
T*s OP Ops'~ 

- V-X3-- t, lv, i -~- + ~, ~  "i - D k l v ~ l  OVa, 
Oxk 

--VSk V,',--O--~k ) " (65) 
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By time differentiation of (59) we  obtain a nonlinear wave equation for the solid 
velocity: 

o2v,~ u', + A" O2v, j u', 02V,~ 
Ot 2 (1 - r OxiOxj (1 - r OxjOxj 

OG.i 0�89 _ 02�89 r/ 02% 
- N ~ - v ~  (1 - r o t o ~  

T~ 02 p 1 O Vsk + - - •  
(t - r OtOxj (1 - r Oxk 

02w~s 02w~ 0%'~ 
x (~'~ + A~)Ox~Ox-----2 + ~" Ox~O~ '-g-~,) + 

+ cv]-~-~-~ 1 (r OlVrl ivriO~pyTv~,~ 
V ~ ( 1 - r  -~z~ + oxi /"  

(66) 

Substituting (18) into (59), results in a nonlinear wave equation for the solid's 
displacement: 

02Wsi #t s q- ~ 02Wsj #t s 02Wsi 

Ot 2 (1 - r OxiOx5 (1 - r OxjOxj 

__ O~3)sj 02ZOsi ~1 OT s 
Ot OtOxj (I - r Ozi 

Ti~ OP Og 
(1 - r ox~ - g-6z~ + 

V 
(67) 

4.3. PERIOD CHARACTERIZED BY THE INERTIAL AND DISSIPATIVE TERMS 

During the third evolution period we refer to the case when all the scalar factor 
A,~I, B,~s, DMy, EMp, FEI and GEs in (28), (30), (32), (34), (36), and (38), 
respectively, are of the same order of magnitude. Hence, the balance equations 
remain as (4), (5), (11), (20), (23), and (24). 
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4.4. PERIOD DOMINATED BY THE DISSIPATIVE TERMS 

In this case, the drag associated with the viscosity dominates the fluid motion, after 
all the inertial effects have subsided. The nondimensional coefficients are of the 
following order of magnitude: 

L, Fo, Nu, Bi, St -~ O(1), (68) 

ec, Da, Re, Ap, AT I << O(1), (69) 

and 

Fv,  FVT, Eu >> O(1). (70) 

Now that inertia terms are smaller than those of dissipation, we also postulate 
that the time duration associated with the velocity change is much greater than the 
one associated with the changes of any other property, e, namely 

t-~ << 1. (71) 

Under assumptions (68) to (71), we obtain the following new balance equations: 
Fluid mass balance. 

Cp av , 

Fluid momentum balance equation (Darcy's law). 

-~2 r = - r  + Cp fgVZ) .  (73) #.f Otto 
z.x $ 

Momentum balance for the porous medium. 

i 0. (74) V P  + (1 - r  V . t r ,  = 

Fluid energy balance equation. 

C p / C f ~  i - CAS,~V2Ts - a *n(Ts - Ty) = O. (75) 

Solid energy balance equation. 

c OTs (1 - r ~--~- - (1 - r + a*H(T~ - T$) = 0. (76) 
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5 .  C o n c l u s i o n  

A nondimensionalization procedure is applied to the macroscopic mass, momen- 
tum and energy balance equations describing saturated flow in a thermoelastic 
porous medium. Considering the possibility of high and rapid changes of the phas- 
es velocities, the analogous to Forchheimer terms were developed as additional 
momentum and energy components at the material boundary between the phases. 
The evolution of the dominating terms in these balances, in response to an abrupt 
change in both the fluid's pressure and temperature, was then analyzed. 

Four distinct evolution periods were found. 

- At the very first instant, the fluid's density remains constant. This in turn, 
constitutes a linear relation between the fluid's pressure and temperature rates 
of change. The fluid's pressure and temperature and the solid's matrix effective 
stress result in uniform spatial distributions. The spatial distribution of the 
solid's temperature and it's time rate of change are related by the solid's 
velocity. This is governed by the material derivative of the solid's temperature, 
being equal to zero. 

- During the second time interval, the inertial terms dominate, and we note the 
occurrence of nonlinear waves forms for the fluid mass, the fluid velocity, the 
solid velocity and the solid's displacement. 

- During the third evolution stage, the dissipative effects in the balance equations 
arise and become of the same order of magnitude as the inertial terms. 

- As time proceeds, during the fourth stage, we note the domination of the 
dissipative terms while the inertial ones had subsided. The fluid's momentum 
is dominated by Darcy's law. The momentum balance equation of the porous 
medium represents forces equilibrium and energy balances are described by 
parabolic equations. 
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