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Abstract. It is demonstrated that a certain amount of order can be extracted from an apparently random 
distribution of pores in sedimentary rocks by exploiting the scaling characteristics of the geometry of the 
porespace with the help of fractal statistics. A simple fractal model of a sedimentary rock is built, and 
is tested against both the Archie law for conductivity and the Carman-Kozeny equation for permeabil- 
ity. We demonstrate how multifractal scaling of pore-volume can be used as a tool for rock character- 
ization by computing its experimental f(e)  spectrum, which can be modelled by a simple two-scale 
Cantor set. 
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1. Introduction 

The description of the porespace of sedimentary rocks and their fluid flow proper- 
ties is a complex problem which has been generally avoided by physicists and only 
empirically modelled by reservoir engineers. The recent advances in 'new-physics' 
have given us the possibilities to attack problems formulated as complicated 
differential equations (such as the Navier-Stokes) by new, nontraditional, methods 
that are based on solutions of iterative maps. These methods are applied to systems 
whose limiting solutions (of differential equations) are not smooth differentiable 
curves. Examples of such systems are, amongst others, fluid flow through a 
sedimentary rock, turbulence, and the growth of objects of irregular shape (such as 
snowflakes). The characteristics of these 'noisy' jagged curve is their fractal shape 
described by Mandelbrot in his Fraetal Geometry of Nature [1]. 

In what follows, we shall not discuss derivations or solutions of iterative maps 
[2]. Instead, we demonstrate how a simple fractal model can give us an understand- 
ing of the fluid flow and the conductivity properties of a porous medium in terms 
of empirical relations such as the known Carman-Kozeny [3] and Archie laws [4]. 

The paper is organized as follows. In Section 2, we discuss some fundamental 
properties of fractal objects and explain how we measure those properties. Our 
fractal model is described in Section 3, where we show its strength and weakness by 
comparison with other existing models. The concept of multifractals, which plays a 
leading role in extracting order from apparent randomness in nature, is introduced 
in Section 4. We demonstrate how multifractals can be used as a tool for rock 
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characterization and point out their significance in making realistic models of 
porous media for predictions of fluid flow. Concluding remarks are the subject of 
Section 5. 

2. Fractals - Major Characteristics and Their Measurements 

Fractal geometry [ 1] is a tool for characterizing objects occuring in nature. It differs 
from the Euclidean geometry of the old Greeks, which was designed to describe 
man-made objects. While Euclidean objects (such as squares, cubes, spheres etc.) 
are invariant under Euclidean symmetry operation (such as rotation or translation), 
the fractal objects are characterized by a dilation symmetry operation often referred 
to as self-similarity. 

A coastline is a classical example of a fractal object. As you zoom in on it from 
above, smaller and smaller bays and headlands appear. Consequently, fractals lack 
characteristic length scale. This contrasts with Euclidean objects which have one, or 
at most a few, characteristic sizes or length scales (e.g., the radius of a circle, or the 
side of a square). Fractal shapes are scale-independent and are self-similar. Conse- 
quently, for a fractal object, the number of features of a certain size N(E) (such as 
the number of bays of a given size along a coastline) varies as f - ~  where f is the 
scale used in the measurement, and D is the fractal dimension of the object. 

In mathematical language, we say that N(f) scales as a p o w e r  of f, and the 
relation 

N(d)  ~ d - D (1) 

is referred to a scaling (or power) law. Its consequence is a statistical distribution 
of objects (such as tree branches, fjords, pores, cracks) that obey fractal statistics. 
These distributions have long tails that contrast with bell shaped ('normal') 
Gaussian functions. Therefore, power law (fractal) distribution functions are more 
appropriate for description of geological species such as pores, cracks, shales, 
heterogeneities etc. 

The exponent D in (1) is an example of fractal dimension, and it describes 
quantitatively the degree of irregularity of fractal objects. We shall illustrate the 
computation of a fractal dimension by the so-called box-counting method for the 
porespace of a sample of a thin section of porous sedimentary rock. The porespace 
was viewed through an optical microscope. The image was then digitized and stored 
in a computer. In Figure 1, we display a typical digitized image, where the white 
regions represent pores, and the black regions represent grains. In addition, we 
display in Figure 1 a grid made from boxes of size ~1. We count the number of 
boxes N(~I) which contain a pore (this can be a whole pore or a fraction of 
porespace). Then we cover the image with a grid consisting of boxes of size E2, and 
count N(d2). This is repeated for various box sizes. Finally, we plot N(~) versus 
on a doubly logarithmic scale. If the scaling relation (1) holds, then we get a linear 
plot, where D is given by the negative value of the slope. 
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Fig. 1. Digitally displayed porespace (white) in a sandstone covered by a box-counting grid. 

In Figure 2, we display digitized pictures of a thin section North Sea sandstone 
taken at five different magnifications (for details, see [5]). As we zoom in on the 
sample from (a) tilt (e), new structure is successively revealed, but the statistical 
self-similarity (the major characteristic of  fractal objects) is retained. This is 
demonstrated in Figure 3a where we display the log- log  plot of N(f)  versus ~ for 
thefive digitized images in Figure 2. As may be seen, the data for a l l  the five ranges 
of  magnification appear to fall on a straight line with the slope 1.73. 

To probe a possible fractal scaling of  the pore-grain interface, the same box- 
counting technique was used. For  this, the number of  boxes N(f)  needed to cover 
the contours of borderline between black and white regions in Figure 1 was counted 
for different box sizes E. The results are shown in the log- log plot of  N(f)  versus 

in Figure 3b. Again, it can be seen that the data appear to fall on a straight line 
with the slope 1.59. 

In principle, one should extend this method to three dimensions by counting the 
number of cubes containing a pore (or  its surface). In practice, this is elaborate and 
requires a sophisticated experimental set-up. Therefore, in this work we concentrate 
on two-dimensional models in order to gain a basis for understanding the porespace 
geometry. 

One way to obtain a fractal dimension from a three-dimensional sample is to use 
small angle scattering of either neutrons (SANS) or X-rays (SAXS) from a 
three-dimensional piece of  rock. One can show that both volume and surface fractal 
dimensions are related to the exponent in a power law relation between scattering 
intensity and reciprocal number [6]. However, there are often experimental difficulties 
associated with the scattering method, and the results are not always reliable. 
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(c) (d) 5OHm 20~m 

l lOIJm (e) 
Fig. 2. Digitally displaced porespace (black) in a 
typical North Sea sandstone with increasing mag- 
nification (a)-(e), respectively. 

A word of caution! For mathematical fractals constructed by simple algorithms 
(such as the well-known Cantor set [1]), self-similar behaviour is observed to the 
zero length scale limit, although the situation is different for fractals in nature. 
While the zero length scale limit is possible in the mind of a mathematician, for 
naturally occuring fractals, there are always upper and lower limits between which 
we observe fractal scaling. 

3. Fractal Model of a Sedimentary Rock 

The major motivation behind the fractal analysis of porous sedimentary rocks is 
our belief that the observed sealing behaviour of the porespaee of these materials 
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Fig. 3. The fractal dimension D a of the porespace area and D c of the contours determined from the 
log-log plot of the relative number of boxes needed to cover the pores and the contours respectively, 
versus box size L of the different magnification (a)-(e) in Fig. 2. 

can be used to predict their fluid flow characteristics. This is because the flow 
characteristics of porous media (in particular permeability and conductivity) de- 
pend upon the geometry of  the porespace. Nonfractal  models of flow are likely to 
lead to the wrong conclusions. 

In order to illustrate this idea, we have built a simplified model of  a fractal 
porous medium and have calculated its flow properties. There are several attractive 
features of  the model (see Figure 4), even though the model is a gross oversimplifi- 
cation of  the real porespace. In our model, the largest pore empties into N1 smaller 

pores each of  diameter Yl, which empty into N2 pores of diameter ~2, and so on. 
Here, we not only organize the pores unto a fractal hierarchy (a tree [11]), we also 
assume that the rock has the geometry of  the tree (see Figure 4). This latter 
assumption is unrealistic, but it has the realistic feature that (a) the model 
porespace is fractal, and (b) the flow is always limited by the s m a l l e s t  pores: there 
is no path through this model rock that avoids passage through the smallest pores. 

The motivation behind these features is simple. Looking carefully at the 
porespace of  a sedimentary rock, we often see that the porespace regions are 
disconnected in such a way that there is no c o n n e c t e d  path through the rock via the 
pores that are seen. This means that the actual connections are formed by the 
smallest pores; those smaller than photographic resolution (e.g., see Figure 1). 
Hence, the permeability is always limited by the flow through the smallest pores in 
the rocks. In addition we now k n o w  that porespace statistics are multifractal (see 
Section 4). Therefore, fractal models of  transport are required. 

Adler [7a, b] has described the flow properties of  a fractal model based on the 
well-known Sierpinski carpet. The major drawback of  his model is that the liquid 
flow is n o t  limited by the flow through the smallest pores. In fact, in Adler's model, 
the fluid flow has the connectivity provided by the largest pores. Though pedagog- 
ically instructive by clearly indicating the scaling behaviour of porespace, Adler's 
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Fig. 4. Oversimplified, but fractal model of a porous rock. 

rock model cannot describe correctly the flow properties of the sample in Figure 1. 
The models of  Wong et al. [8], and of  Katz and Thompson [9], do not suffer from 
the same defect, as they are based upon arguments of diagenesis leading to a 
zero-percolation threshold. However, the model of  Wong et al. uses Gaussian 
statistics, and Katz and Thompson's  empirical model (also nonfractal) lacks a 
theoretical basis. The strength of  our model is that it incorporates the right statistics 
from the start, albeit in an easy and naive way, and that it also suggests how it can 
be done correctly along lines qualitatively similar to those of [8]. 

It is easy to compute the electrical resistance of our model. In generation n, each 
branch of the tree (pore) has a fixed length L and a cross-section area An "~ r (see 
Figure 4), where ~n ~ a -n ,  and so it contributes a resistance R~ ~ ~n/An "~  f n  2 " ~  a2n 

to the circuit. For  an octal tree (Am = 23~), the resistance of the circuit (tree) is 

R ~ 2 3 ~ g~  3i - -  23(a2/23)n (2) 
i= 1 1 - 23/a 2 " 
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The porosity @ is proportional to the total volume Vn occupied by all the branches 
through which fluid flows, 

v~ ~ ~ 23i~ 
H2/23 

i=l a2/23- 1 ' (3) 

so that with 

vT"~23na2(23- 1) -1, @=v,,/vr, and D = l o g 8 / l o g a ,  

In R/ln ~b ~ (D -2) /D,  (4) 

where D is the fractal dimension of our model. Conductivity G is given by the 
reciprocal of resistance (G = l/R), yielding 

G ,-~ (i)(2 - o)/o = (ID m, (5 )  

so that the Archie's law exponent is 

m = ( 2 - D ) / D ,  where l < D < 2 .  

To obtain the permeability k, we start from the assumption that the flow rate 
through a tube with radius r is given by 

q = r4[Vp 1# ,,~ r 4. (6) 

Replacing an electrical resistance R in (2) by flow, and knowing that the permeabil- 
ity of a single-tube element k n ~ f~, we arrive at 

k ~ 1~)(4 - D)/D (7) 

which is an example of a Kozeny equation. 
It is interesting to note that the conductivity and permeability exponents in the 

Archie and Kozeny equations (5) and (7) respectively, are determined entirely by the 
fractal dimension D of the pore-space in this approximation. Jacquin and Adler [7b] 
derived a corresponding result for permeability with a different exponent (4 -D) /  
(2-D) in equation (7) for a model where the largest pores provide the porespace 
connectivity. The work of Adler and co-workers [7c] has not been extended to 
three-dimensional models of porous rocks. 

Our model, based upon flow through the smallest pores in a complete binary tree, 
predicts an exponent in Equation (5) between 0 and 1. Since we force the flow 
through the smallest pores, one would expect that our exponent should be an upper 
limit on real exponents, where larger pores might provide some short-circuiting. 
Measurements, however, yield exponents that are larger than ours. How to account 
for the discrepancy? The point is, that the fluid has even more resistance to the flow 
than we predict, based upon a highly constricting model. One way to make our 
model even more constricting would be to systematically prune entire branches 
from the binary tree. Whether this leads to a larger exponent, or merely a prefactor, 
must be answered by further research. 
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In order to make a more realistic model of a porous rock, we introduce the 
concept of multifractal scaling. This will be done in the next section. 

4. Multifraetional Scaling in Sedimentary Rocks 

A natural question to ask is whether there is only one exponent which describes 
a scaling behaviour of a fractal? In fact, it turns out that there exists a whole 
sequence of scaling exponents, which characterize fractal objects, and the above 
discussed fractal dimension D is only one of them. Therefore, one talks about 
multifractal scaling or multifractals. Originally designed to describe scaling be- 
haviour of a singular distribution of density [1], multifractal analysis can be 
generalized (see [10] and [11]) to describe the scaling of nonuniform fractal 
objects occurring in nature as well as those generated on a computer by recur- 
sive algorithms. The beauty of multifractal concepts is that they provide a means 
for organizing often complex and bewildering phenomena such as turbulence, 
diffusive growth, transport properties of percolating systems, and, as we shall 
demonstrate, the porespace structure in sedimentary rocks. Lovejoy and 
Schertzer [14] have already pointed out that many geophysical fields such as 
radar reflectivity fields generated by showers, cloud fields, mountain fields and 
others can be successfully characterized by multifractal functions. Sreenivassan 
[15] and co-workers have observed multifractal scaling of energy-dissipation 
fields in turbulent flows. The multifractal formalism has given us new tools for 
extracting order from apparent randomness (disorder) in nature. Further, a mul- 
tifractal distribution with positive f(a) is a sign of deterministic chaos (see [2], 
[10] and [11]). 

We shall not try to give a detailed description of our approach to multifractals. 
For this, we refer the reader to [2], [10] and [11]. Instead, we shall give a brief 
outline of one way that we can talk about them, especially within the context of 
rock characterization: we organize the porespace into an hierarchy of generations of 
different characteristic pore sizes. 

We refer back to Figure 1, where we display a digitized image of the porespace 
covered by iV, boxes of size E,, and where the subscript n indicates the nth 
generation scale. We associate the contents of each box with the fraction Pi of the 
total porespace it contains. The generating function g defines the multifractal 
scaling in terms of the scaling exponents a and f(~), and is given by 

z(q) --- fq~-s(,), (8) 

and can be calculated from porespace statistics by using 

z(q) = ~ P~- (9) 
i = 1  



FLUID FLOW PROPERTIES OF SEDIMENTARY ROCKS 141 

The quantities a and f (a)  are given according to the equation 

In Pi ( 1 O) c~ = -c'(q) : ~ i 

and the Legendre transformation 

f(a) = qe(q) - ~(q), (11) 

where 

~(q) = l - n ~ l n  • pq . (12) 
\ i =  1 

The procedure for calculating e and f (e)  is carried out for n refinements of 
coarsegraining with q ranging usually from qmi, (ca. - 15 )  to qmax (ca. 15) with 
steps of 0.1. Note that a given value of q fixed e through (10), andf(c  0 through (11) 
and (12). 

The experimental procedure for digital analysis of rock samples has been 
described in [5]. Briefly, the rock samples were polished thin sections (thickness 
30 pro) bound to a glass substrate. The images were digitized using a videoframe 
grabber with 512 x 512 pixel resolution. The f (e)  curves were determined, using a 
box-counting computer program based on multifractal theory, described in Equa- 
tions (8)-(12). The range where the multifractal scaling is valid was found to be in 
the region from 16 to 128 pixels with n = 4 generation scales. Our lower limit of 16 
pixels is not due to the sizes of the smallest grains, but due to the limit of resolution 
of our photographs. 

In Figure 5, the f(e)  spectra corresponding to three different sedimentary rocks 
from Zaire (very fine sand, medium fine sand and chalk, with porosity 27%, 23% 
and 17% respectively, and permeability 1585 md, 2975 md and 177 md respectively) 
are shown. The standard deviation error bars are based on the statistics from ten 
different images taken arbitrarily from the same thin section. Note that the 
difference in texture of the three samples is reflected in the shape of the f(e)  curves. 

The form of the curves in Figure 5 agrees with the upwards convex behaviour of 
an f(e)  function [10]. As explained below, we shall be particularly interested in its 
two end points [gmin,f(0%in)], [e . . . .  f(0%ax)], and its maximum fmax(e). 

Multifractal behaviour occurs whenever scaling is observed for more than one 
first-generation length scale. The simplest multifractal is a two-scale Cantor set (see 
Figure 6a). If  its two scales :1 and :2 are equal (see Figure 6a(a)), then the resulting 
one-scale Cantor set possesses a trivialf(~) spectrum which is just a point (see Figure 
6b). In this case all t h e ,  and f(~) exponents are equal to one number D. We also 
note [10] that the maximum fma• of a nontrivial f(~) curve is equal to the 
box-counting exponent D. Thus the box-counting described in Section 2 yields a peak 
for the f (a)  curve fmax(a) ----D. In many cases, this number can be very similar for 
entirely different rock textures, and therefore a full multifractal analysis with its f ( , )  
spectrum is a step forward in the direction of more accurate rock characterization. 
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Fig. 5. The f(a) spectra for three different sedimentary rocks reflect different texture of the rocks. 

This is clearly illustrated in Figure 6, where we display four different two-scale 
Cantor sets and their f(~) spectra. We note that the different texture of each set is 
reflected in the details of thef(~) curves. To illustrate the point, we have chosen the 
sets in such a way that they all have identical fmax(~) values. 

In order to model the rock, we introduce a natural eight-scale generalization of 
the Sierpinski carpet. Qualitatively, it is an eight-scale Cantor-like set in the pla,e,  
and we introduce it by defining the model-generating function q)n 

x (q )  = P "~ [ q ~ - f ( ~ ) ,  (13) 
i = 1  

where E8= 1 Pi = 1, and there are eight first-generation scales [i ~< 1/3 (cf. Figure 
7a). The usual one-scale Sierpinski carpet [ 1] follows from setting P; = 2-3; f; = 3-  
(cf. Figure 7b). 

In the interest of simplicity, we attempt to model our empiricalf(e) curves by the 
simplest possible case, the two-scale Sierpinski carpet. In this case, the eight scales 
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Fig. 7. In all the figures, the dark regions represent pores, the white regions sandgrain. (a) The first 
generation of the eight-scale generalization of the Sierpinski Carpet. The hierarchy is octal, so that each 
nth generation pore gives birth for eight new (n + 1)st generation pores. E i is the width of the ith pore 
and Pi is the fraction of the total area occupied by that pore in the nth generation. (b) An example of 
the first stage of recursion of the (one-scale) Sierpinski carpet. (c) Here b = 2, so that six of the eight 
scales are equal to ~ ;  the other two are equal to ~2 in the first generation. 
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f;  collapse into only two, f~ and ~2 (cf. Figure 7c), and Equation (13) reduces to 

z(q) = ( bPq + (8 - b)Pq) ", (14) 

where bP1 + (8 - b)P2 = 1, with 1 ~< b ~< 7. Thus, in our model we have set b of 
scales f~ to f l ,  and the other ( 8 -  b) scales to ~2. Notice [11] that In P1 = amin In E1 
sO that the determination of any two members of the triplet (P~, dl, amin) fixes 
the third member. The same is true for In P2 = ~m,x In fz. Furthermore, in our 

model [11] f(ami.) = - I n  b/ln f l  and f(~max) = --ln(8 -- b)/ln Zz. 
If we consider the generating function Equation (13), we can qualitatively 

interpret the probabilities Pi ~ g~i as follows: imagine organizing the porespace into 
a hierarchy of  generations of pore sizes, where there are N, pores with sizes 
E(~n), /(,) in the n th generation�9 The larger pores correspond to small n, the 

�9 . . ~ V N  n 

smaller ones to large n, and Yl > g~ > �9  �9 " > ~an describes the ordering of  characteris- 
tic scales in the hierarchy. Then P ,-, f,~ is a fraction of the porespace occupied by 
a pore with characteristic size f ,  and scaling index ~, and then there are 
N(a) ~ f~-s(~) such pores in the n th generation�9 

We have tested our two-scale model of  a porous rock on a multifractal spectrum 
of  a North  Sea sandstone�9 The results of the fit to the experimental data are 
displayed in Figure 8. The details of the fitting procedure are discussed in more 
details in [11], however, we note that the fit is reasonable�9 We performed similar fits 
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Fig. 8. Direct comparisons of the f((a)) spectra for the two-scale model (solid lines) and the 
experimental observations for a North Sea sandstone in [11]. The fitted parameter values: 
P~ =0.141, ,o2=0.013, E l =0.333; d2=0.315, b =7.0.  The ( ) parantheses indicate that we 
have chosen the canonical formalism for f(~). For  further details on this choice see [2] and [11]. 
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Table I. Numerical values of PI, P2, r r and b obtained 
from the fit of Equations (13) and (14) to the experimental 
f(ct) spectrum for the three rocks displayed in Figure 5 

Rock type PI P2 r [2 b 

Very fine sand 0.16 0.02 0.34 0.35 6 
Medium fine sand 0.18 0.04 0.33 0.33 5 
Chalk 0.18 0.03 0.30 0.31 5 
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to the curves in Figure 5. The results of these fits in terms of Pl, P2, f l ,  ~2 and b 
are given in Table I. Thus, the interesting feature of this study is that we have managed 
to express quantitatively the scaling behaviour of the porespace of a sedimentary rock 
in terms of five free parameters. 

It seems natural to make use of the scaling hierarchy of the generation of pores 
sizes to build a more realistic permeability model of a porous rock than the 
oversimplified model described in Section 3. This is not a trivial task, and in the 
following, we just give an outline of one way to tackle this problem. 

As in Section 3, the idea is to compute the electrical circuit model with each resistance 
given by Ri = Ei/Ai, where ~ is a length and A a cross-section area. We have argued 
that in our model of a porous rock the area Ag is equal to a fraction of porespace 
Pi ~ (7', occupied by a pore with characteristic size r and scaling index ~. 

To construct the circuit, we propose to use the two-dimensional photo of the thin 
slice of porous rock (Figure 1), and replace pores by resistors in the following way: 
the largest pores are replaced by resistors with magnitude R1. i ~  ~}l) a-~;, where 
{r is the set of first-generation length scales. The procedure is continued, 
replacing the pores in the next generation of sizes by resistances R2. e~ f}2)~-,i, 
where {r denotes the second generation of pore size scales. The connections are 
to be made according to the photo of Figure 1, and the missing small pores are filled 
in by adding the highest resistances in a way that reflects their multifractal scaling. 
In fact, the entire network, by construction, should agree with the model f(~) curve. 
To the best of our knowledge, no one has previously attempted to model the 
conductivity network of the rock in this particular way. Once the network has been 
constructed, standard methods of analysis should be applicable for extracting the 
conductivity and permeability [12]. In the end, the extent within which the permeabil- 
ity can be predicted in two and especially three dimensions will be limited by 
computer time. Presently, we try to investigate [ 13] whether such a realistic network 
can be replaced by an approximate but simpler one (e.g., a model based on Effective 
Medium Theory) that permits the extraction of some useful analytic results. 

5. Concluding Remarks 

In this work, we have tried to emphasize the usefulness of the recent developments 
in condensed matter physics and nonlinear dynamics in tackling a complex problem 
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such as fluid flow through a sedimentary rock. We have not presented a final 
solution to the problem, but have indicated the path that we propose to take. 

The idea is based upon exploiting the scaling property of rock's pore geometry 
with the help of fractal statistics. As the first step, we have built a simple model with 
only one scaling exponent. Even at this level of simplicity, the model reproduces the 
well known empirical Archie and Carman-Kozeny equations known to reservoir 
engineers for many years. 

We have used the idea of multifractal scaling to characterize samples of rock with 
different textures by their multifractal f(00 spectrum. We have introduced a two- 
scale Cantor-like model, which generates a similar porespace distribution and which 
provides analytic f(00 curves which fit to the measured results. We have proposed 
how this model can be used to extract permeabilities and conductivities of the given 
rock samples. 

Multifractal scaling is a tool for extracting a certain amount of order and 
correlation from apparently random systems. It would be of interest to test these 
ideas in extracting both order and space correlation from well-log data of perme- 
abilities, porosities and other petrophysical quantities of interest. This seems 
plausible in particular for the permeability data, which usually follow log-normal 
distributions. Such distributions have tendencies to have long tails which are 
characteristic of fractal statistics. These ideas are currently being tested. 
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