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Abstract. The cylindrical model is discussed and a new tube model is proposed to describe capillary 
imbibition kinetics in porous sedimentary rocks, The tube consists of a periodic succession of a single 
hollow spherical element of which the geometry is defined by the sphere radius and the sphere access 
radius. These two parameters are estimated experimentally for four rock types from their specific surface 
areas. Introducing those parameters in the model capillary imbibition kinetics, parameters are calculated 
and compared with the experimental ones. A direct relation between imbibition kinetics and specific 
surface area has been pointed out. 

Key words. Capillary imbibition kinetics, tube model, spherical pore shape, numerical simulation, 
sedimentary rocks, specific surface area, surface roughness. 

I. Introduction 

By studying, experimental capillary imbibition of water in porous sedimentary rocks, 
two quantitative kinetic parameters can be measured (the capillary rise and the 
amount of absorbed water rates). As their values are representative of the porous 
network geometry, it is interesting to quantify this relation and to predict these 
parameters from experimental pore structures and dimensions. 

On the basis of the Washburn law (1921), the capillary imbibition phenomenon 
has been simulated by many cylindrical or conical models (Szekely et al., 1971; 
Dullien 1979; Levine et al., 1980). Although these models describe the capillary 
behaviour of natural rocks, the dimensions (pore radii) of the simulated porous 
networks are incompatible with the real geometry. 

Despite the complex structure of natural porous media, like sedimentary rocks, a 
simple geometric model according to experimental dimension data (micro- 
scopical observation, mercury porosimetry, BET surface area) is elaborated. A 
numerical simulation of capillary imbibition in the proposed model is tested for 
various clayless sedimentary rocks: Laspra dolomitic limestone, Hontoria lime- 
stone, Lourdines limestone and Fontainebleau sandstone. The experimental values 
of the free porosity (Nz), the average pore radius (R) and the average pore access 
radius (rl) for each rock, make it possible to calculate the two capillary kinetic 
parameters. 
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2. Experiment 

The capillary imbibition kinetic measurement is usually performed with cylindrical 
core samples of 3.5 or 4cm diameter and about 7 cm high (Dullien et al., 1977; 
Bousquie, 1979; Mertz, 1989). They are previously dried in an oven at 60~ until 
constant weight is reached. Then they are cooled at 20~ in a closed container in 
presence of silica gel maintaining a dry atmosphere. Afterwards they are placed 
vertically on a thick wet filter paper providing a regular and continuous water 
supply. This set is tightly enclosed in a methacrylate container in order to maintain 
a vapour saturated atmosphere and to avoid the superposition of any evaporation 
process during the experiment. At regular increasing time intervals, the weight of the 
rock samples and the height of the wetted fringe observable on the surface of each 
one, are measured. The results are plotted as an amount of absorbed water increase 
AWlS (cm 3 of water/cm 2 of column area) and/or height of capillary rise Al (cm) 
versus the square root of time x/~ (Figure 1). A typical feature of capillary imbibition 
in rocks is the linear evolution with the square root of time of these two parameters, 
at least in the first stage of the experiment. Capillary rise rate and weight increase 
are linear until water reaches the top of the sample. Nevertheless, after this first stage, 
which is unique for height of capillary rise, weight increase proceeds but drastically 
slows down. The first stage corresponds to the saturation of the free accessible 
porous network (N~) by a genuine capillary imbibition mechanism which fills 70 to 
85% of the total pore space whereas the second one coincides with a diffusion 
process where trapped air bubbles dissolve into water (Mertz, 1989). As the purpose 
of this work is the exclusive study of capillary kinetics, the second stage of weight 
increase will not be examined. In order to quantify capillary imbibition kinetics, the 
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Fig. 1. Experimental capillary imbibition kinetic height of capillary rise (AI) and amount of absorbed 
water (AWLS) versus square root of time (~/t). 
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slopes of those first stage straight lines are measured. Two characteristic kinetic 
parameters are defined: 

A = AWl(SxSt ) and B = A/t(x/t ). 

Attention must be paid to the fact that this perfect linear evolution of weight 
increase and height of capillary rise, with the square root of time, occurs only in 
homogeneous and well sorted rocks, which lack sharp stratification planes and clay 
minerals. In this type of rock, weight increase and height of capillary rise progress 
simultaneously, and the A/B rate is equal or similar to the free porosity value 
(N1): N~ ,~ A/B. As this criterion is generally verified, especially in homogeneous 
rocks, the following model of capillary imbibition simulation, considers height of 
capillary rise kinetic (B) only. 

3. The Cylindrical Model 

The cylindrical element is the simplest pore shape for the mathematical formulation 
of capillary imbibition phenomenon in porous bodies. Fluid flow (Q) through a 
cylindrical tube is directly expressed as a function of fluid viscosity (~/--- 1.019 • 
10-3 PI for water), pressure gradient (AP) and tube dimensions (radius r and length 
l) in the Hagen-Poiseuille formula: 

~zr 2 d l  ~r4AP 
Q = d--~ = -  8t/l (1) 

For a quasi-steady-state capillary imbibition into a cylindrical tube while neglect- 
ing the gravity action, the pressure gradient is given "by the Laplace equation: 

27 cos 0 
AP = P~ - - - ,  (2) 

Y 

where 7 is surface tension of water (0.072 N m-  1), 0 is the contact angle (in general 
to be considered 0) and r the capillary radius. 

Combining both formulae, Washburn (1921) related capillary imbibition kinetic 
with fluid properties and capillary dimensions: 

dl r7 
dt 4tll 

When l o = 0 f o r  t -  
f6rmulated as simple square root functions: 

t=B ,  =AW7 
where 

B = ~  and A = w c r  2 ~ .  

~ t + tg. (3) 

0, rising damp migration and weight increase kinetics can be 

(4) 
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The pattern of this expression is similar to experimental observation of the 
capillary imbibition kinetics (Figure 1). However using this formula to calculate the 
average radius of a rock sample, knowing the experimental values of A and B, does 
not give realistic results (Mertz, 1989). The radii calculated with this formula are 
considerably smaller than realistic for sedimentary rocks: a 103 to 104 factor relates 
the measured pore radii by microscopical observation and the calculated ones 
(Figure 2). Even by introducing the gravity influence, acting as an adverse force to 
capillary rise of water, the results would not vary enough to reach more realistic 
values, because the gravity action is almost negligible in comparison with so high 
capillary pressures (due to the excessively small size of calculated capillaries). 
Although this model describes the shape of experimental capillary imbibition curves, 
it is not satisfactory because of its lack of agreement with real pore sizes and 
structures. 

4. The Spherical Model 

By working with geometrical networks built with cylindrical or conical elements 
periodically repeated, or by dealing with sinusoidal capillary profiles, Kusakov and 
Nekrasov (1966), Van Brakel (1975), Dultien et al. (1977), Levine et aL (1980), and 
Marmur (1989), show the evidence of capillary pressure modifications, generated by 
the meniscus radius variations during the imbibition process. On the basis of this 
kind of work and in order to get coherent pore dimensions agreeing with experimen- 
tal pore size and rate of capillary rise data of porous sedimentary rocks, we used a 
model of tube, built with a, periodically repeated sphere shape. Despite its poor 
agreement with genuine pore structure, the spherical pore shape was chosen for its 
simple geometry and therefore its easy mathematical formulation. 

Fig. 2. 
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z 

Fig. 3. Meniscus radius variation in sphere. 

In the case of a vertical capillary rise of water into a sphere, the meniscus suffers 
a continuous variation of its radius along the z axis (Figure 3). The meniscus radius 
r can be expressed as a function of height z in the sphere as: 

r(z) = (2Rz - z2) l/z, 

where R is the sphere radius. 
Consequently the capillary pressure also varies during the imbibition and becomes 

a z-function: 

2V 2V 
A P = - -  

r(z) = (2Rz - zZ) 1/~" 

Gravity has to be considered as an adverse force limiting the force giving rise to 
water. The total pressure gradient is the difference between capillary pressure and 
the water column's weight, and can be expressed as: 

AP 27 - p g z ,  (5) 
r(z) 

where p is water density (1 g c m -  3), g the gravitational constant (9.8065 m s-2), and 
z the water height upon the free water surface. On the other hand, as the flow 
through a hollow system only depends on the smallest section of the fluid path, it 
will depend on access orifice radius rl. Despite the Hagen-Poiseuille equation being 
defined for cylindrical tubes, it can be applied considering a quasi steady-state 
imbibition into a spherical element, which can be seen as stack of infinite thin 
cylindrical sections. This equation is then formulated with this new capillary pressure 
expression: 

q = ~ z  ~ -  Pgz , (6) 
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(7) 

Equation (7) describes the instantaneous velocity of capillary imbibition in a 
spherical element as a function of z. When imbibition velocity dz/dt is plotted versus 
height z (Figure 4a), for a constant sphere radius R (100 ~tm in this case), various 
conclusions can be drawn: 

- dz/dt increases at both ends of the sphere, as r(z) decreases, but this equation is 
indeterminate (dz/dt ~ ~ )  when r(z) tends to zero; 

- the access orifice radius r 1 performs a decisive role in imbibition velocity (dz/dt); 
- the lowest velocity occurs for higher z value than sphere equator (z = R); 
- average imbibition velocity decreases regularly for the following spherical 

elements (Figure 4b). 

The indetermination of this equation can be resolved, considering the limits where 
both access orifices cut the spherical element, reducing the liquid path from 2R to 
52 - ~1 (Figure 5) where 

51 R - (R 2 - ~2~1/2 = = -1J , ~2 R + ( R  2 - r 2 )  1/2. 

So imbibition velocity dz/dt has a finite maximal value when the meniscus reaches 
the sphere limits. Further, in order to get an expression of the cumulative imbibition 
time as a function of the total height, Equation (7) becomes 

dt = 8qzr(z) 3 dz 
r~(27 - r(z)pgz)" (8) 

To avoid the complicated analytical integration of this equation, it has been solved 
numerically with computer iterations, using a small dz incremental value: dz = 
(52 - el)/1000. Hence for each dz increment, z, dt and t are recalculated as 

~2 

z = ~ d z  and t = ~ d t ( z ) .  

The numerical integration provides the capillary imbibition kinetics into a single 
spherical element (Figure 6a). As may be expected the result does not agree with a 
square root function. Nevertheless, considering a tube with a length of several centi- 
metres (L) built with a large number (n) of spherical elements (L = ET= 1(52 -- 51)), 
Equation (8) becomes 

dt = 8r/(Z(52 - -  81)j- 1 " q -  Zj)F(Zj) 3 dz (9) 
r4(27 - r(zi)pg(Z(52 - 51)j-1 + z j) 
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Fig. 4. 
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Imbibit ion velocity (dz/dt) versus height (z) for spherical element of t00 ~un radius. (a) with 

and the filling kinetics of the entire tube is a smooth curve, fitting as expected, with 
a square root function (Figure 6b). 

In order to simplify the calculation for the filling kinetic over the entire tube, it 
could be conceivable to calculate it with a cylindrical tube which effective radius (r~.) 
can be determined from the global imbibition kinetic of the single spherical element. 
Nevertheless, the result of this procedure does not accord with that of the proposed 
tube model: for example in a spherical unit with R = 10 gm and rl = 1 pro, r~ff is 
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Fig. 5. 'Spherical' element of the model. 

1.6 x 10- 3 ~tm, and when calculated over 5 cm, B is 1.85 cm/w/h for the proposed 
tube model, whereas for the cylinder it is 0.87 cm/~/h. So the model of sphere stack 
tube requires calculation with Equation (9) and cannot be assimilated to cylindrical 
tube. 

This model provides a kinetic behaviour agreeing with experimental features, so 
it can be compared with the experimental capillary imbibition kinetics. Two 
experimental geometrical data are necessary to feed this model: the sphere radius R 
and the access pore radius rl. 

5. Determination of Model Parameters 

Considering only two parameters to describe the pore size and geometry of natural 
rock is an extreme simplification of its real network. It implies a single pore shape 
and uniform pore size distribution. However despite this simplification, in many 
cases one can suppose that only one pore size and geometry regulates the capillary 
imbibition phenomenon (Dullien et al., 1977). To this end, we tried to determine a 
single pore radius (R) and single pore access radius (rl) for natural rocks. Various 
methods have been tested for the quantification of these two parameters. Mercury 
intrusion porosimetry for example, provides a pore size distribution in porous media. 
As this method is based on the introduction of a nonwetting fluid into the porous 
network, the necks and pore access radii will determine the mercury penetration 
(Dullien, 1979; Chatzis and Dullien, 1981; Good and Mikhail, 1981). When the pore 
size distribution is unimodal, a threshold corresponding to the most important pore 
access radius can be defined graphically (Figure 7) and can be assigned to the rl 
value of the model. On the other hand, in order to determine the pore radius (R), 
microscopical observation of rock sample thin sections can be used. The thin 
sections are previously saturated with coloured epoxy resins or a metallic alloy, in 
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order to optimize the porous network observation (Dullien, 1981; Zinszner and 
Meynot, 1982) as shown in Figure 8. Then the pore dimensions and the pore size 
distribution curve can be measured either directly or indirectly by numerical 
analysis of the images. Considering the most frequently occurring pore size as 
representative for the mean pore radius involved in capillary imbibition, R is 
determined. This method can easily be used for coarse and clayless rocks, but for 
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Fig. 7. Average pore access radius r 1 determination on a porosimetry curve. 

very fine porous systems (e.g. micritic limestones), microscopical discrimination 
cannot be used. 

In order to estimate this structural parameter for very fine rocks, an alternative 
method using BET surface area data has been developed. Assuming that sedimentary 
rocks structures can  be described by a solid sphere pack model, a simple relation 
between particle size and surface area St is pointed out for spheres of uniform radius 

Rs: 

St = 4nR~ 

and surface volume rate: 

St 4nR~ 
V 4/3nR 3" 

Hence for specific surface area S, calculated with BET equation from nitrogen 
adsorption isotherms (Lowel and Shields, 1984), this relation becomes: 

3 
= - -  ( l O )  R~ pS'  

where p is the true rock density. Using the particle size calculated with the specific 
surface area measurement, the pore radius R and pore access radius r 1 can be 
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Fig. 8. Micrograph of Fontainebleau sandstone thin section, p: pore, q: quartz (reference mark: 100 gm). 

TET~AIIEDRAL PATTERN CUBIC PATTERN OC~AHEDRAL PA'n'~RN 

Fig. 9. Three sphere packing patterns. 

Table I. Pore radii for various packing patterns 

Packing pattern R rl 

Cubic R ~ / ~  R~(~/-8 -- 2)/2 

Tetrahedral Rsx/(2.,/J - '~)/2~ R,(2x/5 - 3)/3 

Octahedral R~(x/8 - 2)/2 R,(2x/3 -- 3)/3 
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deduced for various packing models. On the basis of cubic, tetrahedral and 
octahedral packing patterns (Figure 9), R and rl have been determined in relation to 
the particle radius R~ (Table I). Next, a direct relation between specific surface area 
and capillary kinetics is derived for each packing pattern, as shown in Figure 10. As 
radii, and especially pore access radius rl, decrease with increasing specific surface 
area S, the capillary rise kinetics (B) decreases with increasing specific surface area 
(S). The various packing models lead to large differences for capillary imbibition 
kinetics, and particularly for low specific surface areas. 

6 .  P r a c t i c a l  A p p l i c a t i o n  a n d  D i s c u s s i o n  

In order to test this model with natural rocks, it was applied to some Spanish and 
French sedimentary rocks: 

- Laspra micritic magnesian limestone, 
- Hontria bioclastic limestone, 
- Lourdines micritic limestone, 
- Fontainebleau sandstone. 

Some of their petrographical and physical characteristics are shown in Table II. 
These four rock types present a wide range of texture, mineralogy and capillary 
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Table II. Petrographical and physical characteristics of the four rock types. N~: free porosity; B: 
experimental average capillary rise kinetics + standard deviation; S: specific surface area 

Rock type , Mineralogy Texture Nt B S 
(%) cm/x/h mZ/g 

Laspra dolomite 90% very fine 28 2.39 4~6 
limestone quartz 10% +20% 
Hontoria calcite 99% coarse 18 7.1 0.8 
limestone quartz 1% _ 12% 
Lourdines calcite >99% fine 22.8 5.5 1,65 
limestone _+ 7 % 
Fontainebleau quartz >99% coarse 4.8 10.3 0.4 
sandstone + 15% 

Table III. Pore radii R, pore access radii rl and calculated imbibition kinetic 
parameter B for the four rock types and the three packing patterns. C: cubic, T: 
tetrahedral, O: oetahedral 

Rock type R r 1 Bealr 
gm gm cm/v/h 

Laspra C 0.17 0.1 8,08 
T 0.05 0,04 6,40 
O 0.1 0.04 2,76 

Hontoria C 1.02 0.57 19.65 
T 0.31 0.21 t5.60 
O 0.57 0.21 6.76 

Lourdines C 0.49 0.28 t3.73 
T 0.15 0.10 10.91 
O 0.28 0.10 4.70 

Fontainebleau C 2.07 1.17 28.13 
T 0.64 0.44 22.33 
O 1.17 0.44 9.65 

imbibit ion kinetics parameters,  and  makes them suitable to check the model. Using 

Equa t ion  (10) and the relations in Table I, the pore and pore  access radii were 

calculated W a N e  III). Then, on the basis of  Equa t ion  (9), imbibit ion kinetics 

parameters  were calculated for all the rock types and for the three packing 

geometries. The results for capillary rise kinetics (B) were plotted against experi- 

mental  B kinetics (Figure 11). Fo r  each rock type, tetrahedral and cubic packing 

patterns provide kinetic values two and three times higher than experimental data. 

So these two packing geometries appear  to be inappropriate.  The B values calculated 

from the octahedral  packing geometry,  agree very well with the experimental results. 

The max imum deviation of  calculated B ~values from experimental ones, is about  

15%. The experimental er ror  on B rangeff f rom 7 to 20%. 

Despite the fact that  this model  provides good  results, two points have to be 

interpreted. First, if octahedral  packing geometry  is valid, then there should be a 
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constant ratio between pore radius R and pore access radius rl  (R/r1 ~ 2.677), 
and the porosity should be the constant (~27.8%) independent of rock types. 
Obviously observed porosities are not similar, at least at a macroscopical scale. 
On the other hand, the specific surface area for Fontainebleau sandstone for 
example (0.8 m2/g) does not agree with the sizes of its grains (200-400 txm) shown 
in Figure 8. 

The only way to explain these features is by taking into account surface roughness. 
Dullien et al. (1989) showed that it can be considered as a microscopical porous 
network developed on the surface of the macroscopical grains, strongly modifying 
the capillary imbibition. Hydrodynamical and specific surface area arguments tend 
to confirm its presence and it may be assumed that its porosity and dimensions 
conform with those of the model. 

The specific surface area seems to be a good parameter to determine pore 
dimensions for capillary imbibition. Nevertheless, this condition is not sufficient, it is 
also necessary to chose an appropriate pore shape. White (1982) for example 
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Table IV. Experimental and calculated B values. Bw: after White (1982) 
model. B: after proposed model 

Rock type B~,p Bw B 

Laspra 2,39 9,18 2.76 
Hontoria 7 . 1  17.15 6.76 
Lourdines 5.5 14.87 4.7 
Fontainebleau 10.3 17.045 9.65 

139 

I00 ~ ............. [i i , 

0 :p=l 

~ : p =  1 5  

9 " ~  [ �9 : p = 2 5  
~ .............. 

m lO 

1 

I ..... ~ I I I . . . . . . . .  I 

0 1  1 10 100 

s 
Fig. 12. B versus specific surface area S for different true density values. Solid line: empirical equation 
B = 9.882/S ~ for true density p = 1, 

suggested a formula for cylindrical tubes involving specific surface area (S) and 
porosity N to determine an effective radius role. 

A/V = 2/reff ~ 2N 
A/V (1 - N)S/N; r"ef = (1 - N)S" 

By introducing this radius value in Washburn's equation for cylindrical tube, B has 
been calculated for the four rock types. The results shown in Table IV are less 
satisfactory than those of the first model. 

The direct implication of the proposed model is that a single specific surface area 
measurement for these sedimentary rocks, enables the determination of their behaviour 
for capillary imbibition kinetics. So an empirical function could be determined between 
specific surface area (S) and capillary rise kinetics (B) for true density = 1 (g cm-3): 

9.882 
O = S o.49----~" (l  1) 
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As shown in Figure 12, B = f(S) relations are proportional for each density value. 
With this representation, B=f(S)  fits as log(B)=alog(S)+b,  where a keeps 
constant and b density dependant. Hence calculating Bo (B for p = 1) with the 
empirical Equation (10), B can be settled for any density value as represented in 
Figure 13. Moreover, as this relation is direct between S and B, it could also be 
applied conversely, because by knowing the capillary imbibition kinetics parameters 
and the true rock density, it should be possible to estimate the specific surface areas 
for such rock types, using this model. 

7. Conclusion 

A tube model built with a periodical succession of hollow spheres has been 
elaborated, in order to simulate capillary imbibition kinetics in porous sedimentary 
rocks. The proposed pore shape allows simple mathematical iterative computer 
processing using experimental pore size data. Two parameters are necessary to feed 
this program: average pore radius R and average pore access radius rl. The best 
method to obtain these parameters, is considering spherical uniform particles, whose 
radius can be calculated from specific surface area data, and further the pores radii 
are determined by applying sphere packing models. Octahedral packing geometry 
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gives good agreement with the experimental B values for four different sedimentary 
rock types. For Fontainebleau sandstone it has been pointed out that specific surface 
area and capillary imbibition appears to be determined by smYace roughness. 

As only octahedral packing provides suitable results for all rock types, a direct 
relation between specific surface area and capillary imbibition kinetics relation can 
be derived. So a single specific surface area measurement allows prediction of 
capillary imbibition kinetics, and conversely with experimental capillary, specific 
surface area can be determined. 
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