
The method described above makes it possible to efficiently evaluate the use of a given 
fiber composite at the design stage. This is done by performing calculations for different 
combinations of fibers with known characteristics. Here, the criterion of efficiency of the 
composite is the average density of the material obtained with the calculated optimum values 
of the controllable process parameters. The machine time required to optimize one variant 
on a BESM-6 computer is 18-20 sec. 

LITERATURE CITED 

i. S.M. Katz, High-Temperature Thermal-Insulating Materials [Russian translation], Moscow 
(1981). 

2. E.N. Bershev, A. I. Kurilenko, V. V. Kuritsyna, and G. P. Smirnov, Production of Non- 
fabric Materials [in Russian], Moscow (1982). 

3. O.A. Forges and S. G. Mason, "Hydrodynamic behavior of fibers in paper production," 
in: Basic Principles of Fibers Used in Paper Production, Moscow (1962), pp. 458-488. 

4. D.J. Green and F. F. Lange, "Micromechanical model for fibrous ceramic bodies," J. Am. 
Ceram. Soc., 65, No. 3, 138-141 (1982). 

5. A.I. Toropov and R. I. Nepershin, "Evaluating the stiffness and tensile strength of high- 
porosity fibrous materials," Mashinovedenie, No. 2, 51-56 (1987). 

6. G.N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composites [in 
Russian], Leningrad (1971). 

7. V.F. Kut'inov, "Design of adhesive compounds," in: Design, Development, and Testing of 
Structures Made of Composites [in Russian], Vol. 7, Moscow (1979), pp. 14-29. 

8. E. Ya. Litovskii, S. L. Bondarenko, Yu. A. Polonskii, and N. I. Ganichev, "Effect of 
fiber diameter on the effective thermal conductivity of refractory insulation," Teplofiz, 
Vys. Temp., 17, No. 5, 997-1000 (1979). 

9. R.I. Nepershin and V. V. Klimenov, "Computer optimization of a composite universal shaft 
with respect to cost and weight," Mekh. Kompozitn. Mater., No. 4, 690-695 (1986). 

MODEL OF COMPOSITE SHALLOW SHELLS AND PLATES FOR SOLVING PROBLEMS 

OF STATICS, DYNAMICS, A/~ CONTACT INTERACTION 

V. K. Prisyazhnyuk and V. G. Piskunov UDC 539.3.624.074:624.073 

Several studies [1-4, etc.] have been devoted to the design of anisotropic laminated 
shells and plates in accordance with the three-dimensional theory of elasticity for certain 
special cases permitting separation of variables. Effective use has been made of two-dimen- 
sional models of varying degrees of refinement for plates and shells in the case of more com- 
plicated boundary conditions [4-12]. These models make it possible to evaluate the stress-- 
strain state of composite structures both at the macroscopic level -- when the properties of 
the composite are averaged and a macroscopic homogeneous medium is examined -- and at the mi- 
croscopic level, i.e., directly for each phase of a heterogeneous system. Here, the possi- 
bilities for the study of composites at the microlevel are expanded by the use of variants of 
theories in which the order and number of reso!vent equations are independent of the number 
of layers and the ratio of the physico-geometric parameters [6-11]. 

The investigation [9] constructed a theory of this type for laminated composite shallow 
shells and plates of orthotropic materials in which the principal directions of orthotropy co- 
incided with the coordinate axes of the shell. Here, we generalize this theory to the case 
of laminated shallow shells made of anisotropic layers. The layers have one plane of elastic 
symmetry equidistant from the external surfaces and the surfaces of contact (interfaces) of 
the layers. As in [9], we will consider transverse shear and compression, tangential and 
normal forces of inertia, and geometric nonlinearity. In contrast to the well-known approach- 
es taken in [6, 7], where these hypotheses were adopted a priori (independently of the physi- 
cal features of the problem being examined), our approach considers these features when the 
assumptions are made. This is an important distinction in the design of composite structures 
characterized by pronounced anisotropy. 
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i. To reduce the three-dimensional problem to a two-dimensional problem, we introduce 
the following kinematic hypotheses: 

ui<~(X'~J =u~--~'~z--X~'~+h(i)--X~'~gt~; (I.i) 

u~l~)(X,~)=w+X~ ~ li=]=1,2; p=1,2,8,9; 1=3 . . .7 ;  s = l . . . 7 ) ,  

in contrast to [9], where hypotheses are adopted for transverse shear and compression, as well 
as (independently) for transverse normal stresses. Here and below, it is assumed that summa- 
tion is performed over the indices i, j, p, s, and t; no summation is performed over k, r, or 
m; X = {x~, xa, z}, x = {x~, x~} is an orthogonal coordinate system; r is time. Differentia- 
tion is denoted by a corm~a at the subscript level. 

The components of the displacement vector (i.i) include: a systemof independent unknown 
functions of the coordinate surface and time u., w, X- (i = I, 2; s = i, 2, 3); the prescribed 
functions Xt (t = 4...9) determined bv the complete ~ector of the external dynamic load on 
the upper (z + + " = ao) q = qs (x, ~) and lower (z = a r) q- = qs (x, T) (s = I, 2, 3) surfaces of 
the shell in the form 

Z41x,~) =qi.i-: Xs(x,~) =qi.i-; Z6(x,~) =qa+; 
Z7 (x, T)= q3-: Xs.i(x,~)=qi+; Zg,i(x,~)=qi-; (1.2) 

a system of prescribed functions of the normal z -- the laws governing the change in the dis- 
placement vector over the thickness of the packet of layers. They were obtained in a solution 
of the problem in a first approximation (on the basis of the Kirchhoff--Love hypotheses) and 
satisfy the layer contact conditions, i.e., at z = a lu (k-l) = u (k); Os3(k-~) = Os3(k) (s = k- S = 
l, 2, 3). They also satisfy the conditions on the external surfaces of the shell, i.e., at 
z = ao os s(~) =--qo+; at z = a n o.s (n) = q_-. Finally, they satisfy the conditions at the le- 
vel of the plane o[ reference, i.[., at z ~ 0 (k = m) u~(m)(x, 0, ~) = ui(x , ~); u~(m)(x, 0, 
T) = w(x, ~). Here, no distinctions are made in describing layers of different thicknesses 
and stiffnesses. Also, the model considers both constant physicomer characteristics 
and those which vary over the thickness of the layer. The model is thus universal in regard 
to the structure of the shell. 

Since the form of the distribution functions over the packet thickness is rather cumber- 
some, as an example we will present only the relations for ~:k(*)(z): 

~llh( l )  (Z) = [ J ( ~ l h - - ~ l l h ( l ) ) d z ;  ~lh (Z) = ~lhds  
0 0 

fl2h (Z) =Fh2/,-- Dkd:hs~.Kls-'; f*lth (Z) = i BlrhZdZ; 

/:'12p~(z)= B16~.zdz: ['~'16~.,(z)= Blshdz; Dll= Bllhzdz; 

Dis= fBl6,,zdz; K,s= ~ B,6hdz; 
a: ao 

Blri~= (a22ha661~--a~si:~ B12~ = (alsl~ao.s~,--a12ha6sl~)/A; 
Bts~= (a12ha26h--ats~a:2r A=allhBlll~+al~hB121~+alahB16~, 

(l 3) 

where a::k...a6~ k are elastic constants for the anisotropic body [6]. 

It follows from (1.3) that the law governing the change in the components of the dis- 
placement vector over the thickness of the packet is independent of the choice of reference 
plane. Here, the tangential displacements are approximated over the shell thickness by a 
fifth-degree polynomial, while the normal displacements are approximated by a fourth-degree 
polynomial (cubic and square parabolas were used in [4, 7], respectively), 
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The physical interpretation of the terms in (i.i) is determined by the functions of the 
normal z. For example, the terms which include the functions ~pk(Z) (p = I, 2, 4...7) account 
for transverse static compression, while the terms including ~3k(Z) account for dynamic com- 
pression. In fact, for layers which are not compressed along the normal (E3k = ~) we have 
~pk(Z) = 0 (p = 1...7); then 

Ui(k)(X,T) =Ui--m, iZ--Xp, i~pik(J)  ; u3(k)(X,T) =W (1.4) 
( i = / =  ],2; p=  I, 2, 8,9). 

The above kinematic model considers only transverse shear and is analogous to the model con- 
structed in [i0] for problems of the statics of homogeneous plates. At Gi3 k =co, we have 
~pik(J)(z) = 0 and we arrive at a special case -- the displacements of the classical theory 
[4, 6]: ui(k)(x , r) = u i -- w,iz; u3(k)(x, T) = w. Thus, the functions X~(X, z) and X2(X, ~) 
simultaneously consider both shear and transverse compression~ while X3(X, T) considers dynam- 
ic compression and, as in [8, 9], it accounts for the change in the length of the normal from 
inertial forces in the transverse direction. The remaining terms, including the functions 
Xt(X, T) (t = 4...9), are determined by the external load (1.2). Thus, they account for shear 
and compression resulting directly from this load. This fact is important in the solution of 
contact problems [12]. 

As with the models described in [8-10], one feature of the proposed model is that Eqs. 
(i.i) and (1.4) contain similar terms accounting for the states of pure bending, shear, and 
compression. These terms are absent from the models described in [6, 7]. Their inclusion 
here makes it possible to efficiently realize the model through approximate methods, by re- 
sorting to an independent but analogous approximation of the displacement-vector components 
for the different states. The inclusion of the terms in the present model also makes it pos- 
sible to generalize the methods and results obtained from the solution of the given problems 
in the classical theory to the nonclassical theory being used here. In particular, proceed- 
ing on this basis, we can efficiently realize the present model by the finite elements meth- 
od. 

To obtain the components of the strain tensor, we use geometric relations in which we 
consider geometric nonlinearity in the direction of the normal z [6]: 

2eij(h)= ui'Jm)+u.i' i(]~+2ki/t31h)+ U3!(kJtZ3'J(h); (1.5) 
2833(k)= 2u3.s(k)+ [l/3,3(~)]2; 2e~3~h}= ui.3(k)+u3.fl{)+ u3j(k)zt3.3 (~). 

Assumptions made in regard to the smallness of the strains allow us to write Ill] 

U3,i(k)tZ3,j (k)~ W,im,.i; [U3.3(k)]2~O; U3,~'A)U3,3(k]~O. 

Considering this and ignoring terms on the order of kijz with the substitution of (i.i) into 
(1.5), we obtain 

eitr215 ; e22(zo ~ ell(~); 
2e12 (h) =2gl2+2Zl2Z+Zll(~o)l~;Oll~(2)+Zl2 (p) (1~pl/r -'~-'~p2k(2) ) + 

+ XZ2(p),l.~p2h (I) + 2Zl2(t)l~t& : 

e33(k)=Xg~gh; 2e i3(h)  ---- Zp.ic~pz~(.;) ; s 

Zi ;= - -~2 i j ;  ~ i ; ( s ) = _ X . , t  
( i , ]=1,2;  p=1 ,2 ,8 ,9 :  t = 3 . . . 7 ;  g = 1 . . : 7 :  s = l . . . 9 ) .  

(1.6) 

Using Hooke's law for an anisotropic body [4, 6], as which we regard the layer k, and using 
(1.6), we find the components of the stress tensor 

si/n) =Aij~tlh)e/h) (i,/', s, [ : 1.2, 3). ( l .  7) 

Thus, we have obtained all of the components of the stress and strain tensors forming 
the model of an anisotropic piecewise-nonuniform shallow shell having an arbitrary structure 
over the thickness. The model differs from the well-kno%m t~ode!s in [4-12] in the complete- 
ness of the allowance for transverse shear and compression and geometric nonlinearity and the 
completeness of the connection with the elastic constants of the anisotropic material. As 
in [8, 9], by its physical nature the present model is a dynamic model, accounting for the 
effect of transverse compression from inertial forces. 
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The transition to special cases is made by adopting assumptions regarding the physico- 
mechanical properties of the layers. 

2. To obtain the equations of motion, we use the Hamilton-Ostrograd variational princi- 

T~ 

ple [5, 8]. In accordance with the latter, the action integral I = f ( T - U - F l ) d r  takes a 

steady value only for true motion, i.e., ~I = 0. Here, T is the kinetic energy of the sys- 
tem; U is the potential energy associated with deformation; ~ is the potential of the extern- 
al forces. 

Use of the variational principle "...naturally solves the problem of generalized intern- 
al forces corresponding to chosen hypotheses and the problem of consistent boundary conditions" 
[51. 

If we take the variation of kinetic energy 

(t n 

$ ao  

( s = 1 , 2 , 3 ) ,  

the variation of strain potential energy 

5 U =  ] ~ ( ~ , ~ / ~ 6 e ~ ) d V  (s,  t =  l,  2, 3 ) ,  

and the variation of the external load and contour forces 

6Vi= ~f[q~+6u~(ao)+q~-6u,J'~ dS+ ~ ((~,l~)6uar +(~,lU'6u~ ''~,+o*'~,Su~ o . ( s = l ,  2,3; h , / = l , 2 )  
S F 

and we insert the expressions for the components of the displacement vector (i.i) and strain 
tensor (1.3), by then varying the unknown independent functions u.,z w, and Xs (i = i, 2; s = 
i, 2, 3) we obtain a system of resolvent equations of motion in forces 

N~,~- U i + q i = 0  ( i , ] =  1, 2); 
Mii,ii + (N ow, i )  ,~ - kij N ~ - U ii,q - -  U 3 -~ qa = 0; 

Mi~,~-~(p)+Q.:,~(v~-Q~(p) - U ~ . g ( ~ ) + q ~ , ) = 0  ( p = 1 . 2 ) ;  
l~ij,i](3)--Q3(a)--Uii,g(3)"}-q3(3)---O ( g = i )  

(2.1) 

and the corresponding boundary conditions 

(Nhh-N*m~)Suh=O; (Nh~-N~%t)Sut=O; (Alh/,--M~:hh)6W/,=0; 
(M~,a,h + 2Mral + Nhhw,h + Nhlw,t-- Ula, + qh -- R% ) 6w = 0; 
[Mah,h(Pl+2Mhl,/~)+Ql~(P)--Uh~/P)+ql?v)--R~:~]6X~,=O ( 0 = 1 , 2 ) ;  

[A4hh.h (31 + 2Mh'./3) -- UIj, (3} + @~(a) - R*], '~) ] 6X3 = 0; 
[Mh,~( ~,-M;II~)]67,, h=0  ( s=  1, 2, 3; h, l =  1,2). 

( 2 . 2 )  

In (2.1) and (2.2), we used the following notation for the external loads: 

q~=q~++qi-; q3=q3++q3-+aoqc.i++a~q.i-; 
q3 (p) = (~'pi (ao) q3+ + (~p,~ (a.~) q3-+ ~ i ,  (,i) (ao) qi,i + + ~'~i~ (~) (a,~) qi,~-; 

q3 (3) =q~3~ (ao)q~++ q~3~ (a.)q3-+L[31 (ao) qi.i++ ~3. (a . )  qi ~-; 
qh=qh+ao+qtca,~; ql?vJ =$011 (h) (ao)qh++'~pl~ ~t'~ (aT,)qh-- (p= I, 2); 

qt, (3) = r (ao) qh++ ~3. (a . )  q~,.-; 

while the notation for the contour forces is 
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R * h = Q * ~  + M* " R*~ ~) M*I~) ( s = 1 , 2 , 3 ) ,  ~ ,  = Q~y>+ ,.,~ 

where h is the normal and ~ is a tangent to the contour F. 

Equations (2.1) and the corresponding boundary conditions contain generalized forces and 
inertia forces familiar from the classical theory of shells based on the Kirchhoff--Love hy- 
potheses. They also contain higher-order generalized and inertial forces. As in [4, 5, 7- 
i0], this allows us to obtain complete agreement between the adopted kinemati= model (!.I) 
and the system of internal forces. This situation is in contrast to [6, ii, 12], where such 
forces were not introduced. We will present only some of them as an example: 

(1) (2) -r (1) (2) 
= = +Uo.2ii; 3 1 1 1 =  �9 6 1 1 |  ! 

~/f (l) S " ( , 2 )  f zv,q i l l  : (31l(l",-)~ii(1)dz~ 7;'11-211 = Ol2(Iql[~,lll~(2)dz; 
au (l~, 

a n (l~i 

Q3 (I)= S 033(/,)j:}lkd~; QIll '1)= ~ cI13(/:l~ii/,tl)dz; 

r r 

(I n G n 

a,1 (l~, 

The overall order of system of resolvent equations (2.1), written in displacements, is 
20 and is in full accord with the number of boundary conditions (2.2) -- ten for each side of 
the shell. It is possible to use boundary conditions (2.2) to model different types of con- 
straints on the contour of the shell. Here, by analogy with [8, 9], we distinguish two groups 
of conditions. The first group models external (contour) constraints imposed on the contour 
of a two-dimensional region of the coordinate surface of the shell (z = 0) and determines its 
fastening as a whole (simple support, fixed ends, etc.). The second group models constraints 
which prevent mutual displacement of points on the ends of the contour over its thickness 
(z # 0). These are called internal or end constraints. Combining the two groups of condi- 
tions (2.2), we are able to design anisotropic shells and plates with different structural 
features on the contour, 

3. Let us examine some examples illustrating the ability of the proposed model to reflect 
the three-dimensional character of the stress-strain state of multilaminate shells and plates. 

Example 1. The bending of a square plate, made of a multilaminate composite (three and 
nine layers), under a sinusoidal load. Results of the three-dimensional solution of this 
problem, with Navier-type boundary conditions, are given in [3], which also describes all of 
the physico-geometric parameters of the plate. In the theory being proposed here for nonuni- 
form shells and plates, the square plate is adequately modeled with hinged support about the 
contour and membranes which are flexible outside the end plane but rigid within this plane. 
The material of each layer is a unidirectionally reinforced composite with the parameters 
E L = 172,10 ~ MN/m2; E~ = 6.9,103 MN/m=; VLT = 9TT = 0.25; GLT = 3.25,103 MN/m2; GTT = 1.38.103 
MN/m = where L corresponds to the direction along the fibers and T to the direction across the 
fibers. 

The above problem was solved with the proposed model by means of double trigonometric 
series and was compared with the three-dimensional solution and the results of the classical 
theory of plates (CTP) reported in [3]. It is evident from Table 1 that the proposed model 
(II) makes it possible to obtain reliable results for plates of hybrid composites with an 
arbitrary number of layers and the ratio S =a/h 4. If S < 4, then the divergence from the 
three-dimensional solution (I) is greater than t--he error of the practical calculations (A > 
5%). This can be attributed to the use of two-dimensional (albeit refined) model in the cal- 
culations. Even for thin laminated anisotropic plates with S = 20, the CTP leads to displace- 
ment errors greater than the permissible value (g > 10%). However, the Kirchhoff hypothesis 
is valid at S ~ 5 for uniform isotropic plates. 

723 



TABLE 1. Comparison of Dimensionless Values of the Stresses 
( ~ ,  ~ ,  ~=) = ( ~ ,  ~,~, ~z,)/s =, (~ , ,  ~ = (~z,, 
~,~)/qoS and Normal Displacements ua(k) = ~"Quak~)/12qohS ", 

Q = 4"GLT + [E L + ET(I + 2VTT)]/(I -- VLT~TT ) Obtained on the 
Basis of the Three-Dimensional Solution (I), the Proposed 
Model (II), and the CTP 

7.. ~,: E . . . .  - ,  

S=a/h  a;2, a/2, __.0,5 O. O, 4 0.5 a,2. O, 0 a/2, a/2, 0 

I I II I II I I II i I I I  

2 1.388 1.859 
-(}.912 - 1.052 

4 0.720 0.729 
-0.6~-I -0.742 

10 __ 0.559 0.559 
--0,55(i 

20 -----0,543 ---0.543 
C TP + 0539 

2 1.260 t 360 
-0.866 -0.738 

4 0.684 0.725 
-0.649 --0.665 

10 ~0.551 • 

20 -+-0,541 • 
C TP +- 0.539 

Three - l aye r  plate 

-f),%63 -O.1172 0.297, 0 .29 .q  11.767 l(L3i [ 
0.0673 0.0711 

--0,0-t67 - 0.0474 0292 0.305 -t,4!11 4, ',(, l 
0.0-158 0.1)487 

- 0.0275 - 0.027G O. 19(; O. 199 1.709 1.708 
0.0276 0.027~ 

-~0,0230 ~0,0230 0,156 0,156 1,1~9 1,189 
~0,0213 o,13S 1 ,ooo 

Nine- layer  plate 

-0.0722 --0.0952 0.2! 1 0.216 12.288 11.46~ 
0.0534 0,049 I 

-0.0337 -0.0353 0.225 0.2~7 -I.079 4.0-19 
0.032,"; 0,0334 

--0.0233 -0.0234 0.226 0.229 1.512 1.51 I 
0.0235 

-~0.0218 -T-0.0218 0.221 0.222 1.129 1.129 
~0.02t3 0,2t9 1,000 

-~ -~ -~ -~ -~ 
-0,05 

"f =z lh  

0,5 

o,~ 

275 
~ o ,175  

~,os 10-a~,(0.CLI2.-2 ") 

-0, '  
u3 (a/2,a/2,ao) 

1,175 / ~ ,  

1j!L50 

1~125 / /  
/ 

1,100 25 50 100 200 EL/E ~ 
1 0  , , 

V" - ~ u  (a/2 cff2 ao) 

(~1~)(o/2 o/2 a , )  

Fig. i Fig. 2 

Fig. i. Laws of change in the tangential displacements over the thickness of a 
nine-layer plate with S = 4 and the structure [0~176176176176 
( ..... ) three-dimensional solution; ( ..... ) proposed solution; ( ..... --,--) solu- 
tion obtained from the CTP. 

Fig. 2. Change in the ratio of the maximum and minimum normal stresses ~zz and dis- 
placements u3 in relation to the orthotropy coefficient no = EL/E T for a three-layer 
plate with the structure [0~ ~ (--) and the nine-layer plate( ..... ), 

The distribution law for the tangential displacements over the thickness of the nine- 
layer plate at S = 4 (Fig. !) is both qualitatively and quantitatively close to the three- 
dimensional solution (solid line). The CTP (dot--dash line) does not reliably reflect the 
pattern of change in ~z(k)(0, a/2, ~) = ETuz(k)/qohS 3 over the thickness of the plate. 

We studied the effect of the orthotropy coefficient no = EL/E~ on the stress--strain 
state of a three-layer plate (solid line in Fig. 2) and a nine-laySr plate (dashed line). Both 
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I II III IV 
2,537 0 0,058 0 

n n n ~  O00B I/,7', 0,848 (C,2g g) 
~ ~ ' ~ : ~ ~ - * - 4 .  ~ 3 B  5 ..~----,~t- o ooz ~ o , G , , 3  ,/-,,o ~ ' ~qozo 

2,161 0 0 , ~ 7  C' 

Fig. 3. Diagrams of normal and transverse shear stresses in 
a three-layer composite plate with the structure [0~176176 

a 1,15 

I t .  1 2 3 

~~i/ / .  1 1 1  , 

1 2 3 

,1 0 1 2 3 -1 1 Z 3 

Fig. 4. Curves of the ratio of frequencies for a three-layer 
plate obtained in special cases of the proposed theory to fre- 
quencies found in the general case for ratios of the density 
of the bearing layer to the filler O~/P= = i00 (a) and i0 (b). 
i) without allowance for static compression from the Poisson ef- 
fect (V'k = 0); 2) without allowance for either static or dynam- 
ic compression (E'sk = =); 3) without allowance for transverse 
compression or tangential inertial forces (E'3k = ~, ui (k) = 0). 

plates were of moderate thickness, with S = 4. It was found that with an increase in the 
orthotropy coefficient, there was a significant difference (up to 35%) between the displace- 
ments and stresses on the loaded and free surfaces of the symmetrical plates (see Fig. 2). 
Use of the models in [6, 7, i0, Ii] and the CTP failed to show this effect, since the laws 
governing the change in the normal stresses and displacements over the thicknesses of these 
plates are symmetrical functions. 

Figure 3 shows diagrams of the normal stresses ~::(a!2, a/2, ~) s 7=2(a/2, ~/2, 7) 
(III) and transverse shear stresses o~(0, a/2, z) (II), o=s(u/2, 0, z) (IV) for a three-layer 
plate in which no = 200 and S = 4. As in [i], the transverse shear stresses were obtained by 
integrating the equilibrium equations 

z 

oia(*,l=-- jo,~/hldz+O~t, (i,]=1,2), 
a ~  

(k) 
in which ~.. is replaced by the refined expression (1.7). The latter considers both trans- 
verse shea}Jstrain and compressive strain. 

The change in the transverse shear stresses is both qualitatively and quantitatively dif- 
ferent from that found by the CTP (dashed line in Fig. 3) and agrees in form with the change 
found in [I, 3], 

Example 2. Let us investigate the physicogeometric parameters at which the frequencies 
of transverse vibrations are affected by higher-order factors not considered by the classical 
theory: transverse shear strain (G' k ~ ~), rotational inertia and curvature, tangential iner- 
tial forces (~.(k) # 0), and static (v'~ # 0) and dynamic (E'. # ~) compression To do this, 

I ~ K . " 

we examine the natural vibrations of a square three-layer plate with thmn external layers 
(h2/h ~ =18) and a high relative density (Pz/Pa = I00). The material of the layers is a trans- 
versely isotropic composite. The ratio of the half-wavelengths to the overall thickness of 
the plate I/h = 4. 
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The curves in Fig. 4 show the ratio A~ of the frequencies obtained in special cases of 
the proposed theory to the frequencies found in the general case. The latter coincide with 
the exact solution of the three-dimensional problem. In the case of a low-stiffness filler 
(G:/G= = 103), for the structure in question we need consider only transverse shear in order 
to obtain agreement with the exact solution. The effect of transverse shear decreases signi- 
ficantly with an increase in the shear modulus of the filler (G:/G= < 103), At the same time, 
the effect of the other higher-order factors "increases, and failure to allow for them in the 
solution of the vibration problem for laminated composite structures will lead to errors in 
the calculations. The effect of dynamic compression and rotational inertia increases in the 
case of external layers with a high relative density (see Fig. 4a). The parameter regions in 
which these factors should be considered are as follows: G~/G2 < lO; P~/P2 > I0; h2/h~ > i0; 

m 

Z/h < 4. 

The difference between the solution obtained without allowance for compression and tangen- 
tial inertial forces and the exact solution is greatest for plates with a stiff, low-density 
filler (the difference is more than 15%). 
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