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Abstract. The present paper is concerned with free convection in a horizontal porous layer with 
anisotropic thermal diffusivity. It is assumed that the diffusivity has rotational symmetry, with a symmetry 
axis making an arbitrary angle against the vertical. The critical Rayleigh number and wave number at 
marginal stability are calculated and the steady motion occurring at convection onset is examined. It is 
found that there are two different types of convection cells, depending on whether the longitudinal 
diffusivity is larger than the transverse diffusivity or not. In the former case, the convection cells are 
rectangular with vertical lateral walls. In the latter case, however, the lateral cell walls are tilted as well 
as curved. 
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1. I n t r o d u c t i o n  

Convective flows in porous  media are of interest in many  varied problems in 

geophysics and energy-related systems, like geothermal energy systems, oil reservoir 

modelling, open-pore  insulating systems, and diagenetic processes in sedimentary 
basins, to name but a few. 

Natura l  convect ion in anisotropic porous  media has at tracted the interest of 

several researchers over the last 15 years. In  the middle of the seventies, it was shown 

that  an iso t ropy in the mechanical  and thermal properties effects the marginal  

stability condit ion as well as the preferred width of the convection cells (Castinel and 

Combarnous ,  1974; Epherre 1975). On  the other  hand, Kvernvold  and Tyvand  (1979) 

showed that even a three-dimensional anisot ropy does not  lead to any new 

mathematical  difficulties or  essential new flow patterns at convent ion onset com- 

pared with isotropy. This is true only as long as one of  the principal axes of the 

anisotropic medium is vertical. This requirement has been maintained in almost  all 

former work in the field, see the review article by McKibbin  (1984) as well as 

McKibbin  (1986) and Nilsen and Storesletten (1990). Tyvand  and Storesletten (1991) 

seem to have been the first to have studied natural  convection in an anisotropic 

porous  medium where none of  the principal axes is vertical. They considered a 

horizontal  porous  layer with anisotropy in the permeability, whereas the thermal 

diffusivity was isotropic. This was sufficient to achieve qualitatively new flow 

patterns with tilted plane of mot ion  or  tilted lateral cell walls. In the present work, 
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we study the analogous problem for a layer with anisotropy in the thermal 
properties. 

We consider natural convection in a horizontal fluid-saturated porous layer with 
anisotropic thermal diffusivity. For simplicity , it is assumed that the diffusivity has 
rotational symmetry with a symmetry axis making an arbitrary angle against the 
vertical. The direction of the symmetry axis is denoted longitudinal, which means 
that the diffusivity is transversely isotropic. Moreover, our analysis is restricted to 
full isotropy in the permeability. The critical Rayleigh number and wave number at 
marginal stability are calculated and the steady motion occurring at the onset of 
convection is examined. It is found that there exist two different types of convection 
cells (rolls), depending on whether the longitudinal diffusivity is larger than the 
transverse diffusivity or not. In the former case, the convection ceils are rectangular 
with vertical lateral walls, whereas the lateral cell walls are tilted as well as curved 
in the latter case. 

These results correspond mainly to those found in the analogous problem 
with anisotropic permeability, studied by Tyvand and Storesletten (1991). On 
the other hand, there are also a few essential differences, which are discussed in 
Section 3. 

2. Mathematical Formulation 

We consider free convection in a fluid-saturated porous layer with anisotropic 
thermal diffusivity. The layer is bounded above and below by two infinite and 
impermeable heat-conducting horizontal planes. The upper and lower boundaries 
are separated by a distance h and are at constant temperatures To and To + AT, 
respectively. Here the characteristic temperature difference AT is positive, which 
means that the layer is heated from below. 

It is assumed that the thermal diffusivity has rotational symmetry with a symmetry 
axis making an arbitrary angle against the vertical. The direction of the symmetry 
axis is denoted longitudinal, which means that the diffusivity is transversely iso- 
tropic. Let ~ci. and xx be the longitudinal and transverse components of the diffusivity 
tensor D*, i.e. 

D* =/r  + lCT(j'j' + k'k') (1) 

where i', j' and k' are unit vectors along the principal axes. A Cartesian frame of 
reference is chosen, with x- and y-axis at the lower boundary, where the x-axis is 
aligned along the horizontal projection of i'. The z-axis is directed opposite to 
gravity. The unit vectors in the x, y, and z directions are denoted i, j, and k. By 
introducing the anisotropy parameter 

1~ T 
,~ = - - ,  (2) 

KL 
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the dimensionless diffusivity tensor D = D*/tcT may be written as 

D = q-~i' i '  + j'j' + k'k' 

= D l l i i  + jj + D13(ik + ki) + D33kk  

Here 

Dll  = t/-1 cos/f l  + sin2 fl, 

D 3  3 = COS 2 fl ..~ /I - 1 sin / fl 

D 1 3  =(t/-  1 __ 1) cos fl sin fl, 
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(3) 

v + Vp - Ra0k  = 0, (5) 

V.v = 0, (6) 

00 
0 t  - w = V-(D-V0) (7) 

Here Darcy law and the Boussinesq approximation have been used and the density 
is assumed to be a linear function of the temperature. Moreover, v = ui + v] + wk is 
the velocity, p the pressure, t the time, and 0 is the deviation from the linear 
temperature distribution corresponding to the motionless conduction state. Ra is the 
Rayleigh number defined by 

Ra - K97 ATh 
- - ,  (8) 

/~T V 

where K is the permeability, g the acceleration due to gravity, 7 the thermal 
expansion coefficient, and v the kinematic viscosity of the saturating fluid. 

Equation (7) may be written 

~0 ~20 ~20 ~20 ~20 
~t w ----- D ~ l ~ x  2 + - -  + 4- 2 D l a - -  3y 2 D33 ~22 C3X OZ" 

Applying the operator 

t?y & '  

to Equation (5), adding the component equations, and using the continuity Equation 
(6), we get the equation 

V2w = Ra VlZ0, (10) 

(9) 

and fl is the angle between the longitudinal and horizontal direction, i.e. the angle 
determined by i' and i. 

The linearized version of the governing equations in dimensionless form may be 
written (Kvernvold and Tyvand, 1979) 

(4) 
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where 

02 (~2 

V2 -- ~ x  2 + --@2" (11) 

The operator Ra V1 z applied to Equation (9), substituting Equation (10), finally gives 
the equation 

Faw a2w a2w a2w a2w 7 
V 2 

uE at - O~  ax 2 ay 2 O3~-~z 2 - 2O~3aTb~zJ 

Fa2w a wl (12) 
= aak~x2 + t~y2]" 

Impermeable and perfectly heat-conducting boundaries require that 

w = O = O  at z = O  and z = l .  (13) 

By using Equation (10), these boundary conditions are expressed by vertical velocity 
alone: 

82w 
- 0  at z = O  and z = l .  (14) W -  ~Z 2 

3. Marginal Stability and Steady Convection Cells 

At the onset of convection, the preferred flow cells tend to arrange themselves such 
that the tangential diffusivity along the streamlines is as small as possible. Let us first 
consider the case fl = 0. When t 1 < 1, we have minimum diffusivity in directions 
orthogonal to the x-axis. This indicates that the preferred motion is independent of 
x. When q > 1, it is clear that motion in the y-direction should be avoided, as the 
diffusivity is maximum in that direction. Thus, it is reasonable to expect convective 
motion in the (x, y)-plane, independent of y. 

In the case fi -- 0, these physical arguments suggest that the preferred motion at 
the onset of convection is independent of x or y depending, respectively, on whether 
t /<  1 or q > 1. This situation turns out to be valid for arbitrary values of fl, i.e. 
0 ~< fl < n. In Appendix A, these hypothesis are numerically confirmed by showing 
that the Rayleigh number in both cases is a local minimum. 

Case I: t /<  1. In this case, fl denotes the angle between the x-axis and the direction 
with maximum thermal diffusivity. Since the solutions are independent of x, it is easy 
to solve the problem analytically. The curl of Equation (5) gives 

au au 
ay az o, (15) 
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which indicates that u is a constant, here given the value zero. It follows that the 
motion at convection onset is two-dimensional. The convection cells are rectangular 
with vertical planes of motion. At this point, there is an essential difference between 
the present case and the analogous case for a porous layer with anisotropic 
permeability, where the planes of motion were tilted (Tyvand and Storesletten, 1991). 
This tilt was purely mechanical determined, decoupled from any thermal effects. 

In the absence of x-dependence the governing Equation (12) reduces to 

(02 a w7 
+ 0:VLet v33Vj = Ra j o y  2. (16) \ 

The preferred mode of disturbance which satisfies the boundary conditions is given by 

w = sin(fez)exp(imy + ~t), (17) 

where m is a wave number, a is the growth rate, and i is the imaginary unit. It is 
shown in Appendix B that the principle of exchange of stabilities is valid, i.e. a is real 
and marginal stability is defined by ~r = 0. Substituting solution (17) into Equation 
(16), we find the Rayleigh number at onset of convection to be 

Ra = (1 + rc2/mS)(m 2 + D337~s). (18) 

Minimizing Ra with respect to m, we obtain the critical Rayleigh number 

Rac = ~2(1 + {cos2/~ + q-1 sin s/3}1/2)2. (19) 

The corresponding critical wave number is 

me = ~ ( c o s  2 j~ + ~ -  1 sin s/3)1/4. (20) 

From Equation (19), it follows that Rao ~ 4re s as r / ~  1. For  t/fixed, Rac obtains its 
minimum 4re s for/~ = 0 and its maximum ~s(1 + 1/~/r/) s for /3 = ~r/2. For  these two 
values of/3, the results coincide with those found by Kvernvold and Tyvand (1979). 

Case II: t / >  1. In this case/~ denotes the angle between the x-axis and the direction 
with minimal thermal diffusivity. When t / >  1, it turns out that the solutions are 
independent of y. In order to demonstrate this numerically (see Appendix A), we also 
include solutions dependent on y, i.e. we consider solutions of the general form 

w = Z(z)exp(i (kx  + my) + ~t), (21) 

where k and m are wave numbers and the amplitude Z has to satisfy the boundary 
conditions (14), which imply 

Z(0) = Z"(0) = Z(1) = Z'(1) = 0. (22) 

The solution (21) substituted into Equation (12) leads to a fourth-order linear 
differential equation for Z with constants coefficients. Its general solution is 

Z(z) = A1 exp(rlz) + A2 exp(r2z) + As exp(r3z) + A4 exp(r4z), (23) 
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where r l ,  r2, r3, and r4 are roots of the polynomial equation 

(k 2 + m E - rZ)(a + Dxxk 2 + m 2 - D33 ra - 2D13ikr) = Ra(k 2 + mZ). (24) 

The constants A1, A2, A3, and A4 have to satisfy the boundary conditions (22), 
which leads to a linear homogeneous system o f  algebraic equations. Nontrivial 
solutions imply that the determinant of the coefficient matrix is zero: 

1 1 1 1 

rl 
exp(rl) exp(rz) exp(r3) exp(r4) 

rl z exp(rx) r zexp(r2) r~exp(r3) r zexp(r4) 

= O. (25) 

As in Case I (q < 1), it follows from Appendix B that the growth rate a = 0 at 
marginal stability. Thus, in order to find the critical Rayleigh number Rac, we put 
a = 0 in Equation (24). Given the parameters q, fl and the wave numbers k, m, 
Equations (24) and (25) represent an eigenvalue problem, the eigenvalues being the 
Rayleigh numbers Ro < R1 < Rz < ... where the critical Rayleigh number is 

Rac = min Ro (t/, fl, k, m), k ~> 0, m >~ 0. (26) 

The eigenvalue problem (24) and (25) (with a = 0) is solved numerically. It turns out 
that Rac is obtained at m = 0 which means that the steady solutions at convection 
onset are independent of y. This fact is demonstrated numerically in the Appendix A. 

In Figure 1 we present marginal stability curves, displaying the Rayleigh number 
Ra as a function of the wave number k. The curves are computed for the value t /--  2, 

for the cases fl = 17.5 ~ 35 ~ 52.5 ~ and 70 ~ respectively. 
Table I shows the computed values of Ra~ for various values of the anisotropy 

ratio 11 and the angle ft. For moderate values of t/, less than 2 for instance, the critical 
Rayleigh number depends very weakly on the angle ft. For  larger values of ~/there is 

a stronger dependence, see Table I. 
For  given t/, the critical Rayleigh numbers are equal for the cases fl = 0 ~ and 

fl = 90 ~ which is known from Kvernvold and Tyvand (1979). Moreover, Rar 
depends on the angle fl, and for each q there exists an angle tim giving a minimal 
critical Rayleigh number Rm. Table II shows tim, R,, and the corresponding wave 

number kin. We observe that tim ~ 45 ~ as r / ~  1 (r/< 1). 
It turns out that the computed Tables I and II in the present problem have a close 

relationship to the corresponding tables in the analogous problem with anisotropic 
permeability (Tyvand and Storesletten, 1991). In Case II, the tables are in fact 
identical if t / a n d / / a r e  replaced by 1/~ and (~/2 - fl) in the analogous problem. This 
fact is easily deduced from the governing equations. Putting o- = m = 0 and applying 
the above-mentioned transformation, the polynomial Equation (24) becomes ident- 
ical with the corresponding Equation (26) in Tyvand and Storesletten (1991). 

Concerning the convection cells there exists no such close relationship between the 
tfeo problems. The plane of motion is vertical and the lateral cell walls are tilted as 
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Fig. 1. Marginal stability curves when q = 2 for the cases fl = 17.5 ~ 35 ~ 52.5 ~ and 70 ~ 

wel l  as  c u r v e d  a l so  in  t he  p r e s e n t  p r o b l e m .  H o w e v e r ,  t he  t i l t  is o p p o s i t e  d i r e c t e d  a n d  

c a u s e d  b y  p u r e l y  t h e r m a l  effects. 

T h e  c o m p u t e d  s t r e a m l i n e s  a re  d i s p l a y e d  in  F i g u r e  2 a t  fl = 40.1 ~ for  t he  cases  

q = 1.00, 2.00, 4.00, a n d  8.00. A s t r e a m  f u n c t i o n  h a s  b e e n  de f ined  in  o r d e r  to  

c o n s t r u c t  t he se  curves .  T h e r e  is a c o n s t a n t  i n c r e m e n t  in  t h e  s t r e a m  f u n c t i o n  b e t w e e n  

t w o  n e i g h b o u r i n g  s t r e a m l i n e s .  

T h e  l a t e r a l  cell wa l l s  h a v e  n o  t i l t  a t  t he  s t a g n a t i o n  p o i n t s  a t  t he  t o p  a n d  b o t t o m  

of  t he  layer ,  w h e r e a s  t he  m a x i m u m  ti l t  is f o u n d  in  t he  m i d d l e  of  t h e  layer ,  i.e. a t  

z = 1/2. 

Table I. The Computed values of Rac for various values of q and fl 

fl/q 1.143 1.333 1.60 2.00 2,667 4.00 8.00 

0 ~ 36.970 34.367 31.643 28.762 25.658 22.207 18.082 
10 ~ 36.968 34.358 31.625 28,730 25.609 22.173 17.994 
20 ~ 36.963 34.337 31.577 28,643 25.472 21.940 17.737 
30 ~ 36,957 34.312 31.516 28.529 25.282 21.653 17.335 
40 ~ 36.952 34,292 31,466 28.427 25.100 21.346 16.848 
50 ~ 36.952 34.289 31.452 28.385 25.000 21.131 16.401 
60 ~ 36.956 34.303 31.483 28.434 25.053 21.143 16.215 
70 ~ 36.962 34.330 31.548 28.561 25.268 21.463 16.571 
80 ~ 36.968 34.356 31.615 28.701 25,535 21.955 17.489 
90 ~ 36.970 34.367 31.643 28.762 25.658 22.207 18,082 
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Table  II. The c o m p u t e d  values  of tim, k,,, and  R m for var ious  values  of ~/. 

L E I V  S T O R E S L E T T E N  

r/ 1.010 1.143 1.333 1.600 2.000 2.667 4.000 8.000 

fl~, 45.1 ~ 46.0 ~ 46.6 ~ 48.6 ~ 50.1 ~ 51.9 ~ 54.7 ~ 59.3 ~ 

k,, 3.1416 3.13 3.14 3.12 3.10 3.07 3.00 2.83 

R,, 39.2826 36.952 34.288 31.451 28.385 24.977 21.I01 16.214 

@@ 
r / =  1.00 

% 
M_ - - m m J  

q = 2.00 

= 4.00 

J 
r / =  8.00 

Fig. 2. C o m p u t e d  s t reamlines  a t  fl = 40.1 ~ for the cases r / =  1.00, 2.00, 4.00, and  8.00. 

4. Summary 

We have considered natural convection in a horizontal porous layer with anisot- 
ropy in the thermal diffusivity. It is assumed that the diffusivity has rotational 
symmetry with a symmetry axis making an angle (90 ~  fl) against the vertical 
direction. The direction of the symmetry axis is denoted as longitudinal, which 
means that the diffusivity is transversely isotropic. 

We have examined the linear stability and the steady flow patterns at the onset 
of convection. Two different types of convection cells (rolls) were found, both two- 
dimensional: If the longitudinal diffusivity is larger than the transverse (0 < q < 1), 
the convection cells are rectangular with vertical lateral cell walls like the isotropic 
case. For  the converse case (0 > 1), the plane of motion is vertical whereas the 
lateral cell walls are tilted as well as curved. The preference for these different flow 
patterns is explained as a preference for flow directions with as small a tangential 
diffusivity along the streamlines as possible. 



NATURAL CONVECTION IN A HORIZONTAL POROUS LAYER 27 

In Case I, 0 < t / <  1, the problem is solved analytically. The critical Rayleigh 
number is found to be 

Rac = ~2(1 + {cos2 fl + q-1 sin 2 fl}1/2)2. 

For  given r/, Rac attains its minimum 4~z 2 for fl = 0 and its maximum ~z2(1 + 1/X/~) 2 
for fl = ~/2. Here fl denotes the angle between the horizontal and longitudinal 
direction. 

In Case II, t />  1, the critical Rayleigh number has to be determined numerically, 
see Table I. For given t/, the number Rac attains its maximum for fl = 0 and fl -- ~/2. 
The minimum values Rm depending on fl are calculated in Table II. The computed 
streamlines are shown in Figure 2. 

Appendix A 

For physical reasons, given in Section 3, it is expected that the solutions at the onset 
of convection are independent of x (k = 0) or y (m = 0) depending on whether t /<  1 
or t />  1. These conjectures are confirmed numerically by showing that the Rayleigh 
number for marginal stability attains a local minimum for k -- 0 when t /<  1, and for 
m = 0 when t / >  1. We have tested the hypothesis for various values of r /and ft. The 
results are given in the tables on page 28, for q = 0.25, 0.50, 2.00, and 4.00 for the 
angle f l - - 3 0  ~ From these tables we note that the Rayleigh number at marginal 
stability is not always a local minimum when the wave number is sufficiently far from 
its preferred value. 

Appendix B: A Proof of the Principle of Exchange of Stabilities (im (a) = 0) 

We shall now show that the principle of exchange of stabilities is valid for the 
boundary value problem (5), (6), (7), and (13), i.e. the growth rate a is real and the 
marginal stability is defined by o- = 0. 

Multiplying Equations (5) and (7) by v* and Ra 0* (* denotes the complex 
conjugate), respectively, and adding the equations, we get 

o Ra 00* = Ra(w0* + w*O) - v*-v - v*. Vp + 

R / 620 620 620 620 \ 
+ a~Dll~x2 + ~ y 2  +O33~z2  + 2D13~z) (B1) 

Here ?O/& is replaced by aO, where a is a constant which can be complex. 
Assuming solutions periodic in x and y, we introduce the following notation 

( ( ) )  = 1/Ra ( ) dx dy dz, 
,dO o o 

where (xl - Xo) and (Yl - Yo) are the periods in the x- and y-directions, respectively. 
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The  case r / =  0.25 a n d  fl = 30~ 

k=0.00 k=0.01 k=0.10 

m=2.7 Ra=57.244859 Ra=57.245007 Ra=57.259714 
m=3.00 Ra=55.082069 Ra=55.082274 Ra=55.102637 
m=3.25 Ra=53.842696 Ra=53.842936 Ra=53.866668 
m=3.50 Ra=53.306997 Ra=53.307257 Ra=53.333021 
m=3.75 Ra=53.325932 Ra=53.326205 Ra=53.353197 
m=4.00 Ra=53.795531 Ra=53.795811 Ra=53.823536 
m=4.25 Ra=54.641471 Ra=54.641755 Ra=54.669902 
m=4.50 Ra=55.809482 Ra=55.809768 Ra=55.838140 
m=4.75 Ra=57.259188 Ra=57.259475 Ra=57.287948 

The  case r / =  0.50 a n d  fl = 30~ 

k=0.01 k=0.00 k=0.10 

m=2.50 Ra=47.938428 Ra=47.938380 Ra=47.933689 
m=2.75 Ra=45.869786 Ra=45.869820 Ra=45.873194 
m=3.00 Ra=44.735650 Ra=44.735734 Ra=44.744004 
m=3.25 Ra=44.296813 Ra=44.296927 Ra=44.308267 
m=3.50 Ra=44.396313 Ra=44.396448 Ra=44.409762 
m=3.75 Ra=44.927696 Ra=44.927843 Ra=44.942454 
m=4.00 Ra=45.816695 Ra=45.816851 Ra=45.832326 
m=4.25 Ra=47.010223 Ra=47.010386 Ra=47.026442 
m=4.50 Ra=48.469517 Ra=48.469683 Ra=48.486133 

The  case q = 2 a n d  fl = 30~ 

m=0.00 

k=2.50 Ra=31.681117 
k=2.75 Ra=30.085635 
k=3.00 Ra=29.130747 
k=3.25 Ra=28.649077 
k=3.50 Ra=28.530817 
k=3.75 Ra=28.701502 
k=4.00 Ra=29.109190 
k=4.25 Ra=29.716757 
k=4.50 Ra=30.497097 

fl = 30~ The  case r / =  4 a n d  

m=0.00 

m=0.01 

Ra=31.681065 
Ra=30.085641 
Ra=29.130788 
Ra=28.649141 
Ra=28.530895 
Ra=28.701589 
Ra=29.109283 
Ra=29.716855 
Ra=30.497198 

m=0.01 

Ra=23.135858 
Ra=22.364590 
Ra=21.904916 
Ra=21.687706 
Ra=21.664743 
Ra=21.801569 
Ra=22.073025 
Ra=22.460398 
Ra=22.949533 

Ra=23.135779 
Ra=22.364496 
Ra=21.904812 
Ra=21.687596 
Ra=21.664629 
Ra=21.801453 
Ra=22.072908 
Ra=22.460281 
Ra=22.949416 

k=3.00 
k=3.25 
k=3.50 
k=3.75 
k=4.00 
k=4.25 
k=4.50 
k=4.75 
k=5.00 

m=0.10 

Ra=31.675987 
Ra=30.086267 
Ra=29.134885 
Ra=28.655420 
Ra=28.538583 
Ra=28.710205 
Ra=29.118520 
Ra=29.726511 
Ra=30.507141 

m=0 .i0 

Ra=23.143594 
Ra=22.373917 
Ra=21.915205 
Ra=21.698580 
Ra=21.675970 
Ra=21.813001 
Ra=22.084570 
Ra=22.471996 
Ra=22.961145 



NATURAL CONVECTION IN A HORIZONTAL POROUS LAYER 29 

Integration of Equation (B1) over the fluid volume (Xo, x l)x(yo, Yl )x(0, 1), applica- 
tion of Equations (6) and (13), and partial integration, finally produces the equation 

~r(O0*) = (wO* + w*O)  - (1/Ra)(v*-v)  - 

/ 00 00* 00 00* 00 0 0 * \  

/ 0 0  00" 00" 0 0 \  
- D13 V ;  + (B2) 

Since all terms at the right-hand side are real, it follows that im(a) = O. 
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