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Summary. The problem of correctly administering 
drugs is considered with respect to pharmacokinetics. 
A general method for calculating the dosage scheme 
for any linear model is presented, if the desired blood 
level or amount of drug in any other compartment is 
given. 
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For optimal application of drugs several general fac- 
tors must be taken into account. A major factor is the 
time course of drug concentrations in man, that is to 
say pharmacokinetics. The following work considers 
the dosage problem with respect to this aspect. In 
anaesthesiology, for instance, it is often desirable to 
have a short induction time to reach a desired 
anaesthetic state, which is then maintained for the 
duration of anaesthesia. For intravenously adminis- 
tered drugs this is often achieved by a loading dose, 
given as a quick infusion or an initial bolus, followed 
by a maintenance dose given at a lower, constant rate 
infusion (Wagner 1974), or by repetition of small 
boluses. These schemes have the advantage of being 
simple and easy to use, but they also have at least two 
disadvantages: 

1. the pharmacokinetic data of the drug are taken 
into account only very roughly, especially in the 
induction phase, 

2. the time course of drug concentration does not 
necessarily parallel the time course of the phar- 
macodynamic effect, e.g. the relationship between 
norepinephrine plasma levels and blood pressure 
(Segr6 1968). 

These difficulties can be circumvented if the infusion 
scheme is modelled in such a way as to achieve any 
desired time course of drug concentration, which, in 
turn, gives rise to the desired time course of the phar- 
macodynamic effect. 

Theory 

In the framework of compartment models the prob- 
lem to solve is how to infuse into a compartment i to 
achieve a prescribed time course of amount of drug in 
compartment j. If this problem is confined to linear 
pharmacokinetics it can be solved exactly. To achieve 
a constant blood level from the very beginning on- 
wards, Krfiger-Thiemer (1968) calculated an infu- 
sion scheme for an open, linear, mamillary n-com- 
partment model. 

In the following a systematic procedure to calcu- 
late the infusion scheme will be exemplified for a two 
compartment model (Fig. 1). The solution for the 
general linear n-compartment model is given in the 
mathematical appendix A. 
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Fig. 1. A two compartment model 
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Let Ai(t) i = 1,2 denote the amount of drug in com- 
partment i at time t. The model depicted in Fig. 1 is in 
general described by the following set of differential 
equations: 

dA1(t) 

dt 
- -  = - (ke l+ki2)Al( t  ) + k2t A2(t) (1.1a) 

dAz(t) 

dt 
- -  k12 As(t) - k21 A2( t )  (1.1b) 

The solution Gi(t ) i = 1,2 of the differential equa- 
tions after the injection of a bolus of amount 1 at 
time t = 0 in compartment 1 is: 

1 
G~ (t) - (Ae-" t+Be -~t) (1.2a) 

A + B  

k12 (e-/3t-e-at) ,  (1.2b) G 2 (t) -- a- /3 

where a, /3, A / ( A + B ) ,  B / ( A + B )  are well known 
functions of the transfer constants kel, k12 , k2> From 
a mathematical point of view, Gi(t) can be inter- 
preted as Green's function of the differential equa- 
tions. They contain all the information about the 
pharmacokinetic model presented by Eqs. (1.1 a, b). 

The amount of drug Ai(t ) due to any application 
scheme I(t) is then given by the formula: 

t 

Ai (t) = J 'dt 'Gi(t-t ' )I(t ' )  i = 1,2 (1.3) 
o 

levels after any application, not just bolus injection, 
would be suitable for determination of the model. 
Technically, Eq. (1.3) has to be transformed into an 
inhomogeneous Volterra integral equation, which 
can be solved by iteration. Last but not least the 
application scheme I(t) can be calculated if the phar- 
macokinetic data are known and the amounts Al(t) 
or Az(t ) are given. Laplace transformation of (1.3) 
transforms the integral equation into an algebraic 
equation. If the Laplace transforms of Ai(t), Gi(t), 
and I(t) are named fiti(p), Gi(p) and I(p), (1.3) can be 
written as 

Ai(p) = Gi(p) i (p  ) i = 1,2. (1.4) 

The solution of (1.4) for i(p) is trivial, the back 
transformation yields 

+ i ~ + s  

I(t) - 1 J" dp e pt .~i(p)/Gi(p) (1.5) 
2 :~i -i~+s 

(s denotes an arbitrary small positive number). 
The main problem that remains is evaluation of 

the integral expression on the right hand side of 
(1.5). It can most easily be solved by applying the 
theorem of residues of the theory of functions of a 
complex variable (Peschl, 1967; see also mathemati- 
cal appendix B). Although the monographs of 
Wagner (1975) and Gibaldi and Perrier (1975) give a 
list of Laplace transformations of frequently used 
functions, it is not always sufficient for calculating 
dosage schemes, as the following four examples will 
show. 

which reflects the superposition principle, which in 
turn relies on the linearity of Equations 1.1 a, b. 

Equation 1.3 is a fundamental equation in linear 
system theory. Interpreted in terms of linear phar- 
macokinetics, it relates the actual amount Ai(t) in 
compartment i at time t to the application scheme I(t) 
and the pharmacokinetic model represented by Gi(t). 
It is simple to do a computer simulation of Ai(t), if 
Gi(t ) is known and the application scheme I(t) is 
arbitrarily given. Moreover this equation is model 
independent in the framework of linear phar- 
macokinetics. This means in practice that, if one 
measures the blood levels of a drug after bolus injec- 
tion, the blood level can be computed which would 
be produced by any administration scheme, inde- 
pendent of the order or form of the linear model 
necessary to fit the blood levels. On the other hand, 
Eq. (1.3) may be the basis to calculate Gi(t) and to 
determine the pharmacokinetic model, if Ai(t ) is 
measured and I(t) is known. This may be of interest 
in clinical research, because measurement of blood 

c( t )  = 

o r  

E x a m p l e s  

The values in this section were calculated for a model 
drug with the following kinetic data: 

A = 0.9gg/ml; B -- 0.t~g/ml; D = 20mg 
a = 0.25/min; /3 = 0.01/min. 

As the simplest example we wish the desired blood 
level c(t) to be as depicted in Fig. 2 a. 

0 for t<0 
(2.1a) 

c o for t=0  

IoD for t<0  Al(t ) = (2.1 b) 

I . A + B  for t_-->0 

The Laplace transforms AI(p), G~(p), and (~2(P) are 
given by 
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co D 1 
Al(p) -- 

A + B  p 

1 A + , 
GI(P) = A + B  a + p  /3+p 

k12 ( 1 1 )  
G2(P) - a - , B  fi-7-p a + p  " 

Hence we have 

I(p) = coD 
( a + p )  ( f i+p)  

(A(fi +p)  + B(a  + p ) ) p  
(2.2) 

o r  

+i~: +s 
1 

I(t) - ; d p e  ptI(p) 
2sri -i= +.~ 

(2.3) 

A2(t ) is given by 
t 

A2(t) = j 'dt '  G2(t-t') I(t ')  
o 

+i~ +s 

_ 1 f d p e  ptG2(p) I(p). 
2ari -i=+~ 

(2.4) 

Evaluation of (2.3) according to the rules of Appen- 
dix B and of (2.4) results in 

I(t) - De° (6(t) + kei + k12e -k2~t) (2.5) 
A + B  

Az(t ) - -  Dc° kt2 (1-e -k2~t) (2.6) 
A + B  k21 

The symbol × 6(t) means that a bolus of amount × 
has to be given at time t = 0. I(t) and A2(t ) are 
depicted in Figs. 2b and 2c. The different terms of 
(2.5) are readily interpreted. The bolus Dco / (A+B)  
is required to produce a blood level c o onwards from 
the very beginning, kel DCo/(A+B) is the mainte- 
nance infusion rate and the last term is necessary to 
prevent the "dip" between the decreasing blood level 
after the bolus injection and the slowly increasing 
blood level produced by the maintenance rate infu- 
sion. 

Another  example suitable for a creeping dosage, 
or the study of threshold phenomena, has linearly 
rising blood level for a time t 1 ( F i g .  3 a). 
This means 

0 for t < 0  
Co 

c(t) = t.-'7- t for 0=<t=<tl 

c o for t > t  1 

(3.]) 

0,5 
o,4. 

0,3" 
0,2- 

0,1, 

i mg/min 
3,2 

2, 

160 150 tEmi~ 

0,8 

b 
J mg 

60, 

45, 

30 

15, f 
16o 

Initially a bolus of tOmg 

16o ,go t ~i n:l 

c 
F i g .  2 a--c. The desired blood level a is achieved using the infusion 
scheme b. The amount in the peripheral compartment behaves 
like c 

D 
or Al(t  ) -- 

A + B  

AI(p) is given by 

c(t). 

AI(p) - 
Dc o 1-e -pt~ 

A + B  tip 2 
(3.2) 

I(t) has to be calculated from 

+i:¢ +s 

I ( t ) -  De° f dp e pt X 
2azi -i~+s 

( t 2 + p )  ( / 3 + p )  ( 1 - e  -pt~) 

(A (/3+p) + B ( a + p )  )tip 2 ' 

Dco 
with the result I(t) - 

A + B  

{•,i 
1 kel t k12 1 + _ _ +  

t1 t1 k21tl 

+ k12 

k21t1 

X 

(1---e -k2~t) for o ~ t ~ t I 

(ek2't'--l) e -k2't for t > t 1. 

(3.3) 

(3.4) 
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Fig. 3 a-c. Linearly rising blood levels a require an infusion scheme 
like b, which gives rise to the amount of drug in the peripheral 
compartment as depicted in e 

It is remarkable that I(t) does not increase linearly 
with t at t = 0, but that there is a base infusion at t = 0; 
Figs. 3 b and 3 c show I(t) and Az(t ). If the extent of 
the action of a drug has to be located in compartment 
2, the question arises if a quantity of drug can be 
generated in compartment 2 by application of the 
drug to compartment 1, the time course of which 
equals the shape of the blood level curves just men- 
tioned. For the first example this can immediately be 
denied, because there a certain time is always 
required for the distribution from "1"  to "2" .  For the 
second example, too, this must also be denied, as 
calculation shows. But, both cases may be approxi- 
mated by a desired amount A2(t) of (Fig. 4a) 

M ( t - t ' )  M ( ( t - t ' ) 2  + d_d~ 1/2 

A z ( t  ) = M + 2 t I 2 . t t  2 t l  2 ] 

(4.1) 

may approximate the Making d very small one 
function 

60, ' mg 

45' / 

30, 

15 

a 
2,o: 

1,6,, 

1,21, 

0,8 

0,4, 

16o tgo t[mi~ 

Initially a bolus of 5.9rag 

b go 160 150 t [m~n'l 
l IJg/m I 

o8 

O6 

O,4 

0,2 =, 

C 5"0 1()0' 150 t [mini 

Fig. 4a-e.  Linearly rising amounts of drug in the peripheral com- 
partment a are achieved by the infusion scheme h. The resultant 
blood level behaves like e 

0M_~ for t<0  
A~(t) = t for O~t~t~ 

for t > t  I 

as closely as is desired. By making t 1 very small the 
steady-state amount M can be reached as quickly as 
is wished. Since A2(0 ) must be zero, t '  is fixed as 

t l  2 - -  d 
t '  - -  

tl 

Now the equation 

t 

A2(t ) = f dt '  G2(t-t' ) I(t ')  
o 

has to be solved. 
The Laplace transform -Az(P) of A2(t) is calculated as 
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t ¢ 

2ti 1 1 
A2(p) = M + e -pt' 

p 2p2tl 2tl 

) d r e=P~/~+"d } (4.2) 
- t '  

I(t) is given by 
1 +i'z +S M 

I(t) -- 2zi f dp ~ (a+p)(f i+p)A2(p)ePt .  
-i'~c +S  (4.3) 

~llae evaluation of Equation (4.3) leads to 

{ ( 2  t' ) a + f l  I ( t ) -  M + 2 ~  6 ( 0 +  
klzt 1 2 

(1- t-t, 
~/( t_t , )2+d/  + . . .  

1 
. . .  + aft ( t i +  2 ( t - t ' ) -  -~- ~ / ( t - t ' )2+d)  

1 d ) 
(4.4) 

2 X/(t-t ')2+d 3 J 

M1 oJk21 
M°k~2 ( 1 Nlok21+oo2) e-k2't + --" 

. . .  q -MI :~ t  ( b  I s in(o)t)+ b2wcos(a)t)) (5.4) 

with 

= (Aq-B)/(A2(/32-ko92) -1- B2(Gc2q-0) 2) q- . . .  

2AB(afi+ ~o2)) 

61 = Aa(fl2q-o92) + Bfl(a2q-¢o 2) 

b2 = A(/32+0~ 2) + B(a2+~02). 

The requirement I(t)-->0 restricts the coefficients of 
(5.4) to the condition. 

M0kel ~ M1~(62 + ~ b ~ )  1/~. 

This is essentially an upper limit for the frequency co. 
It means it is impossible to achieve any arbitrary high 
or frequent change in blood level. Another remark- 
able point is the phase difference between Al(t ) and 
I(t). The maximum of the infusion rate is achieved 
some time before the maximum of the blood level. 

Equation (4.4) shows that the shorter the rising time 
t I for amount A2(t ), the larger must be the initial 
bolus. At the same time, the initial blood level rises 
like 1/t 1, so that in actual dosage terms a compromise 
must be made between rapid saturation of the 
peripheral compartment and high initial blood levels. 
I(t) and the blood level c(t) is depicted in Figs. 4b  
and 4c. As a last example we wish to discuss the 
infusion scheme for sinus-like blood levels. Such a 
time course of blood levels (Fig. 5 a) may be of inter- 
est in experimental clinical pharmacology, to esti- 
mate time constants and the reaction of involved 
structures (Segr6 1968). Let 

A + B  
c ( t ) -  (M 1 sin(wt) + M0) for t>=0 

D 
and 

Al(t) = M1 sin (cot) + M0, M0>=M1 (5.1) 

The Laplace transform Al(p) of Al(t) is 

Al(p) = M--2-° + MIo  (5.2) 
p p2+(o2 

and hence 
+ i z + s  

1 
I(t) - f dpe  ptAI(p) Gyl(p). (5.3) 

2m -i~+~ 

Evaluation of the integral yields 

I(t) = M0b(t ) + M0kel q- . . .  

Microprocessor Controlled Infusion 

In order to realize more elaborate infusion schemes, 
like those in the foregoing examples, it would be 
necessary to control the infusion pump automatically. 
We have interfaced a microprocessor (6502) to two 
pumps, so that the dosage of two drugs can be con- 
trolled simultaneously; in anaesthesia, for example, a 
hypnotic and an analgesic. 

The microprocessor is programmed in such a way 
that three different kinds of administration, namely 
those of the first three examples given, are available, 
which can be combined in any way. 

Input parameters are the pharmacokinetic data of 
the drugs to be infused, and parameters of the appli- 
cation scheme, such as the desired blood level, or 
amount in the peripheral compartment. 

Since the maximum volume infusion rate is 
limited by the mechanics of the pump, a check is 
made whether the resulting infusion rate exceeds this 
limit. If this happens, the minimum drug concentra- 
tion to be infused necessary to realize the scheme is 
given. Boluses to be given are also displayed. Since 
the infusion rate cannot be changed continuously, the 
real infusion scheme is a step function approximation 
of the ideal scheme. Due to mechanical inertia of the 
pump, the width of the steps cannot be chosen to be 
arbitrarily small. We used a step width of 15 s, which 
is large enough to calculate the next step and to avoid 
interference with the mechanics of the pump, and jet 
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Fig. 5 a - c .  Sinus w a v e  - l i ke  b l o o d  leve ls  a r equ i r e  an in fus ion  
s c h e m e  l ike  b. The  r e su l t an t  a m o u n t  of  d r u g  in the  p e r i p h e r a l  
c o m p a r t m e n t  as d e p i c t e d  in  c 

is small enough with respect to circulation time. So 
far, the clinical utility of the device has been proven 
in 7 volunteers and 5 patients. For the group of vol- 
unteers we studied the models with constant blood 
level (first example) during Etomidate and Mida- 
zolam administration. In the patients we combined 
the first scheme for Etomidate with the second 
scheme for Fentanyl, to establish and maintain 
anaesthesia during surgery. 

D i s c u s s i o n  

The present approach gives a general method for cal- 
culation of an administration scheme from the 
desired blood levels and pharmacokinetic data. The 
clinical relevance of such elaborate dosage schemes 
may be questioned. As far as steady state conditions 
are concerned, the simple rule - the constant 
amount, which is eliminated per unit time must be 
administered as replacement - governs drug applica- 

tion. But the steady state has first achieved. For drugs 
with a large therapeutic index and for which steady 
state conditions are quickly reached, the simple 
steady state dosage rule may be sufficient for nearly 
optimal dosage. 

For drugs with a small therapeutic index or for 
which the time interval over which they are adminis- 
tered, is in any way small in relation to their half life, 
it may be essential that the distribution phase is taken 
into account more exactly. This is commonly the case 
in anaesthesia. In our experience, microprocessor- 
controlled infusion is a convenient way to optimize 
application schemes in that area of drug treatment. 

A p p e n d i x  A 

We are concerned with a general, linear n-compart- 
ment model. We assume that one can administer the 
drug in any compartment. Let Ai(t ) be the amount of 
drug in compartment i at time t, and Ii(t ) the amount 
of drug administered in compartment i per time at 
time t. The variation of Ai(t ) with time is described 
by 

n 
dAi(t) Y~ KijAj(t ) + Ii(t ) for i =  1, n. 

dt i = t (A.1) 

(The Kij are not the transfer constants but linear 
combinations of them.) 

In matrix notation, abbreviating Kij by IK and Ai, 
and I i by A and I, (A.1) is shortened to 

dA(t) 
- - .  = IK A(t) + I(t). (A.2) 

dt 
Assuming that the linear model is neither trivial nor 
degenerated, then IK has n different eigenvalues-iti, 
i =  1 . . . .  , n and a matrix 1L exists (Fetdmann and 
Schneider 1976; Segr6 1976) with 

( 0  0 )  (A.3) IL-1 tK I. = 22 " ' "  -)~n 

(A.2) can now be transformed to 

d 
- -  1L-1 A ( t )  = IL -1 [K 1L IL-1A(t) + IL -1 I ( t ) .  ( A . 4 )  
dt 

Substituting (A.3) in (A.4) and solving the equation 
for the i-th component yields 

t 

( IL-1 A)i(t) = e -at f d t '  exit'( 1kqI)i(t')dt ' 
0 

multiplying by IL yields 

i ) Ai(t ) = I t '  ~ LikL-lk¿ e -x=(t-t') Ii(t' ). 
0 ~= 1 k = ~ (A.5) 
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The function 

G~i(t_t,) = 11 ~ for t<0  

L-~kLkl e -A~(t-t') for t~O 
1 

(A.6) 

is the Green's function of the system (A.1). It gives 
the amount of drug in compartment i at time t if a 
bolus of amount 1 was given at timt t ' in compart- 
ment 1. Gi~(t-t' ) obeys the differential equation 

d Gi~(t-t' ) 
- 2 KikOkl(t--t')-}-~ilc~(t--t'). 

dt k = I 

6il denotes the unit matrix, namely say 

-I 

1 " "1 

I 

I 
1+2 

Fig. 6. Part 

1 

L [ ] 

1+1 

11 
i + a  

LI 
of a general n-compartment model 

for i = 1 

6(t- t ' )  denotes Dirac's delta function, which is the 
mathematical equivalent of a bolus of amount 1 at 
time t = t ' .  
With the abbreviation (A.6) Equation (A.5) may be 
written as 

t 

A(t) = f d t ' G ( t - t ' ) I ( t ' ) .  (A.7) 
0 

Solving for l(t) in the same manner as in the exam- 
ples yields 

+i~c +s 

I(t) -- 1 S dp e p' ~- t (p)  A(p). (A.8) 
2~i _.~ + 

Knowing Gq(p) ,  (A.8) can be evaluated according to 
the rules of Appendix B. 

G-l(p) can easily be calculated: 
n 

LikLk~ 1 e xkt 
k = l  

Gil(t ) = 

hence 
n 1 

Oil(P) = ~ LikLk~ 1 
k = 1 (P ~- •k) 

the inverse matrix is 

O-i~(p ) = ~ LikLk~l(p+Ak) (A.9) 
k=I  

In developing the solution (A.8) it was assumed that 
the time course of the amounts of drug in all com- 
partments are given, and that all compartments are 
accessible for dosing. If only k of the n possible 
amounts were prescribed, then only k compartments 
must be accessible for dosing. 

The clinical by most important case is when the 
amount of drug in a compartment i is prescribed and 
the drug is administered in another, not necessarily 
different compartment j. In this case the equation 

t 

f dt 'Gil(t-t '  ) I(t ')  
0 

Ai(t ) = 

with 

Gil(t-t ') = E LikL-kll e -zk(t-t') 
k = l  

has to be solved. 
The solution, obtained by Laplace transformation, is 

÷ i ~ + s  1 n 
I(t) -- J" dp e pt 1 ~  =1 (P  -~ Xk) / "~ 

2m -i~ +~ k = 1 

(LikL-~, f i  (p + 2j))ai(p). ( a .  10) 
i * k  

Up to the back transformation the dosage problem is 
reduced to the problem of finding out the eigenvalues 
of matrix IK and the determination of matrix 1L. 
Hence, the problem is reduced to discovering the 
eigenvalues and eigenvectors of 1K Standard pro- 
grams for this problem exist for almost every scien 
tific computer language. 

A p p e n d i x  B 

Integrals of the form 
+i~+s 

1 f d p e  pt f ( p )  ( g . 1 )  
2~i -i ~ + s 

must be interpreted as line integrals in the complex 
plane. The evaluation is most easily done in the 
framework of the theorem of residues. 

The residues are determined by the poles and sin- 
gularities of e pt f(p). These are the values of p for 
which te  pt f(p)[ is greater than any real number. 
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The function ept /(p+a)  has, for instance, sin- 
gularities at p = + ~ and p = - a .  

The following five rules allows integrals of the 
form (B. 1) to be evaluated. 

1. Determine which of both limits 

lim 
p--+__+ 0c eVtf(P) 

is finite. 
2. If the limit p---~ + ~c is finite, take into account all 

singularities at values of p with Re(p)>0 .  (Re(p) 
denotes the real part of p) If the limit p_-~_oc is 
finite, take into account all singularities at values 
of p with Re(p)=<0. 

3. For special values of t the finite limit may be dif- 
ferent from zero. This leads mathematically to a 
delta function, which corresponds to a bolus. The 
amount  of the bolus is equal to the finite limit. 

4. The function e pt f(p) may have poles of different 
order. 
A pole of n-th order at p = a is characterized by 

lim 
]e pt f(P) (P-a)"l < ~. p-~a 

The residue of a pole of first order at p = a is deter- 
mined by 

lira 
e pt f(p) (p-a)  p--+a 

the residue of a pole of n - th  order at p = a is deter- 
mined by 

lim d n-~ 
(e pt f(p) (p-a)  n) 

p---~a @.-1 

5. The value of the integral (B.1) equates sum of 
residues + sum of boli. 
The residues of those poles whose p value is 
greater than or equal to zero must be multiplied 
by -1 .  
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