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Abstract. An idealized model of a porous rock consisting of a bundle of capillary tubes whose 
cross-sections are regular polygons is used to assess the importance of viscous coupling or lubrication 
during simultaneous oil-water flow. Fluids are nonuniformly distributed over tubes of different character- 
istic dimension because of the requirements of capillary equilibrium and the effect of interfacial viscosity 
at oil-water interfaces is considered. With these assumptions, we find that the importance of viscous 
coupling depends on the rheology of the oil-water interface. Where the interfacial shear viscosity is zero, 
viscous coupling leading to a dependence of oil relative permeability on oil-water viscosity ratio for 
viscosity ratios greater than one is important for a range of pore cross-section shapes and pore size 
distributions. For  nonzero interfacial shear viscosity, viscous coupling is reduced. Using values reported 
in the literature for crude oil-brine systems, we find no viscous coupling. 
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Nomenclature 

Lower Case Q Volume flow rate 
a, b, c Undertermined parameter sets in R Characteristic tube dimension 

velocity distribution function (Figure A1) 
k Permeability So, S~ Oil and water saturations 
n Unit normal vector to o-w interface St, Si Tube wall and oil-water interface 
r Coordinate in cylindrical system area 
s Number of sides of polygon tube V(m) Pore volume of tubes of dimension 

cross section R(m) in bundle 
v Fluid velocity 
z Coordinate in cylindrical system Greek Letters 

e Interfacial shear viscosity 
/~ Viscosity 
a Interfacial tension 
| Coordinate in cylindrical system 
q~ Coordinate in second cylindrical 

system 
r Stress tensor 

Upper Case 
F, Fo, F~ 
Gp 
H 
J, J1,J2,J3 

M 
N 

Sea 
N~ 

P 

Coefficients in tube flow equation 
Pressure Gradient 
Interface mean curvature 
Integrals defined by (A3) and 
(A11)~(A13) 
Number of tube sizes 
Defines number of undetermined 
parameter in velocity distribution 
Capillary number 
Dimensionless interfacial shear 
viscosity 
Pressure 

Subscripts 
o Oil phase quantity 
w Water phase quantity 
r r-component of vector 
O O-component of vector 
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1. Introduction 

The Darcy description of flow in porous media, although originally obtained 
empirically from observations of one-dimensional flow, has been shown to be 
theoretically correct within the assumptions of local volume averaging and Stokes 
flow and has been generalized to multi-dimensional flow in anisotropic materials 
(Slattery, 1972; Whitaker, 1986a). The extension of Darcy's law to two-phase flow 
with relative permeabilities for each phase dependent on saturation and pore 
structure but not on fluid viscosities, densities, or flow rates is an empirical extension 
of the single phase Darcy description based on the idea that each fluid flows in its 
own set of pore channels. Bear (1972) describes the experimental evidence supporting 
this model and the theoretical arguments for and against it and concludes that it is 
a 'good approximation for all practical purposes'. It remains the accepted approach 
for describing two-phase flow in petroleum reservoir engineering calculations (Peace- 
man, 1977; Aziz and Settari, 1979). Occasionally, however, data are reported which 
appear to contradict this model. 

A number of authors have questioned the validity of the two-phase Darcy 
equation, specifically whether viscous coupling or lubrication of a nonwetting 
phase by a wetting film can be important. Some of the arguments are compelling. 
An important implication of this issue is that it causes us to question current 
practice for obtaining relative permeability data in the laboratory and using it in 
petroleum reservoir calculations. Among many assumptions inherent to the existing 
two-phase Darcy formulation is that laboratory relative permeability curves ob- 
tained by co-current flow of a fluid pair, water and oil for example, are valid for 
other fluid pairs with the same relative wetting even though properties such as 
viscosity ratio may be different. This paper examines the arguments made for 
questioning the validity of the conventional two-phase Darcy flow model. Previ- 
ously reported laboratory measurements and pore model calculations are examined 
and critiqued. Some new calculations are presented to further investigate the idea 
of viscous coupling and to suggest where the conventional Darcy model may and 
may not apply. Finally, recommendations are made for some definitive experi- 
ments. 

2. Previous Work 

Early models of two-phase flow, such as that of Yuster (1951), used simple geometries 
such as co-axial flow in a single circular cylinder or segregated flow between parallel 
plates to infer a viscosity ratio dependence of relative permeability. Criticisms of such 
models are that (1) porous media are not single pores but networks of pores of 
different sizes in which fluids are nonuniformly distributed as a result of the 
requirements of capillary equilibrium, (2) such simple geometries do not exist in 
natural rocks even for single pores, and (3) even in these idealized models, the stable 
interface configurations may not be as assumed. 
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Models of two-phase flow in pore networks, most recently Lin and Slattery (1972) 
and Heiba et al., (1983), have excluded the possibility of simultaneous flow in a single 
pore, and therefore would not predict viscous coupling. 

Singhal and Somerton (1970) considered two-phase flow in an equilateral triangu- 
lar channel. This type of model has the advantage of beginning to introduce pore 
cross-section irregularity and allows formation of stable arc menisci at the triangle 
apexes. Such menisci have structural and hydrodynamic similarities to pendular 
wetting films at grain boundaries in porous rocks. Their analysis shows an important 
viscosity ratio effect on relative permeability ratios calculated assuming co-current 
flow of wetting and nonwetting fluids. 

Kalaydjian (1990) carried out a series of two-phase flow experiments in square 
capillary tubes. Based on this work, he proposed a new form of the two-phase Darcy 
equation which contains coupling terms as well as conventional relative permeabili- 
ties and suggests that it gives a more complete and rigorous description of two phase 
flow. Rose (1990) presented calculations based on the earlier Yuster work which 
supports this model. 

Whitaker (1986b) analyzed two-phase flow in a general porous medium by local 
volume averaging. His result for conditions approximating a steady-state relative 
permeability determination supports the above arguments, giving a form of the 
two-phase Darcy equation which contains nontraditional terms representing the 
viscous drag of one fluid on the other. 

Because of the complexities associated with flow experiments in naturally occur- 
ring porous media, literature data can be confusing and can usually be found to 
support any position. For example, Leverett (1939) showed oil-water relative 
permeabilities in sand packs to be independent of viscosity ratio for #o//~w ranging 
from 0.057 to 90. Another study often cited is that of Odeh (1959). In this, relative 
permeability to oil in a series of water-oil relative permeability measurements was 
found to increase with oil-water viscosity ratio, with values of kro as high as 240% 
reported. Odeh attributes this result to a lubrication effect. 

3. Model Formulation and Calculations 

In this section, we present two-phase oil-water flow calculations using an idealized 
model which nevertheless captures more of the attributes of real porous rocks 
pertinent to characterization of viscous coupling than models previously reported. 
Specifically, we consider that pore spaces have noncircular cross sections, range over 
an order of magnitude or more in size, and are highly interconnected. Local volume 
averaging concepts are then used to calculate relative permeabilities. 
The following are the assumed idealizations. 

(1) A unit volume can be defined which is large compared with the largest pore 
dimensions and contains a representative pore size distribution but is smaller 
than the macroscopic dimensions of the porous rock. Averaged quantities such 
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as saturations, space velocities, and pressures in each phase are constant 
within that volume. 

(2) Individual pores are tubes whose cross-sections are regular polygons (equilat- 
eral triangle, square, etc.) as described in the Appendix. 

(3) The capillary number, Nca = #V/aow, for flow in either phase is low. Gravity 
effects are negligible. 

(4) The pores are water-wet (i.e. interfaces intersect the tube wall with 0 ~ contact 
angle measured in the water phase). 

(5) Velocity is continuous across oil-water interfaces. 
(6) Two types of tangential stress boundary conditions at oil-water interfaces are 

considered. 
(a) Tangential stress is continuous. This is assumed to be the case for 'pure' 

fluids that are free of surface-active materials. 
(b) Discontinuity in tangential stress is defined by the Boussinesq Newtonian 

surface fluid model (Scriven, 1960; Aris, 1962). This attempts to consider 
accumulation of surface active materials that naturally occur in petroleum 
reservoir fluids. As noted in the Appendix, this discontinuity relates to the 
interfacial shear viscosity. 

(7) The porous rock is assumed to consist of a 'bundle' of such tubes, all of which 
are of equal length and of geometrically similar cross-section, and are present 
according to a known pore size-pore volume distribution function. Intercon- 
nections between these pores exist and ensure that pressures in each phase are 
the same in every tube. However, they are assumed not to contribute to 
steady-state flow or to pore volume. 

Note that this model is only intended to examine viscous coupling and does not 
rigorously consider aspects of pore interconnections that lead to flow path tortuosity 
and saturation hysteresis. Thus, calculated relative permeabilities will not have the 

appearance of real rock curves. 
A porous rock containing this unit volume is assumed to have initially been water 

saturated and then to have been oil saturated by displacement of that water to some 
oil saturation close to 100%. At that point, a series of steady-state relative 
permeability measurements are made with water fractional flow increasing in steps 
from some low value to 1. Once a steady state is reached, it is assumed that the 
saturation distribution is fixed and there are no moving interfaces. It is further 
assumed that the unit volume is far from inlet or outlet boundaries and that the 
pressures in each phase differ by an oil-water capillary pressure. 

Figure 1 shows a typical unit volume undergoing displacement. The capillary 
pressure defines an interface radius which must be common to all tubes in the 
bundle. It is assumed, as shown in Figure A1, that the largest stable interface 
radius corresponds to a circle internally tangent to the polygon cross-section. 
Increasing the tube water volume beyond that point results in instability and 
complete displacement of oil from the tube (Mason and Morrow, 1991). This 
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Fig. 1. Cross-section of unit cell composed of square capillary tubes at Pc1 > Pc2 > Pc3 (Note that 
oil-water interface curvature is the same in each tube at any Pc). 

defines a minimum tube dimenson that will contain both phases. Smaller tubes will 
contain only water. 

The volume of oil in each tube is calculated from the geometry relationships in 

Figure A1, choosing the interface configuration corresponding to the interface radius. 
Saturations and relative permeabilities are then calculated by summing the individual 

tube relationships over the unit volume. We assume that the tube bundle contains tubes 
of M different sizes and that all the tubes with characteristic radius R(m) together have a 

volume V(m), and that the fixed interface radius defines Sw(m) in the individual tubes. 

Each Sw(m) has a corresponding Fw[Sw(m)] and Fo[Sw(m)] so that 

s w  = (m) v(m) 
t t l  = M }2m=  V(m) (1) 

Krw = ~ -  ~ Fw [S~ (m)]R 2 (m) V(m) 
~ ~_ ~ F(m)R 2 (m) V(m) ' (2) 

Kro = ~'~ ~ ~ Fo [S w (m)] R 2 (m) V(m) 
m = M  ~,~=1 F(m)n2(m)V(m) (3) 

Terms in Equations (1)-(3) are defined in the Appendix. 

Using this procedure, oil-water relative permeabilities were calculated for different 
oil-water viscosity ratios, tube shapes, and pore size distributions. Calculations were 
also made for cases where tangential stress is and is not continuous (i.e. where 
interracial shear viscosity is and is not negligible). 

Figures 2 and 3 show oil and water relative permeabilities, respectively, as a 
function of viscosity ratio for a porous medium composed of a bundle of square 

cross-section tubes. The pore volume in this porous medium is uniformly distributed 
among tubes whose characteristic radii span one order of magnitude. That  is, 

V(m) = 1/M, R(m) = Mini n + (m - 1)(U . . . .  - -  Rmln)/(M -- 1), 

and Rmax/Rmin = 10 

where R~ax and Rmi n a r e  dimensions of the largest and smallest tubes, respectively. In 
these calculations, values of M ranging from 10 to 100 were typically used. 

Figure 4 shows kro vs. viscosity ratio for a bundle of 16-sided polygon cross- 
section tubes for the same assumed pore size distribution. 
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Kro vs oil:water viscosity ratio for a bundle of square tubes with Rm,x/Rmln = 10. 
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Fig. 4. 
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K,o vs oil:water viscosity ratio for a bundle of 16 side tubes-with Rmax/Rn, in = 10. 
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Fig. 5. Kro vs number  of sides of polygon for a bundle of polygonal cross-section tubes with go//~w = 30 
and Rm,,,/Rmin = 10. 
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Fig. 6. Krw vs number  of sides of polygon for a bundle of polygonal cross-section tubes with 

#o/lZ w = 30 and Rmax /Rmin  = 10. 

Figures 5 and 6 show oil and water relative permeabilities as a function of the 
number of sides of the regular polygon tube cross-section. Oil-water viscosity ratio is 
fixed at 30 and the pore volume-pore size distribution is the same as above. Figures 7 
and 8 show oil and water relative permeabilities as a function of the pore size 
distribution. Characteristic radii are assumed linearly distributed over several ranges 
with the ratio of Rmax to Rmi, varying from 1.1 to 100. Again, identical fractional pore 
volumes are assigned to each pore radius. Oil-water viscosity ratio is fixed at 30 in 
this calculation and the individual tubes have square cross-sections. 

Figures 9 and 10 show oil relative permeabilities for oil-water viscosity ratios of 10 
and 100, respectively, as a function of a dimensionless interracial shear viscosity 

Ne ----- g/]./oRmax (4) 

where e is the interracial shear viscosity, Rma x is the largest tube radius in the bundle, 
and Po is oil viscosity. Square cross-section tubes and a one order of magnitude pore 
size distribution are assumed. 

4 .  D i s c u s s i o n  

These results, first of all, clearly show lubrication of oil flow by water located in 
corners of the irregularly shaped tubes where interracial shear viscosity is zero. For 
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Fig. 9. Oil relative permeability vs dimensionless interfacial shear viscosity for a bundle of square tubes 
with Rrnax/Rmin = 10 and #o/#w = 10. 
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#o/#w > 1, oil relative permeability is greater than one over a significant range of Sw 

and increases with increasing #o/#~ (Figure 2). Water relative permeability shows 

little sensitivity to #o/#w (Figure 3). As would be expected, the lubrication effect 
diminishs as the tube cross-section becomes more circular (as the number of sides 
increases in Figure 5). For  a 16-side polygon cross section tube, viscosity ratio has 

much less of an effect on oil relative permeability (Figure 4). Again, water relative 
permeability is less sensitive to geometry (Figure 6). Including a distribution of pore 

sizes has an important  effect in the predicted level of viscous coupling. Figure 7 
shows that increasing the pore size range significantly reduces the level of viscous 

coupling as measured by the extent to which the maximum value of kro exceeds 1. 
Surprisingly, beyond about  one order of magnitude, further increasing the pore size 

range has little effect and there is always some lubrication. These same types of 

results are obtained for other viscosity ratios greater than one and for other polygon 
shapes. The sharp change in slope in the kro curves as water saturation increases from 
zero for closely spaced distributions represents the point where the smallest tubes 

can no longer contain oil. As water saturation increases from that point, elimination 
of oil flow in smaller tubes is more important  than increased lubrication in larger 

tubes and kro decreases. 
The effect of nonzero interracial shear viscosity is to reduce lubrication of oil by 

water (Figures 9 and 10). For N~ > 10, there is no lubrication (oil-water interfaces act 
as no-slip boundaries) and oil relative permeability is independent of viscosity ratio. 

The kro curves for N~ = 10 are identical to curves for zero interracial shear viscosity 
and very low oil-water viscosity ratio (Figure 2). For  0 < N~ < 10, lubrication is 

important  at high water saturations and reduced or eliminated at low water 
saturations. This results from the greater influence of interfacial shear viscosity at 
high interface curvatures associated with low water saturations. 

For  oil-water systems with no surface activity, surface viscous effects would not be 

expected (Stoodt and Slattery, 1984). Such systems should flow in porous media with 
N~ = 0. Crude oils, however, do contain naturally occurring surface active com- 

pounds that accumulate at oil-water interfaces. Interfacial shear viscosity measure- 
ments for crude oil-brine systems were reported by Wasan and Mohan (1977). Their 

data is given in Table I. If a maximum pore radius of 0.01 cm is assumed, N~ for these 
systems would range from 10 to 200. 

Table I. Interfacial properties of crude-oils and 1% NaC1 brine (Wasan and Mohan, 1977) 

Crude oil Crude oil Interfacial Interracial shear 
viscosity tension viscosity 
(cp) (dynes/cm) (dyne-sec/cm) 

South Texas 4.2 2.3 4.2 x 10 -- 3 
Oklahoma 6.2 12.9 1.6 x 10-  2 
Middle East 8.2 16.8 7.2 x 10 - 2 
Gach Saran 20.0 28.5 4 x 10 - 1 
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On the basis of the calculations presented here, we conclude that a viscosity ratio 
effect on the relative permeability to oil at oil-water viscosity ratios greater than one 
cannot be ruled out. The effect is less, however, than indicated in earlier publications 
which consider flow only in single tubes. There appears to be much less of a viscosity 
ratio effect on relative permeability to water and on relative permeability to oil at 
viscosity ratios less than or equal to one. The influence of interfacial shear viscosity is 
to reduce or eliminate this viscosity ratio effect. 

A number of uncertainties resulting from the asumptions made in these calculations 
should be pointed out. One obvious deficiency in this work is that we do not model 
axial variations in pore cross-sections (pore bodies and pore throats) nor do we model 
multiple pore interconnections. The effect of this on our conclusions is uncertain. 

Another possible deficiency is that the Boussinesq Newtonian surface fluid model 
may be an over-simplification of more complex phenomena (Levich, 1962) and that 
measured surface viscosities may not quantitatively represent pore scale processes. 

An additional uncertainty in comparing these analytical results to measurements 
obtained in real rocks is that the latter can contain delicate clay mineral structures 
that are sensitive to the movement of fluid-fluid interfaces and equilibrate in different 
ways to fluids of different ionic content. These changes can affect hydraulic 
conductivities to the extent that other effects are masked. 

These results suggest a few definitive experiments to examine the effects of viscous 
coupling in the absence of other effects. First, a series of steady-state relative 
permeability measurements could be carried out in a stable porous medium (e.g., a 
clean sand pack) at a range of oil-water viscosity ratios greater than one. Such a 
system would need to be completely free of surface active contaminants. Alternative- 
ly, a nonaqueous fluid could be used as the wetting phase. If these results confirm a 
significant level of viscous coupling, then they could be extended to real petroleum 
reservoir fluid pairs, and finally, to a range of real reservoir rock. 

5. Conclusions 

Flow calculations in a model of a porous medium consisting of bundles of 
noncircular cross section tubes are used to investigate the influence of viscous 
coupling on two-phase water-oil relative permeabilities. Analysis of these calcula- 
tions leads to the following. 

(1) Where surface rheological effects can be neglected, viscous coupling is import- 
ant. This leads to a dependence of oil relative permeability on oil-water 
viscosity ratio for viscosity ratios greater than one for a range of pore 
cross-section shapes and pore size distributions. The coupling effect is much 
less for oil relative permeability at oil-water viscosity ratios less than one and 
for water relative permeability at all viscosity ratios. Also, coupling is less in 
models with a wide distribution of pore sizes than where distribution is only 
over a narrow range. 
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Inteffacial shear viscosity acts to reduce viscous coupling and the effects of 
oil-water viscosity ratio on relative permeability. For  values of interracial 
shear viscosity reported in the literature for crude oil-water systems, viscous 

coupling is unimportant and there is no effect of oil-water viscosity ratio on 
relative permeability. 

Appendix: Calculations for Flow in a Single Tube 

(a) SINGLE-PHASE FLOW 

The calculations in this paper consider straight, horizontal tubes whose cross- 
sections are regular s-sided polygons (equilateral triangle, square, etc. - Figure A1). 

For slow axial flow of a fluid of viscosity, #, resulting from a pressure gradient, Gp, 
assuming the cylindrical coordinate system in Figure A1, the axial velocity, v(r, 0), is 
given by 

1 d [ dvq 1 d2v Gp (A1) 
r drLr drJ +r2 dO 2 - p 

A general series solution, bounded at r = 0, for v(r, O) which considers symmetry 
of the geometry and flow with respect to the planes O = 0, + 7r/s, +_ 2~/s, + 3~/s, etc. 
is 

~ v ( r , O ) _  r 2 "= ~ 
Gp 4 + ao + ~ [anr sncos(snO)] (A2) 

n = l  

subject to the boundary condition, v(r, O) = 0 at the tube wall. To obtain successive 
approximations to v(r, O), we truncate the series at n = N. The positive definite 
integral over the tube wall 

J[a,] = fs~ [v2(r' O)] d& (A3) 

is then minimized with respect to each of the undetermined parameter, ao, al ,  a2, . . . ,  
aN. The set of N + 1 linear equations thus obtained is solved to obtain the 
parameters. The velocity profile is integrated over the tube cross section to obtain an 
expression for flow rate of the form 

Q = - FR 4 Gp/# (A4) 

The series for v(r, O) converges quickly. The N ~ oe value for F is obtained to within 
1 part in 10,000 with N = 3. For an equilateral triangle (S = 3), the exact solution 
F = 1.35/,]3, (Singhal and Somerton, 1970) is obtained. For  S ~ o% the Poiseuille 
equation with F = n/8, is obtained. 
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R 
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R 

(c) Family of Stable Oil-Water Interfaces 
Distance From Center  of Interface Circular  S e g m e n t  to Center  
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Then:  
Interface R a d i u s  

Water  Saturat ion as a 
Fract ion of T u b e  V o l u m e  

= R (1 - a cos rffs) 

= (1 - a cos  rJs) 2 [1 - rd(s t an  g/s) ]  

Fig. A1. Polygon tube geometry. 

(b) TWO-PHASE FLOW 

For flow of two phases, oil and water, the velocity distributions, Vo(r, | and Vw(r, | 
are defined by (A1) in each phase subject to the zero velocity boundary condition at 
the tube wall and continuity of velocity and a stress balance across the oil-water 
interface. 

With the assumption of low capillary number and negligible gravity, the normal 
stress balance at the oil-water interface in this geometry is satisfied only if interfaces 
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in the r -O  plane are circular arcs. That is, interfacial tension locally dominates 
viscous gradient forces so that the interface must be a surface of constant curvature. 
Figure A1 shows the family of interface configurations that satisfy this requirement 
as well as the zero contact angle condition and gives the phase volume relationships 
for each. As discussed in the text, we assume that the minimum oil volume that can 
exist corresponds to a full circle internally tangent to the tube wall. 

The tangential component of the stress balance (Aris, 1962) in the cylindrical 

coordinate system is 

. - - -  . - - V  no V no 
#~ dr + r  d |  dr + r d |  Row 2 d~) z 

~ O~ (AS) 

where e is the Boussinesq surface shear viscosity and Row is the oil-water interface 
radius as shown in Figure A1. The variable @ is the angular coordinate in a second 
cylindrical coordinate system whose origin is at the center of the interface circle (01, 
02, 03 in Figure A1). Derivation of a general expression for d 2 v/d~ 2 in terms of r and 
| derivatives by coordinate transformation is straightforward but results in an 
expression too complex to be given here. 

For  e = 0, (A5) reduces to a statement of tangential stress continuity. 
Solving (A1) in each phase subject to symmetry and boundedness requirements 

gives 

#oVo(r, O) r 2 n=oo 
Gp - 4 + ao + ~ [a,r s" cos(snO)], 

n = l  

#wVw(r, O) r 2 
- -  - + b o +  

Gp 4 

(A6) 

+ [{b,r s" + c,r -s"} cos(snO)]. (A7) 
n = l  

Note that vw is not required to be bounded at r = 0. A ln(r) term which appears in 
the general solution for vw can be shown to vanish in satisfying the stress boundary 
condition (A5). 
To satisfy the boundary conditions, three positive definite integrals are defined which 
will approach zero as the boundary conditions are satisfied. On the tube wall, St, 

J1 [a,, b,, c,] = fs~ [v(r, 0)]  z dSt, (A8) 

at the oil-water interface, Si, 

J2[a,, b,, c,] = fs, [Vo(r, (9) -- vw(r, O)] 2 dSi, (A9) 



Table II. Two-phase flow calculation results for values of N square tubes, water saturation = 0.2146, 

~ = 0  

Oil-water viscosity ratio = 0.1 

N Fo F,, J1 Jz J3 J1 + J2 + Ja 

1 0.4099 0.0389 5.6E-05 4.0E-08 2.9E-07 5.6E-05 
2 0.4092 0.0353 2.2E-07 2.3E-10 4.2E-10 2.2E-07 
3 0.4092 0.0354 2.6E-08 9.3E-12 7.6E-12 2.6E-08 
4 0.4092 0.0354 2.5E-08 3.9E-11 2.5E-11 2.5E-08 
5 0.4092 0.0354 8.8E-10 1.1E-12 5.0E-13 8.8E-10 

Oil-water viscosity ratio = 1.0 

N Fo Fw J1 J2 J3 J1 + J2 + J3 

1 0.5332 0.0303 4.3E-06 1.3E-07 8.3E-09 4.4E-06 
2 0.5331 0.0293 1.4E-07 3.9E-09 7.9E- 11 1.4E-07 
3 0.5331 0.0292 1.3E-08 2.7E-10 3.1E-12 1.3E-08 
4 0.5331 0.0292 2.2E-09 3.3E- 11 2AE- 13 2.2E-09 
5 0.5331 0.0292 5.1E-lO 5.9E-12 3.0E-14 5.2E-t0 

Oil-water viscosity ratio = 10. 

N Fo Fw J1 J2 J3 J1 + J2 + J3 

1 1.4073 0.0169 3.4E-05 6.7E-06 4.3E-09 4.1E-05 
2 1.2700 0.0166 1.2E-05 3.4E-06 8.6E-10 1.5E-05 
3 1.1859 0.0154 2.8E-06 9.9E-07 1.4E-10 3.8E-06 
4 1.1554 0.0153 1.1E-06 4.1E-07 3.7E-11 1.5E-06 
5 1.1390 0.0151 4.6E-07 1.8E-07 1.1E-11 6.4E-07 
6 1.1310 0.0151 2.3E-07 8.7E-08 3.9E-12 3.2E-07 
7 1.1262 0.0151 1.2E-07 4.4E-08 1.5E-12 1.6E-07 
8 1.1235 0.0151 6.4E-08 2.4E-08 6.6E-13 8.8E-08 
9 1.1218 0.0150 3.5E-08 1.3E-08 3.0E-13 4.8E-08 

10 1.1208 0.0150 2.1E-08 7.9E-09 1.4E-13 2.9E-08 

Oil-water viscosity ratio = 30. 

N Fo Fw J1 J2 .J3 J1 + J2 + J3 

1 3.2919 0.0148 4.7E-05 1.2E-05 8.2E-10 5.9E-05 
2 2.6859 0.0137 1.8E-05 6.4E-06 1.9E-10 2.4E-05 
3 2.2688 0.0116 5.5E-06 2.4E-06 4.2E-11 7.9E-06 
4 2.0736 0.0111 2.7E-06 1.2E-06 1.4E- 11 3.9E-06 
5 1.9494 0.0107 1.4E-06 6.6E-07 5.4E-12 2.1E-06 
6 1.8727 0.0105 8.1E-07 3.9E-07 2.4E-12 1.2E-06 
7 1.8190 0.0102 4.9E-07 4.9E-07 1.1E-12 7.3E-07 
8 1.7820 0.0101 3.2E-07 1.6E-07 6.0E-13 4.8E-07 
9 1.7547 0.0100 2.1E-07 1.0E-07 3.3E-13 3.1E-07 

10 1.7348 0.0100 1.5E-07 7.2E-08 1.9E-13 2.2E-07 
11 1.7196 0.0099 1.0E-07 5.1E-08 1.1E-13 1.5E-07 
12 1.7081 0.0099 7.3E-08 3.7E-08 6.8E-14 1.1E-07 
13 1.6990 0.0098 5.3E-08 2.7E-08 4.3E-14 8.0E-08 
14 1.6920 0.0098 4.0E-08 2.0E-08 2.8E-14 6.0E-08 
15 1.6863 0.0098 3.0E-08 1.5E-08 1.9E-14 4.5E-08 
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Fig. A2. Axial velocity profile along the diagonal of a square capillary tube as a function of 
dimensionless interracial shear viscosity. Tube S,~ ~- 0.2146. #o//1., = 100. 

a n d  

J3[a., b., c.] = ~ IX(r, |  dSi. (A10) 
j s  i 

where X ( r ,  | is the left side of Equation (A5). To obtain successive approximations 
to Vo(r, | and v~(r, 0), we truncate the series at n = N and minimize the sum of the 
three integrals with respect to each of the undetermined parameters (the a's, b's and 
c's) and the set of 3N + 2 linear equations solved to find a 'best' solution. Oil and 
water flow rates are calculated by integrating each velocity profile over its respective 
cross-section, giving the expressions 

Q| = - FoR4Gp/12o,  (All) 

Q,~ = - F ~ , R  4 G p / u ~ .  (A12) 

Table II. illustrates how the calculation progresses for two-phase flow in a square 
tube at a several oil-water viscosity ratios and with zero surface viscosity. Note that 
each of the three boundary integrals decreases with increasing N indicating progress- 
ively better approximations to the boundary conditions individually as well as in 
aggregate. As shown in Table II., convergence requires successively more parameters 
as the oil-water viscosity ratio increases. 

As ~ increases, velocity in the interface decreases. At very high values of e, the 
interface behaves as a rigid boundary for flow of both oil and water. This can be seen 
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in Figure A2 which shows representative velocity profiles in a square tube as a 
function of e/#oR with an oil-water viscosity ratio of 100. For high values of e, our 
calculations agree with those of Ransohoff and Radke (1988), who considered corner 
flows in noncireular pores. 
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