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Abstract. The plane elasticity problem of the interaction between an edge dislocation and 
an elliptical inhomogeneity is solved, and the image glide-force on dislocation is computed. 
Contour plots of the force exterted by either an elliptic hole (crack) or a rigid elliptical 
inhomogeneity show that force is stronger for more elongated shapes, and that in some 
cases dislocation trapping effects undergo drastic changes even for slight shape variations. 
The general case is investigated by means of angular plots of force. They show increasing 
oscillatory angular depence on increasing both elongation and shear moduli difference. 

PACS: 61.70.G, 46.30.C, 62.20 

The interaction between an edge dislocation and a 
circular inhomogeneity has been extensively investi- 
gated in the past years [1-3]. Edge dislocations near 
sharp or elliptical cracks have also been considered 
[4, 5]. However, the general case of the interaction 
with an elliptical inhomogeneity has not yet been 
confronted (a solution was found for the screw dislo- 
cation companion problem [6]). This model may be 
considered as a basic one in the investigation of 
inhomogeneities' shape effects on the elasto-plastic 
behavior of materials. For instance, it may help de- 
termine the best shape of fiber cross-section in order to 
improve the performances of a composite material, or 
estimate the effect of slight deviations from the ideal 
shape on the product quality. More in general, it may 
allow us to get an insight into the interplay between 
shape and material constant difference. The elasticity 
solution of the problem is performed in Sect. 1 on the 
basis of a recent work [7]. Results of computer 
calculations, selected to display the effect of shape on 
the image glide-force on dislocation, are recorded and 
discussed in Sect. 2. The important special cases of 
void (crack) and rigid inhomogeneity are examined in 
detail. 

'~ Work supported by the Gruppo Nazionale di Struttura della 
Materia del C.N.R., Roma, Italy 

1. The Elasticity Problem Solution 

General formulas yielding the perturbative elastic field 
produced by an elliptical inhomogeneity have been 
recorded in [7]. Here, the unperturbed field is engen- 
dered by an edge dislocation with Burgers vector 
B = (B~, By), located at z o = r o exp (i~po), or 
(o=r near the inhomogeneity (Fig. 1). The 
complex potentials representing this field may be 
written as 

% ( 0  = R~ logl-(~- ~o) (~-  m/~o)/~] 

r/,(O = R7 log[(~- ~o) (~-  m/~o)/~] (1) 

~(1/~ + m r  ~o - m/fo) 
+R7 

(~-  ~o)(~- m/~o) 
where 

~=ffe i0 

-= GI (B  , -  iB~)/nR(~q + 1) 

~3 - 4v 1 for plane strain 

~q = [ ( 3 -  v0/(1 + vl) for plane stress 

m = ( a -  b)/(a + b) 

R = (a + b)/2.  

a and b are denoting the ellipse's semi-axes, and G 1 and 
v 1 matrix shear modulus and Poisson's ratio, re- 
spectively (subscript 1 refers to matrix, and  subscript 
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Fig. 1. (a) Edge dislocation near an elliptic 
inhomogeneity. (b) Mapping onto the plane 

deprived of the circle p = ~/m 

2 to inhomogeneity). An important role in the pre- 
sent problem is played by the shear moduli ratio 
r = G2/G 1 
The k-positive Laurent's expansion coefficient of the 
functions (1) for m/r o <=~ <=Co are, respectively; 

A k = _ RY(o  k/k 
B k = R~ [e- 2 i~/k + M(~o ' 0o)] (o k (k = 1, 2, 3... ), 

where 

~=arctan(Br/B x) 
p 2  i0o~/( ,q2 o 2 i 0 o  FF/). M(Oo, 0o) = (~o 2 - 1)(1 - m ~ :,,~o ~ - 

By introducing the values of these coefficients as input 
of a general computer subprogram [7], we are now 
able to evaluate any quantity related to the elastic field 
in the dislocated heterogeneous plane. In particular, 
we are interested in the glide component of the image 
force on dislocation, as the elasto-plastic properties of 
a solid directly depend on dislocation glide motion. 
The image force f(fx, fy) per unit length of dislocation 
line may be calculated through the well-known Peach- 
Koehler formula [8], which yields 

O(~o)%(~o)+~;(~o)_] 
~o9,(~o) J' 

where 

co(O = R(~ + m/O 

~ , ( 0  = ~ o ' F ) / d ( 0  

and q~,(() and Pp(0 are the perturbative potentials. The 
glide component of this force is soon calculated as the 
inner product f.B/B. 

2. Results 

The special cases of the elliptic hole (F = 0) and rigid 
elliptical inhomogeneity ( F -  oe), for which very simple 
resolutive formulas are available [7], are considered 
first. Indeed, they are of remarkable practical interest, 
and may serve as a basis of comparison in a general 
approach. 
For a fruitful discussion, it is essential to bear in mind 
the image force fields around circular inhomogeneities 
(m=0). Therefore, Fig. 2 shows glide equiforce con- 
tours around a circular hole and a rigid disk, for plane 
strain (v 1 = 0.1) and Burgers vector directed along the 
x-axis (By =0). Then, Figs. 3 and 4 show the modifi- 
cations of these contours when the inhomogeneity 
deviates from circularity, by stretching either in the 
x (glide)- or in the y (climb)-direction (here and in the 
following the term "stretching" in used in a purely 
geometrical sense). In particular, Fig. 3b and d refer to 
slit (Griffith) cracks, and Fig. 4b and d to rigid lines. In 
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Fig. 2a and b. Contour plots of the dimen- 
sionless glide force on dislocation (B y = 0) 
around a circular hole (a), and a rigid disk 
(b) 
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Fig. 3a-d.  C o n t o u r  plots  of the dimensionless  
glide force on  dis locat ion (By = 0) a r o u n d  an  
elliptic hole. (a) m=0 .5 ,  (b) m =  1 (crack), (c) 
m =  - 0 . 5 ,  (d) m =  - 1 (crack) 
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Fig. 4a-d .  C o n t o u r  plots  of the dimensionless  
glide force on dis locat ion (B e. =0)  a r o u n d  rigid 
elliptical inhomogenei ty .  (a) m = - 0 . 5 ,  (b) m = 1 
(rigid line), (c) m =  - 0 . 5 ,  (d) m =  - 1 (rigid line) 



220 L. Stagni and R, Lizzio 

all graphs, dotted and point-dotted lines represent loci 
of unstable and stable glide equilibrium, respectively 
(the y-axis is always a locus of equilibrium), and the 
force is expressed in units of NY]. 
Even at the first glance, shape effects appear rather 
substantial. The salient features may be summarized as 
follows: 
(i) force intensity increases with stretching over most 
of the region near the inhomogeneity; 
(ii) new equilibrium curves, or important modifi- 
cations of the initial ones, set up with stretching. 
With regard to the latter feature, it is to be noted that a 
strong anisotropy arises. Actually when stretching 
occurs in the glide direction, an appreciable modifi- 
cation of the equilibrium curves is observable only for 
a hole (in the form of a new loop pointing toward the 
crack tip, see Fig. 3b), and only for strong elongations 
(rn~0.6). On the contrary, when stretching occurs in 
the climb direction drastic changes of the equilibrium 
loci take place near both a hole and a rigid particle, 
and, as also shown by contours not recorded here, as 
soon as the shape deviates from the perfectly circular 
one (raG0.01). Around a hole (Fig. 3c and d) a new 
bell-shaped stable-equilibrium curve appears at the 
sides of the y-axis, while around a rigid particle (Fig. 4c 
and d) the initially unstable-equilibrium curve trans- 
forms into a loop (thus partly "stable"). As a con- 
sequence, we may at least suspect no negligible errors 

to be introduced (e.g., in fiber-reinforced composite 
design) by neglecting small deviations from 
circularity. 
In order to discuss shape effects in the general case, we 
have selected a number of graphs (Figs. 5 and 6) 
showing the angular dependence of the glide force at a 
fixed distance from the ellipse's center (ro/R=5), for 
plane strain (v 1 =v2=0.3) and By=0. Figure 5 refers 
to soft inhomogeneities (F<I) ,  while Fig. 6 to hard 
ones (F>  1). Point-dotted curves show the force exter- 
ted by circular inhomogeneities, and stretching in the 
climb direction is represented by negative values of the 
shape parameter m. 
It is observed that, as expected, the force vanishes for 
m = __ 1 (a line inhomogeneity can exist only as either a 
crack or a rigid line). However, it would be wrong to 
infer a general monotonic lowering of glide force on 
increasing stretching. This could be assumed true only 
for F near to 1 (Figs. 5a and b and 6a and b). When F 
decisively differs from unity (Figs. 5c and d and 6c and 
d) the situation is more complex. For a circular 
inhomogeneity the curves maintain themselves rather 
smooth, whereas those for rn fl= 0 show noticeable oscil- 
lations. The amplitude of these oscillations increases 
with stretching, and, as a rule, this leads to the 
appearance of new equilibrium positions. Force in- 
tensity also increases with stretching, except in an 
angular range around ~0 o = 0 (which gets narrower on 
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Fig. 5. Angular dependence of the dimension- 
less glide force on dislocation, Fo, around a 
soft elliptical inhomogeneity (ro/R = 5) 
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Fig. 6. Angular dependence of the dimension- 
less glide force on dislocation, Fo, around a 
hard elliptical inhomogeneity (ro/R = 5) 

approaching the limiting cases F = 0  and F = oo). To 
sum up, a gradual shift is observable from the con- 
dition of force decreasing with stretching (small shear 
moduli difference) to that of force with oscillatory 
angular dependence and increasing with stretching 
(large shear moduli difference). 

3. Conclusions 

The shape of an inhomogeneity appears to be an 
important  factor in determining dislocation glide mo- 
tion. In particular, deductions based on the knowledge 
of the modulus effect for a given shape may no longer 
hold even for slight deviations from this shape. Less 
critical, yet evident, is the influence of material con- 
stant difference on shape effects. These results may be 
directly applicable to phenomena which involve dislo- 
cation rearrangement in the absence of external load- 
ing (e.g., annealing treatments). To some extent, they 
may also suggest how inhomogeneities' shape affects 
the behavior of an externally stressed solid. On this 
line, we are planning in the immediate to extend the 
model by the introduction of tractions at infinity. 
Among other investigations suggested by the present 

results, we first point out the interaction of elliptical 
inhomogeneities with more general line singularities. 
This has important  applications in the description of 
plastic zones near defects or inhomogeneities, and may 
be regarded as a generalization of the work by Vitek 
and Hirth [9]. The observed sensibility of dislocation 
trapping to inhomoheneity shape makes also interest- 
ing to consider possible feedback effects (because of 
shape variations produced by loading), though these 
should be properly treated by nonlinear elasticity. 
Finally, the resolution of problems involving geometri- 
cal forms other than elliptical, and three-dimensional 
geometries, may be stimulated by the present work. 
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