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It has been shown recently in a number of investigations that the presence of 
dispersed stable oxides in chromium-containing alloys can result in the forma- 
tion of protective Cr203 scales, which appear to grow considerably slower than 
similar scales on alloys not containing dispersoids. In addition, Cr20 3 is 
removed by further oxidation to the volatile species CrOa, and the rate of this 
process is unaffected by the dispersoid. Simple kinetic models have been used to 
describe the results, but it is suggested, on the basis of a curve-fitting analysis, 
that these approaches are incorrect. 

I N T R O D U C T I O N  

Pure chromium, and alloys of Fe, Co, and Ni containing significant amounts  
of chromium form Cr20  3 scales on oxidation at elevated temperatures. At 
the lower temperatures in this range, which in practice means below 1200~ 
or so, the r a t e  of thickening of the scale, or the overall weight gain of the 
specimen, effectively follows a parabolic rate law : 

w 2 (or x 2) = kpt (I) 

However, at higher temperatures, or at very long times, deviations from this 
become apparent.  Eventually the weight of the specimen reaches a maximum 
and starts to diminish, the rate of weight loss tending asymptotically to a 
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constant value (linear rate law) and the scale thickness also approaching a 
constant value asymptotically. 

This is due to the oxidation of the Cr203 to the volatile species CrO 3 . 
The rate of this reaction is determined by diffusion through a gaseous 
boundary layer, and is independent of the thickness of the scale; it does 
however depend on gas pressure and velocity. The kinetics of the oxidation/ 
volatilization have been studied by Hagel ~ and by Graham and Davis. 2 

It is a relatively simple matter to calculate the form of the kinetics for 
the situation where a scale is thickening by a diffusion-controlled process 
and thinning by an interface-controlled volatilization: Lewis 3 used a 
graphical method and Tedmon r has developed an analytical expression. 
Briefly, his analysis may be expressed as follows: 

If the scale has thickness x at time t and is growing by a parabolic 
(diffusion-controlled) process, the instantaneous rate of growth is : 

(dx/dt)g = kp /2x  (2) 

where ke is the parabolic rate constant. However, the scale is becoming 
thinner because of the (thickness-independent) linear oxidation/volatilization 
process : 

(dx/dt)~ = - k s (3) 

where k s is proportional to the volatilization rate constant k v. Then, the 
overall rate of scale growth is 

d x / d t  = (dx/dt)g + (dx/dt)v  = kp/2X - k s (4) 

Integrating, 

- ( x / k , )  - ( k S 2 k  2) log [(kj2) - ksx ] + C = t (5) 

where C is a constant of integration. Substituting the boundary condition 
x = 0 when t = 0 and rearranging gives 

t = ( k p / 2 k ~ ) { - ( 2 k s / k p ) x  - log [1 - ( 2 k j k p ) x ] }  (6) 

This equation is in an inconvenient form for solving on a desk calculator, 
but it can be made more tractable. Clearly, the thickness of the scale 
approaches a limiting thickness, xy ,  when the rate of thickening is equal to the 
rate of thinning: 

x /  = kp /2k  s (7) 

and if t. is the time taken for the scale to grow to a thickness which is a 
fraction n (0 _< n <_ 1) of the limiting thickness, then eq. (6) becomes 

t ,  = (xy/ks) [ -  n - log (1 - n)] (8) 
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The expression in square brackets can then be simply tabulated, and given 
rate curves fitted by selecting values of xy and k s. Note that the thickness 
of the scale at time t, is nx s ; and in this time the specimen has also lost an 
amount of material proportional to kstn; the overall weight change can thus 
be calculated from the difference of these two quantities. Although it is 
simple to use a computer to fit Tedmon's  equation to rate curves, it is often 
more revealing to have the equation in a form which allows hand fitting. 

Tedmon's  equation, and Lewis's equivalent treatment, fit the observed 
data for the oxidation of chromium quite well. However, recently several 
investigators 5-9 have shown that alloys of Ni -20wt .% Cr 5-8 and Co-  
21 wt. % Cr 9 containing between 1 and 3 vol. % of a dispersed oxide, such 
as ThO 2, Y203, or CeO2, give rate curves on oxidation for relatively short 
times (100 hr) at quite moderate temperatures (1000-1200~ which show 
features similar to those found only for much longer times and higher 
temperatures in the case of chromium. It appears that the dispersoid does 
not affect the volatilization rate of Cr203, and thus, in terms of Tedmon's 
equation, the parabolic rate constant must have been reduced. 

Giggins and Pettit 5 used a computer program to fit Tedrnon's equation 
in a form in which the "parabolic rate constant" was allowed to vary with 
time, and found that their curves could be fitted; but kp decreased asympto- 
tically to a value between 10 and 15 times smaller than that for a Cr20  3 
scale growing on an alloy without a dispersed phase. It should be noted that 
any curve can be fitted if one of the rate constants is allowed to vary, so that 
the fitting is not in itself very helpful; the general form of the variation of the 
apparent value of k v with time or with scale thickness would be useful, but 
this is not stated. Davis et al. 6 and Lowell 7 have also used Tedmon's equation, 
but did not consider it gave good fit to their results. During earlier studies 8'9 
qualitative analysis had suggested that (a) the maximum in the weight gain 
curve came too soon, and (b) the rate of weight loss approached the asymptotic 
constant value too rapidly for Tedmon's equation to be valid. It therefore 
appears that the form of the rate law for either the growth process or the 
volatilization process has been altered. Experimental evidence suggests that 
in fact the volatilization process is unaffected, so for the purposes of this 
paper it is assumed to remain constant, and an experimental rate curve is 
analyzed to determine the form of the growth kinetics. 

ANALYSIS OF AN EXPERIMENTAL RATE CURVE 

In order to analyze the rate curves, a priori it seemed best to determine 
the dependence of the flux of material through the scale layer, dw/dt, as a 
function of the scale thickness. Now, the overall rate of weight change 
dw'/dt in the reaction is made up of the rate of weight increase due to oxygen 
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Fig. 1. The quantity dw'/dt vs t estimated graphically from a rate curve for the 
oxidation of Co-21 wt. ~o Cr-3 vo!. ~ Y : O  3 oxidized at 1200~ in oxygen at 
100 torr 9 (specimen 593). 
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Fig. 2. The quantity dw/dt vs w from the data of 
Fig. 1. 
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present as solid Cr203 on the metal surface, dwo/dt, and the rate of weight 
decrease due to chromium loss as CrO3 vapor, dwJdt: 

dw'/dt = dwo/dt - dwJdt (9) 

and the flux of material through the scale layer is equal to the flux of chromium 
required to form solid Cr203 , which is a • (dwo/dt) where a is the weight of 
chromium per unit weight of oxygen in Cr203, plus the flux of chromium 
required to form the volatile CrO3, which again is dwjdt:  

Thus, 

dw/dt = a(dwo/dt) + dwjdt  

dw/dt = a(dw'/dt) + (1 + a)(dwjdt) 

(10) 

(11) 

In general, we expect dw/dt to approach dwo/dt eventually, so apparently 
dw'/dt will approach -dw~/dt, which we assume to be constant. Thus, 
provided the reaction has been continued for sufficiently long, all these 
quantities can be estimated graphically from the rate curve. Figure 1 shows 
dw'/dt vs t determined graphically from a typical rate curve. It approaches a 
limiting value of -0 .012  mg/cm2/hr, so 

dwv/dt = + 0.012 mg/cmZ/hr 

and 

dw/dt = 2.1667(dw'/dt) + 0.038 

This now must be plotted against the scale thickness, w, and in order to keep 
the units consistent the thickness is expressed in terms of milligrams per 
square centimeter of chromium present as Cr20  3 . This is estimated from the 
overall weight gain, w', together with the loss due to volatilization wv: 
clearly 

w = a(w' + w~) = 2.1667(w' + 0.0120 

Figure 2 shows dw/dt vs w, plotted on a logarithmic scale: for small 
values ofw the curve is well fitted by a straight line of slope - 2. The deviation 
at larger values of w is neither surprising nor alarming, since these points are 
derived from the later portions of the rate curve where the curvature is small 
in relation to the scatter of the data points. Furthermore, it is possible that 
the real asymptote of the dw'/dt vs t curve (Fig. 1) is rather lower than the 
value chosen, since this is a not uncommon error unless the extrapolation is 
done analytically. If the values ofdw/dt are all increased by 0.01, all the points 
lie close to a line of slope - 2. 
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Fig. 3. Fit of eq. (14) (full line) to the experimental curve (open circles) used for 
plotting Figs. 1 and 2, 
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From this, it appears that the transport kinetics through the scale for 
this reaction have the form: 

d w / d t  = k'c/W 2 (12) 

which corresponds to the cubic rate law 

w 3 = kc t  (13) 

It is quite simple to rewrite Tedmon's  analysis by replacing the parabolic 
growth law with a cubic rate law: using the same terminology as before, 

t ,  = ( x l / k = ) { -  n - 0.5 log [(1 - n)/(1 + n)]} (14) 

Figure 3 shows a curve fitted from this equation, together with the original 
experimental data points from which the analysis was derived, and the 
agreement is clearly very good. It should be noted that in the early stages 
Fig. 2 shows that the growth law is apparently genuinely cubic; to regard it 
as a changing parabolic rate constant is therefore incorrect, since this would 
result in the slope of the line in Fig. 2 approaching 1 at small times, and this is 
clearly not so. 

However, in detail all the rate curves are not well fitted by eq. (14) 
either : a similar analysis on a curve from the work of Davis e t  al .  6 suggested 
a growth law of the form 

w 4 = k q t  (15) 
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leading to an overall rate law of the form 

t, = (x j . /k , )[ -n  - ~{x/3 tan-1 [ - ( 2 n  + 1)/x/3)] 
(16) 

+ log E(1 - n)/(M + n + 1)i/21} + 1]  

where the integration constant I is given by 

I = �89 t a n - '  ( -  l/x/3)} 

Although this expression appears complicated, the expression in square 
brackets can again be tabulated, and then fitting any given rate curve is quite 
simple. 

C OMP ARISON W I T H  DATA IN T H E  LITERATURE 

Figure 4a-4c illustrates the fit of the three rate equations to some results 
from this investigation and from the literature. The maximum in the overall 
rate curve occurs at approximately 0.3x s for the parabolic function, 0.5xf 
for the cubic function, and 0.Txf for the quartic function; the significance of 
this is that the rate curve becomes effectively linear when n exceeds about 0.9, 
so that the sooner the rate curve becomes linear after it has passed through the 
maximum, the higher the probable degree of the rate equation. Figure 5 shows 
the three equations fitted to an experimental rate curve: since there are two 
rate constants, x I and ks, it is necessary to fit two values on the curve, and for 
convenience it is easiest to fit the maximum weight and the time at which the 
overall weight gain is zero, since in general this gives a curve which has a 
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Fig. 4a. Fit ofeq. (14) to the experimental data (open circles) of Giggins and 
Pettit 5 for the oxidation of TDNiCr at 1100~ in oxygen at 76 tort. 
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Fig. 4b. Fit of eq. (t6) to the experimental data (open circles) of Davis 
et al. 6 for the oxidation of Ni-22.6 wt. ~ Cr--1 vol. ~ ThO 2 at 1200~ in 
oxygen at 150 Torr. 
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Fig. 4e. Fit of eq. (14) to the oxidation of Ni-20 wt. 700 Cr-3 vol. ~ CeO 2 
at 1200~ in oxygen at 100 Torr (open circles). 8 
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Fig. 5. A comparison of the fit of the three rate equations derived in the 
text with a typical rate curve curve (crosses) for the oxidation of a 
Ni-20wt.%Cr-3vol.%Y203 alloy (4/1/4 material) at 1200~ in 
oxygen at 100 Torr. 8 

shape most similar to the experimental rate curve; in practice a good fit 
can be obtained with two or three iterations, and within the limits of experi- 
mental accuracy it is not necessary to use a detailed curve-fitting procedure. 
The three curves in Fig. 5 indicate the general character of the rate equations: 
for these two boundary conditions the maximum occurs at successively 
earlier times as the degree of the growth equation increases, and as remarked 
before, the approach to rectilinearity after the maximum is more rapid. The 
experimental points shown are typical, in that none of the equations fit 
exactly: it would be relatively simple to produce an equation with a con- 
tinuously variable rate index and allow a computer to fit the curve for the 
rate index as well, but this does not really seem to be justified by the results. 

It is worth asking what the significance of this curve-fitting procedure is. 
In the earlier study, 8'9 the scale growth consisted of two distinct parallel 
processes; the growth of the relatively thick, nodular scale; and the growth 
of the thin scale. It is clear from the failure to fit the rate curves with an 
expression involving a parabolic growth step that both processes cannot be 
parabolic; but since they are unlikely to be described by a single rate law, 
the use of a single expression of whatever order in the rate equation is un- 
likely to accurately represent the true situation. Although in this study only 
very minor amounts of other oxides were observed, other investigations have 
reported the formation of significant amounts of NiCraO 4 in the early 
stages of oxidation, and again any kinetic model ignoring the presence of 
such phases is unlikely to be accurate. 

However, it is interesting to note that Seybolt t~ has shown that the 
oxidation of chromium containing a Y:O a dispersion under conditions 
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where the volatilization was negligible could be described by rate laws with 
indices as high as 4 at 1150~ and apparently increasing with decreasing 
temperature. Furthermore, Kravchenko and Zhuk ~1 have reported rate 
indices in the range 2.4 to 3.1 for the oxidation of Ni-20 wt. % Cr containing 
dispersed Cr203, A1203, TiO2, and Z r O  2 in air for times up to 500 hr at 
temperatures of 800 and 900~ where the volatilization process should 
have been negligible. There seems good reason to believe therefore, that the 
effect of a dispersed oxide phase is to alter the form of the growth law of the 
oxide; but in the absence of models capable of interpreting higher order 
growth laws it is not possible to attempt a mechanistic interpretation of this 
result. 
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