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Summary. For a two-way cross-over design, which 
appears to be the most common experimental design 
in bioavailability studies, 95%-confidence limits for 
expected bioavailability can be obtained by classical 
analysis of variance (ANOVA). If symmetry of the 
confidence interval is desired about zero (differ- 
ences) or unity (ratios) rather than about the corre- 
sponding point estimator, Westlake's modification 
can be used. Two nonparametric methods and their 
adaptations to bioavailability ratios are reviewed, 
one based on Wilcoxon's signed rank test (Tukey), 
and the other on Pitman's permutation test. The ne- 
cessary assumptions and the merits of these proce- 
dures are discussed. The methods are illustrated by 
an example of a comparative bioavailability study. A 
FORTRAN program facilitating the procedures is 
available from the authors upon request. 
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It is widely accepted among biometricians that estab- 
lishing a confidence interval rather than hypothesis 
testing is appropriate to the statistical analysis of bi- 
oavailability studies (Metzler 1974; Westlake 1972 
and 1979; Shirley 1976). In practice, however, publi- 
cations on comparative bioavailability studies still 
use classical hypothesis testing for comparison of 
two or more formulations (Kramer et al. 1977; Riet- 
brock et al. 1979). Frequently, bioequivalence is ac- 
cepted if a t-test or analysis of variance does not 
show a significant difference between the formula- 
tions. Such a conclusion may be erroneous for var- 
ious reasons; variability in the physical characteris- 
tics of the test product or lack of analytical precision 
and/or  heterogeneity of the group studied may result 

in overall variability which does not permit products 
to be distinguished for the chosen sample size. In 
consequence, products with poor mean bioavailabil- 
ity might pass bioequivalence tests merely because 
they possess an additional undesirable property - 
variability (Upton et al. 1980). The lack of power to 
distinguish between different formulations is charac- 
terized by the Type II error. This in turn depends on 
the residual variance, which should be kept as small 
as possible (Fluehler et al. 1981). Further, even if so- 
called parametric confidence intervals are calculat- 
ed, neither the assumption of a normal distribution 
of the residual errors common to all subjects, formu- 
lations and periods, nor the assumption of the addi- 
tivity of these factors may be valid. Under these cir- 
cumstances, the use of so-called nonparametric 
methods is preferable (Koch 1972; Abt 1977; Royen 
1978; Steinijans 1981), i.e. statistical methods which 
are not dependent on the normal distribution and 
additional, rather specific assumptions. 

It is the objective of this paper to review various 
statistical procedures for obtaining confidence inter- 
vals for a bioavailability characteristic. Discussion is 
restricted to the two-way cross-over design, which 
appears to be the commonest design in bioavailabili- 
ty studies (Fluehler et al. 1981). The assumptions of 
the procedures presented are stated and the appro- 
priate equations for the calculation of 95%-confi- 
dence limits are given. In addition, an interactive 
computer program facilitating all of these proce- 
dures has been written in FORTRAN FTN4X (HP 
1000) and is available from the authors upon request. 

Bioavailability Characteristics 

Bioavailability encompasses the rate and extent of 
drug absorption. The area under the concentration/ 
time curve (AUC) and urinary recovery account for 
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T a b l e  1. Two-way cross-over design with a total of  n = 2K subjects, 
i.e. K subjects in each sequence. The response of  the kth subject 
in the period j within the sequence i is denoted by Yijk 
( i = l , 2 ; j = l , 2 ; k = l  . . . . .  K) 

Sequence 1 

Sequence 2 

Period 1 Period 2 

Formulat ion I Formulat ion 2 
(Reference) (Test) 
Ynk ( k = l , . . . ,  K) Ylzk ( k =  1 , . . . ,  K) 

Formulat ion 2 Formulat ion 1 
(Test) (Reference) 
Y21k (k = 1 . . . . .  K) Y22k (k = 1 . . . . .  K) 

some a priori knowledge of the residual variance 
must be available. In addition to the classical ap- 
proach (Ostle 1966), the nomograms of Fluehler et 
al. (1981) give for 6 and 12 subjects, respectively, the 
posterior probability of bioequivalence as a function 
of the relative difference in formulation means and 
the coefficient of variation. 

Confidence Intervals 

the extent of absorption, while the peak plasma level 
and the time taken to reach it may characterize the 
rate of absorption. 

Sample size determination and statistical evalua- 
tion are usually carried out separately for each char- 
acteristic (univariate approach). Vila et al. (1980) 
considered the three statistical moments AUC, MRT 
(mean residence time), and VRT (variance of resi- 
dence time) as a multivariate bioavailability charac- 
teristic. 

Experimental Design 

Bioavailability studies usually follow a balanced, re- 
peated-measurement design, such as a cross-over or 
a series of Latin squares. The commonly used two- 
period change-over design is depicted in Table 1. 

The following effects are included in the classical 
ANOVA-model: sequence and period of administra- 
tion, formulations and subjects (Wallenstein and 
Fisher 1977; Selwyn et al. 1981). One of the major 
problems in clinical trials is carry-over effect, which 
may in addition be confounded with direct effects 
(Grizzle 1965 and 1974). Carry-over effects, however, 
are of almost no concern in bioavailability studies. 
The half-life of a drug is usually known from previ- 
ous studies, and a washout period of 5 to 6 half-lives 
should ensure that no measurable residual drug is 
carried over from one period to the next. This must 
be verified by taking a blood sample prior to the ad- 
ministration of the second formulation. Possible 
pharmacodynamic and/or  metabolically induced 
carry-over effects can usually be ruled out after acute 
administration. 

Sample Size Determination 

Sample size determination depends on the experi- 
mental design and the procedure chosen for the sta- 
tistical analysis. Hence, if ANOVA is to be used, 

Confidence Interval Based on Analysis of Variance 
(A NO VA ) 

We assume that bioavailability data have been col- 
lected for 2 formulations, a test and a reference pre- 
paration, according to a two-way cross-over design, 
as shown in Table 1. Half the total of n subjects, 
K =  n/2, first receive the reference formulation and 
then, after a suitable washout period, the test formu- 
lation (Sequence 1). The remaining K =  n/2 subjects 
receive the 2 formulations in reverse order (Sequence 
2). The allocation of the subjects to the sequences is 
random. 

If we assume that no carry-over effect exists, then 
for a particular bioavailability characteristic y, e.g. 
AUC, the response for the kth subject in the se- 
quence i during the period j can be modelled as fol- 
lows (Selwyn et al. 1981): 

Yijk=bt-+-7/'j-I-'t'l-l-Sik+eijk (i=1,2; j = l , 2 ;  1=1,2; 
k= l , . . . ,K) ,  (1) 

where ~j and z-~ are fixed effects associated with peri- 
od and formulation (treatment). For the sake of sim- 
plicity, it is assumed that rl = - r2 and nl = - n2, so 
that pt becomes the overall mean. Sik is associated 
with the random subject effect, and eijk denotes the 
random error term. It is assumed that the {Sik} and 
{eijk} are all independently and normally distributed 
with means 0 and variances 0 .2 and o-2, respectively. 
The assumptions made about S~k and eijk imply that 

• 2 9 each observation Y~jk has the vanance as + a~, and 
that the two observations on the same individual 
have the covariance o-2 and hence the correlation aZs/ 
(0-2 + a~). Observations made on different subjects 
are independent. The analysis of variance is given by 
Selwyn et al. (1981 ; p 13, Table 1). 

The expected means of the two formulations are 
denoted by pq (1= 1, 2). The two-sided 95%-confi- 
dence limits for the expected mean difference 
6 =  13,2 - -  13"I = l"2 - -  I'1 are calculated as follows: 

d.. + t ( n - 2 ;  0.975) V/2 MSE/n, (2) 
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where d..  = (5/12.q- Y21.)/2-- (911.-+- 5122.)/2 is the esti- 
mated mean difference between Formulation 2 
(Test) and Formulation 1 (Reference). MSE is the 
corresponding mean square for error obtained in the 
ANOVA, and t ( n - 2 ;  0.975) denotes the 97.5-per- 
centile of the t-distribution with n - 2  degrees of free- 
dom, e.g. t(10; 0.975)=2.2281. 

The 95%-confidence limits for the expected mean 
difference between the two formulations are then 
expressed as a fraction of the mean for the refer- 
ence formulation. In order to do so, the unknown 
expected mean of the reference formulation 
has to be approximated by its sample mean 
5ZReference = 51Formulation 1 = (5111. +" 5722.)/2 (Westlake 1972). 
T h e  r a t io  5rVest/YReference = 5rFormuIation 2/~/ Formulation 
serves as a point estimator of the bioavailability ratio 
bt2/gt, and 

(5¢T~t + t(n--2; 0.975) V/2 MSE/n)/YCReferenoe (3) 

serves as its approximate 95%-confidence limits. 
If, for example, log AUC rather than AUC is 

chosen as the bioavailability characteristic (Metzler 
1974; Westlake 1973 and 1976; Steinijans et al. 
1982), then Expression (2) yields 95%-confidence li- 
mits of the logarithm of the expected bioavailability 
ratio. Taking antilogs thus provides 95%-confidence 
limits of the bioavailability ratio itself, a point esti- 
mator of which is the geometric mean of the individ- 
ual ratios AUCTest/AUCReference. 

The presentation given so far assumes that 
K =  n/2 subjects are randomly assigned to each of 
the Sequences 1 and 2. In the case of dropouts, un- 
equal numbers of subjects in the two sequences may 
occur, designated by nt and n2, respectively. This 
leads to modifications, which were presented by 
Grizzle (1965 and 1974). As pointed out by Abt 
(1977), the expected mean square for periods then 
depends on (nl - n2) (2"1 - 2-2). Hence, for nl 4= n2, it is 
not possible to test the null-hypothesis of no period 
effect. See also Grieve (1982). 

With particular reference to comparative bio- 
availability trials, Westlake (1972, 1976 and 1979) 
shifted the emphasis from estimation to decision 
making. If the 95%-confidence limits fall within ac- 
ceptable limits, for example as recommended by a 
regulatory agency, then the test formulation will be 
accepted, and if not it will be rejected. As acceptable 
limits are usually given in a symmetrical form, say 0.8 
to 1.2, the use of a confidence interval symmetrical 
about zero for differences, or about unity for ratios, 
has been proposed by Westlake. Hence, the conven- 
tional 95%-confidence interval for the expected 
mean difference bt2 - gl, which is symmetrical about 
its point estimator a.., cf. Expression (2), and there- 
by symmetrical about the underlying t-distribution, 
is replaced by a 95%-confidence interval symmetri- 
cal about zero. This involves the selection of two 
constants kl and k2, such that Westlake's condition is 
satisfied: 

kl + k2 = 2 @Reference --  YTest) / V/2 MSE/n  (4.1) 

and 

k1 
f f, (n_2)(s)ds = 0.95 (4.2) 
k2 

Equation (4.2) states that the interval (k2, k~) includes 
95% of the mass of the t-distribution with n-2 degrees 
of freedom. The 95%-confidence limits for the ex- 
pected mean difference between test and reference 
formulation, ~t2 - Ix1, are then given by 

&. + k2 x/2 MSE/n  and &. + kl ~/2 MSE/n,  (5) 

which is Westlake's analogue of Expression (2). The 
symmetry of the confidence limits (5) about zero is 
ensured by the condition stated in Equation (4.1). As 
before, approximate 95%-confidence limits for the 
bioavailability ratio bt2/~h are given by 

Westlake's Modification of the ANO VA-Based 
Confidence Interval 

It is apparent from Expression (2) that the conven- 
tional 95%-confidence interval for the expected 
mean difference is symmetrical about the estimated 
mean difference d.. =.YTest--.YReference, and not sym- 
metrical about zero. Similarly, Expression (3) shows 
that the conventional 95%-confidence interval for 
the bioavailability ratio is symmetrical about the 
point estimator YTest/~CReference, and not about unity. 
Conventional confidence intervals thus reflect the di- 
rection in which the sample difference or ratio has 
been found. 

(.YTest + ki ~2 MSE/n)/YReferenc e (i = 1, 2), (6) 

which is Westlake's analogue of Expression (3). 
In order to facilitate the computation of kl and k2 

according to (4.2), Spriet and Beiler (1978) provided 
useful tables with n-2 (degrees of freedom) and 
kl +k2 derived from (4.1) as entries. It should be 
pointed out that for 3'Referenoe < 5¢Test, kl + k2 becomes 
negative. In this case, -(k~ + k2) serves as the table 
entry, and the resulting value will be - kl and not k2. 

Comparison of Expression (5) and (2) shows that 
in essence only the 95-percentiles of the t-distribu- 
tion have been changed from the central values 
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Table 2. Nonparametric 1-a confidence interval of expected bio- 
availability ratio based on Wilcoxon's signed rank test (Tukey) 

Number Number 1-a confidence interval of 
of of expected bioavailability ratio 
subjects Walsb 

Index of ordered 
averages geometric Walsh average 

n n(n+l) Co, n(n+l) q_l_Ca 1-a 
2 2 

6 21 1 21 0.9688 
7 28 3 26 0.9531 
8 36 4 33 0.9609 
9 45 6 40 0.9609 

10 55 9 47 0.9512 
11 66 11 56 0.9580 
12 78 14 65 0.9575 
13 91 18 74 0.9521 
14 105 22 84 0.9506 
15 120 26 95 0.9521 
16 136 30 107 0.9557 
17 153 35 119 0.9552 
18 171 41 131 0.9517 
19 190 47 144 0.9506 
20 210 53 158 0.9516 
21 231 59 173 0.9540 
22 253 66 188 0.9538 
23 276 74 203 0.9516 
24 300 82 219 0.9509 

+ t(n-2, 0.975) to k2 (< 0) and kt, respectively. From 
this, it follows immediately that for ~Test 4=YRererenc~, 
Westlake's 95%-confidence interval is always longer 
than the conventional 95%-confidence interval. In 
fact, the confidence coefficient for Westlake's inter- 
val is always greater than 95% (Westlake 1976). Only 
within the class of 95%-confidence intervals symmet- 
rical about zero does Westlake's condition provide 
the shortest confidence intervals possible. 

If log-transformed data (indicated by a subscript 
log) are used to construct a 95%-confidence interval 
of the bioavailability ratio g2/P-t, and if this interval 
is supposed to be symmetrical about unity, then the 
following condition (Westlake 1976) must hold in 
addition to (4.2): 

antilog(dlog + k2 ~2  MSElog/n) 

+ antilog(alog+kl V/2 MSElog/n)=2. (4.3) 

Antilog(alor) is the geometric mean of  the individual 
ratios YTest/YReference, and the 95%-confidence limits 
for ~t2/~tl are obtained by multiplying the geometric 
mean by the antilogs of k2 ~/2 MSElog/n and 
kl V/2 MSElog/n, respectively. If natural logarithms 
are used, antilog stands for the exponential function. 

Confidence Interval Based on the Paired t-Test 

If no period effect is postulated, the full ANOVA 
model given by Equ. (1) reduces to 

Yijk = IX+ Tl+ Sik+ eijk ( i= 1,2; 1=1,2; k = l , . . . ,  K). 
(7) 

The one degree of freedom previously associated 
with periods increases the degrees of freedom for er- 
ror by 1 to n-1. 

Intraindividual differences dlk = Y12k-- Ylak 
(k= 1, . . . ,  K) and d2k=Y21k--Y22k (k= t, . . . ,  K) in 
Sequences 1 and 2, respectively, have the expecta- 
tion E[dild=~2-~l and the variance V[dild=2cre 2 
0=1 ,2 ;  k = l , .  :., K). 

2 K 
Estimating V[di~] by s~= 1 ~ Y. (dik--d..)2, 

n - 1  i=1 k=~ 
and recalling that o-2 is estimated by MSE, the 95%- 
confidence limits for the expected mean difference 
in formulations, which are given by Expression (2) 
for the full ANOVA model, now become: 

&. + t (n -  1 ; 0.975) Sd/v/n (8) 

This, however, is the well-known expression for two- 
sided 95%-confidence limits of the expected mean 
difference based on the paired t-test. As before, 95%- 
confidence limits for the bioavailability ratio ~t2/P.1 
are given by 

(/exist + t(n-1 ; 0.975) s j  vf 'n ) /YReference  . (9) 

The procedure for log-transformed data is also 
straightforward. 

Nonparametric Confidence Interval Based 
on Wilcoxon's Signed Rank Test (Tukey) 

Some of the assumptions of the ANOVA model, 
such as additivity of period, subject and formulation 
effect, or homogeneity of variances for subjects and 
residuals, respectively, are neither obvious nor easily 
verifiable. A statistical method to obtain a confi- 
dence interval under less restrictive assumptions is 
based on Wilcoxon's signed rank test, which is the 
nonparametric analogue of the paired t-test. Again, 
we assume that no period effect is present, and the 
intraindividual differences "test minus reference" 
are denoted simply by di (i = 1, . . . ,  n), irrespective of 
the sequence of administration. 

The model (Hollander and Wolfe 1973; pp 
26-33) is 

di = ~+ ei (i = 1, . . . ,  n), (10) 



V. W. Steinijans and E. Diletti: Statistical Analysis of Bioavailability Data 131 

Table 3. Nonparametric 1-a confidence interval of expected bio- 
availability ratio based on Pitman's permutation test 

Number Number 
of of 
subjects averages 

n 2n-1 

1-¢ confidence interval of 
expected bioavailability ratio 

Index of 
ordered average 

K~ 2 " - K a  1-a 

6 63 1 63 0.9688 
7 127 3 125 0.9531 
8 255 6 250 0,9531 
9 511 12 500 0.9531 

10 1023 25 999 0.9512 
11 2047 51 1997 0.9502 
12 4095 102 3994 0.9502 

where the e's denote the random error terms, and fiis 
the expected difference between formulations. The 
e's are assumed to be mutually independent, each e 
coming from a continuous distribution which is sym- 
metrical about zero. However, it is no longer as- 
sumed that all e's must necessarily come from the 
same distribution. In other words, the random fluc- 
tuation may be different for each subject. This seems 
to be a realistic assumption, particularly in view of 
the large inter- and intraindividual variations known 
for such drugs as theophylline. 

Under the above assumptions, a nonparametric 
confidence interval is obtained as follows. Let 

aij = (di + dj)/2 ( i _ j ;  i, j = 1, . . . ,  n) (11) 

denote the n(n+l)/2 arithmetic Walsh averages of 
the di (i = 1, . . . ,  n), and let a (1), . . . ,  a (n(n+ 1)/2) de- 
note their ordered values. For 1 -  a_0.95,  the 1 -  a 
confidence interval (rE, 6 0  is given by 

8e = a(C¢), 8u = a (n (n + 1)/2 + 1 - Ca), (12) 

where C~ = n(n + 1)/2 + 1 - t(a/2; n), and t(a/2; n) 
is the critical point of the Wilcoxon sum T + of po- 
sitive ranks; for example, t(0.0425/2; 12)--65, 
i.e. p(T + x 65) < 0.25, hence Ca = 14 and 
P(a(14) < fi< a(65))=0.9575 >0.95. For relevant 
sample sizes, 6_n_Z24, the values of Ca and 
n(n + 1)/2 + 1 - C,~ are given in Table 2 (cf. Hollan- 
der and Wolfe 1973, pp 269-271; Wilcoxon et al. 
1973, pp 247-259; Geigy, Wissenschaftliche Tabel- 
len 1980 p 163). 

The above result is due to Tukey, who showed 
that if there are no ties among the d's and none of the 
d's is zero, then A +, the number of positive arithme- 
tic Walsh averages, is equal to the positive rank sum 
T+(Hollander and Wolfe 1973, pp 35-39). 

The 1-a confidence interval (12) consists of those 
values 60 for which the two-sided a-level signed rank 
test accepts the hypothesis a =  60. Under the above 
assumptions, we can control the coverage probabili- 
ty to be 1-a without knowledge of the underlying er- 
ror distribution. Thus (ilL, gU) provides a distribu- 
tion-free confidence interval for fi over a large class 
of populations. 

Hodges and Lehmann proposed the median of 
the arithmetic Walsh averages as a point estimator of 
6 (Hollander and Wolfe 1973, pp 33-35). This esti- 
mator, say 6, is natural insofar as the shifted sample 
d i - S  (i = 1, . . . ,  n) appears (when viewed by the 
signed rank test statistic T +) to come from a popula- 
tion with the median 0. In addition, ~ will be relative- 
ly insensitive to outliers, which is not the case for the 
arithmetic mean of the di (i = 1 , . . . ,  n). 

The modification of the Tukey method for ratios 
instead of differences is done directly by taking the 
logarithm of the bioavailability characteristic. For 
example, consider ri = AUCi(Test)/AUCi(Reference) 
and di=log ri=log AUCi(Test)- log AUCi(Refer- 
ence). Model (10) then becomes 

=pf  (i = 1, . . . ,  n), (13) 

with fi= logp and ei = log fi (i = 1 , . . . ,  n), and the hy- 
pothesis p =  1 corresponding to fi= 0. 

Arithmetic Walsh averages aij = (di + dj)/2 are re- 
placed by geometric Walsh averages gij = ~ r s ,  and 
hence aij=log gij ( i z j ;  i, j = 1, . . . ,  n). Due to the 
monotonicity of the logarithmic transformation, 
point estimator and confidence limits, which are or- 
der statistics of Walsh averages, are directly transfer- 
able to geometric instead of arithmetic Walsh aver- 
ages, i. e. 

/5 = median{gij: i z j ;  i, j = 1, . . . ,  n} 

and 

(14) 

PL = g(Ca), PU = g(n(n + 1)/2 + 1 - Ca). (15) 

Hence, instead of calculating distribution-free 
confidence limits for the expected difference in 10g- 
transformed AUC's first, and then taking antilogs of 
these limits, a distribution-free confidence interval of 
the bioavailability ratio is directly obtainable from 
geometric Walsh averages. Naturally, in the case 
"n(n+l)/2 even", the median is obtained by geo- 
metric instead of arithmetic interpolation. 

As the above confidence interval is based on the 
discrete distribution of T +, the coverage probability 
is usually greater than 0.95 (see Table 2). Hence, the 
confidence interval is somewhat longer than neces- 
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Table 4. Demographic data and sequence of administration of 12 
healthy mate volunteers 

Subject Age Weight Height Sequence of 
[years] [kg] [cm] administration 

(R=  Reference, 
T = Test) 

t 40 84 175 T R 
2 44 76 179 T R 
3 28 74 173 R T 
4 38 70 180 R T 
5 29 71 189 T R 
6 34 74 168 T R 
7 28 70 189 R T 
8 32 78 178 T R 
9 42 67 168 R T 

10 49 72 172 T R 
11 40 74 180 R T 
12 40 74 182 R T 

Median 39 74 179 
Minimum 28 67 168 
Maximum 49 84 189 

Under the hypothesis fi= 0, the 2 n permutations 
of the signs of the observed differences produce a 
discrete uniform distribution with point probability 
2 -". Consequently, the permutation test permits a 
closer approximation of the exact 95%-level than the 
signed rank test. For example, if n=  12, the actual 
confidence coefficient for the signed rank test is 
0.9575 (cf. Table 2), whereas that for the permutation 
test is 0.9502 (cf. Table 3). 

The 1-a confidence interval is derived from order 
statistics of the 2n-1 averages of up to all n differ- 
ences observed (Royen 1978). More precisely, let 
{il, . . . ,  iM} denote any nonempty subset of the index 
set {1,..., n}, and let A denote the set of correspond- 
ing arithmetic averages of observed differences di 
( i=1, . . . ,  n): 

M 

L dim:{il,..., iMIc{1,..., n}}. 

Table 5. Area under the concentration/time curve, AUC, after ad- 
ministration of 385.6 mg theophylline in a sustained release pre- 
paration under reference condition (fasted) and test condition 
(standard breakfast) 

Subject AUC [mg/1 h] 

Reference Test Ratio 

1 136.0 135.7 1.00 
2 152.6 155.3 1.02 
3 123.1 148.9 1.21 
4 77.0 81.2 1.05 
5 115.7 139.2 1.20 
6 72.0 91.7 1.27 
7 116.4 118.7 1.02 
8 151.1 133.2 0.88 
9 118.9 115.6 0.97 

10 156.1 150.3 0.96 
11 222.4 223.9 1.01 
12 158.1 154.1 0.97 

Geometric mean 127.7 133.1 1.04 

sary. To account for this, a simple interpolation has 
been suggested (Steinijans 1981). 

Nonparametric Confidence Interval Based 
on Pitmans's Permutation Test 

The model based on the permutation test is again 
given by Eq. (10), but with the distinction that the e's 
need not necessarily come from continuous distribu- 
tions. It is still assumed that the distributions of the 
stochastically independent e's are symmetrical about 
zero. 

Let a(1), . . . ,  a(2"-1) denote the ordered elements of 
A. The l - a  confidence limits for S are then given by 

fir = a(K~), flu = a( 2n -  Ks), (16) 

where Ka is chosen such that KJ2n~  a/2. 
For example, if n = 12, there are 212-1 = 4095 av- 

erages of observed differences: the 12 differences 
themselves, (122) = 66 averages of 2 distinct differences 
each, (~2)=220 averages of 3 distinct differences 
each, etc. From 102/212 = 0.0249 < 0.05/2, K~ = 102 
follows. Hence, the 95.02% confidence limits are giv- 
en by the 102nd and the 3994th of the total of 4095 
elements in A. 

As with all randomization tests, it is not possible 
to tabulate a test statistic with its corresponding sig- 
nificance points, since the distribution of such a sta- 
tistic is totally dependent on the observed data set. 
Only the indices K~ and 2n-K~ of those ordered aver- 
ages which determine the 1-a confidence limits can 
be given. For n>  12, the computing expenditure of 
the permutation test becomes prohibitive for routine 
use. Hence, in Table 3, the above indices are only 
given for 6 _ n ~ 1 2 .  

The modification of the above procedure to ra- 
tios instead of differences is the same as in the case 
of the signed rank test. 

Example 

The demographic data of 12 healthy male volunteers 
who participated in a cross-over study to investigate 
the influence of food intake on the bioavailability of 
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Table 6. Point estimate and 95%-confidence limits of bioavailability ratio for data given in Table 5 

133 

Statistical Point 95%-confidence Exact level of 
method estimate limits confidence 

Normal distribution Paired t-test 1.03 0.97, 1.09 
ANOVA 1.03 0.97, 1.10 
Westlake 0.92, 1.08 x 0.95 

Lognormal distribution Paired t-test 1.04 0.97, 1.12 
ANOVA 1.04 0.97, 1.12 
Westlake 0.89, 1.11 "- 0.95 

Distribution-free Signed rank test (Tukey) 1.02 0.97, 1.11 0.9575 
(nonparametric) Pitman's permutation test 1.04 0.97, 1.12 0.9502 
ratio analysis 

Table 7. Analysis of variance for data given in Table 5 

Source Degrees Sum Mean- F-Test 
of of of square 
variation freedom squares 

Formulations 1 97.61 97.61 1.071 n.s. 
Periods 1 0.88 0.88 0.010 n.s. 
Subjects 11 31168.08 2833.46 31.094p<0.001 
Error 10 911.25 91.13 

Total 23 32177.82 

Westlake's condition: kl + k2 = - 2.07 - kl = 1.83, k2 = - 3.90 

Table 8. Analysis of variance for data given in Table 5 after loga- 
rithmic transformation (log = In, antilog = exp) 

Source Degrees Sum Mean- F-Test 
of of of square 
variation freedom squares 

Formulations 1 0.0101701 0.01017 1.558 n.s. 
Periods 1 0.0001614 0.00016 0.025 n.s. 
Subjects 11 1.7628252 0.16026 24.547p<0.001 
Error 10 0.0652858 0.00653 

Total 23 1.8384425 

Westlake's condition: 
k2 = - 4.657 ~ antilog (alog + k2 x/2 MSELog/n) = 0.894 
k l =  1.818~antilog(alog+kl ~/2 MSElog/n)=l.106 

theophylline from a sustained-release aminophylline 
preparation are given in Table 4. The case in which 
the drug was taken after fasting overnight and a 
standard breakfast was eaten 2 h after taking the 
drug serves as the reference (R). Drug intake directly 
after consumption of the same standard breakfast is 
the test Situation (T). The standard breakfast consist- 
ed of 2 rolls, butter, jam or honey, cold cuts or cheese 
spread, orange juice 0.21, and herb tea (camomile, 
rose-hip, peppermint) on request. For each partici- 
pant, the randomly allocated sequence of adminis- 
tration is also given in Table 4. Only Subjects 1 and 6 
were smokers, but they abstained from smoking du- 

ring the study. No xanthine-containing foods and 
beverages were allowed during the study. 

The administered dose, converted to anhydrous 
theophylline, was 385.6 mg. Serum theophylline lev- 
els were determined before and 0.5, 1, 2, 3, 4, 5, 6, 8, 
10, 12, 14, 24, 28 and 32 h after administration using 
radio-immuno assay RIA-mat ® (Byk-Mallinckrodt, 
Dietzenbach; Zech et al. 1980). 

The area under the concentration/time curve, 
AUC, was used to characterize the extent of absorp- 
tion. AUC was determined by the log-trapezoidal 
rule up to the last sampling point, C1a~t, and then ex- 
trapolated to infinity by adding (2last~ft. In order to 
avoid over- or underestimation of the extrapolated 
area, the measured Clast was replaced by its estimate 
Clast, which in turn was obtained from the terminal 
log-linear regression line. AUC-values under both 
conditions (fasting and standard breakfast), as well 
as the corresponding ratios are given in Table 5. For 
the statistical methods presented, point estimate and 
95%-confidence limits of the bioavailability ratio are 
summarized in Table 6. The detailed ANOVA-tables 
under the assumption of normal and lognormal dis- 
tributions are given in Tables 7 and 8, respectively. 
The Tukey procedure is illustrated in Table 9, which 
gives the ordered values of the 78 geometric Walsh 
averages, together with the corresponding pairs of  
indices. The analogous table for Pitman's permuta- 
tion test includes 4095 geometric averages and there- 
fore cannot be reproduced in this paper. It is avail- 
able from the authors upon request. 

While the extent of absorption is readily charac- 
terized by AUC, it is much more difficult to charac- 
terize the rate of absorption by a single parameter 
such as tpeak, the time to reach the peak concentra- 
tion. This is particularly true in the case of a sus- 
tained-release formulation, which produces a con- 
centration plateau rather than a distinct peak. In the 
case of theophylline, serum concentrations differing 
by less than 0.5 mg/1 are practically indistinguish- 
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Table 9. Tukey procedure for data given in Table 5: ordered values of 78 geometric Walsh averages. The 12 observed ratios are given by the 
pairs 1/1, . . . ,  12/12. The 95%-confidence limits have been framed 

No Pair of Geometric No Pair of Geometric No Pair of Geometric 
ordered Walsh ordered Walsh ordered Walsh 
ratios average ratios average ratios average 

t 1/1 0.8815 27 4 /  8 0.9970 53 3/11 1.0844 
2 1/2 0.9213 28 5/  5 0.9978 54 4/I1 1.0858 
3 1/3 0.9258 29 5/  6 1.0023 55 5/10 1.0957 
4 1/4 0.9269 30 6/  6 1.0067 56 5/11 1.0986 
5 1/5 0.9379 31 2 /  9 1.0077 57 6/10 1.1006 
6 1/6 0.9421 32 5/  7 1.0077 58 6/11 1.1035 
7 1/7 0.9472 33 5/  8 1.0087 59 7/10 1.1065 
8 1/8 0.9481 34 6 /  7 1.0122 60 2/12 1.1074 
9 2/2 0.9628 35 3 /  9 1.0126 61 8/10 1.1076 

10 1/9 0.9642 36 6 /  8 1.0132 62 7/11 1.1095 
11 2/3 0.9675 37 4 /  9 1.0138 63 8 / t l  1.1106 
12 2/4  0.9688 38 7 /  7 1.0177 64 3/12 1.1128 
13 3/3 0.9722 39 7 /  8 1.0187 [ ]  4/12 

[ ]  3/4 [0-.......ff~ 40 8/  8 1.0198 66 9/10 1.1264 
15 4/4  0.9747 41 5/  9 1.0258 67 5/12 1.1273 
16 2/5 0.9802 42 1/10 1.0298 68 9/11 1.1294 
17 2/6 0.9845 43 6 /  9 1.0304 69 6/12 1.1323 
18 3/5 0.9849 44 1/11 1.0326 70 7/12 1.1385 
19 4/5 0.9862 45 7 /  9 1.0360 71 8/12 1.1396 
20 3/6 0.9893 46 8/  9 1.0370 72 9/12 1.1589 
21 2/7 0.9899 47 9 /  9 1.0545 73 10/10 1.2031 
22 4/6 0.9906 48 1/12 1.0596 74 10/11 1.2063 
23 2/8 0.9909 49 2/10 1.0763 75 11/11 1.2096 
24 3/7 0.9947 50 2/11 1.0792 76 10/~2 1.2379 
25 3/8 0.9957 51 3/10 1.0815 77 11/12 1.2412 
26 4/7 0.9960 52 4/10 1.0829 78 12/12 1.2736 

able. Within these limits, the observed plateaus last- 
ed for 4-8 h, and so did not permit reliable estima- 
tion of tpeak. 

In order to characterize the rate of absorption, we 
used classical deconvolution methods (Wagner and 
Nelson 1963; Loo and Riegelman 1968) to obtain in 
vivo absorption profiles. The individual theophylline 
disposition kinetics were obtained from an intrave- 
nous study with short-term infusion over 20 min of 
aminophylline 480 mg. As expected, absorption of 
the drug given after the standard breakfast was in- 
itially delayed. 

Discussion and Conclusions 

A review of statistical procedures, both parametric 
and nonparametric, to obtain 95%-confidence limits 
of expected bioavailability has been presented. It has 
been pointed out that the classical analysis of var- 
iance depends on certain assumptions, which are ne- 
cessary to handle the mathematics, but have a limit- 
ed bearing on clinical reality. In consequence, non- 
parametric procedures based on plausible assump- 
tions are preferable. If the bioavailability characteris- 

tic has a continuous distribution, as is the case with 
AUC, then the Tukey procedure is the favoured 
choice. 

With regard to the nominal confidence level of 
95%, the improvement gained by Pitman's permuta- 
tion test in comparison with the Tukey procedure is 
virtually negligible. This is also true for the effect of 
the interpolation formula. In practice, these refine- 
ments must be seen in relation to the error in AUC- 
values, which can easily amount to 5%, due to differ- 
ent methods of calculation alone (Yeh and Kwan 
1978). In the example presented, AUC's obtained by 
curve-fitting and by the log-trapezoidal rule differed 
by 2% ( -1%,  4%) under fasting conditions, and 
0.5% ( -5%,  4%) when administering the drug after 
the standard breakfast. The percentages given re- 
present the median, and in brackets the minimum 
and maximum. On the other hand, interpolation af- 
fects the confidence limits insignificantly, namely 
from (0.973, 1.114) to (0.974, 1.113) when using the 
Tukey procedure. In the case of Pitman's permuta- 
tion test, this effect is even smaller. 

Another point of discussion is extrapolation of 
the AUC beyond the last sampling point, which is 
subject to debate if the extrapolated area exceeds a 
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certain fraction of the sampled area, say 20%. In an 
extreme case (Anttila et al. 1979), the decision on bi- 
oequivalence may even depend on the augmented 
AUC. Generally, if the AUC cannot be estimated 
correctly after a single dose (no samples taken at 
night; analytical limit of detection), bioavailability 
must be determined during steady-state conditions. 

Regarding the representation of bioavailability 
data, demographic data, sequence of administration, 
individual values of the bioavailability characteristic 
(e.g. AUC), and individual bioavailability ratios 
should be given (cf. Tables 4 and 5). The point esti- 
mate and the 95%-confidence limits of bioavailabili- 
ty should also be given (cf. Table 6), and the statisti- 
cal method used should be justified (e.g. residual 
plots). 

In a series of about 30 examples, the confidence 
limits obtained by the procedures presented differed 
by less than 10% if 12 subjects were included in the 
study. In particular, results based on the ANOVA 
and the paired t-test were very similar, due to a peri- 
od effect that usually was not significant. In studies 
with 6 subjects, the nonparametric confidence limits 
are directly based on the smallest and the largest bi- 
oavailability ratios and hence may be substantially 
wider than the corresponding parametric values. As 
far as the latter are concerned, the residual plots did 
not permit a distinction to be made in most cases be- 
tween a normal and a log-normal distribution. 

The largest deviations occured with Westlake's 
method, because the confidence interval is shifted 
away from the direction in which the sample dif- 
ference has been found. In a theoretical example 
with a 3% coefficient of variation (100 x ~ - S E /  
S'R~rer,nc,), Westlake's confidence limits ranged from 
80 to 120% bioavailability ("bioequivalence"), al- 
though the bioavailability for all 12 subjects was be- 
low 85%. Generally, if the expected mean difference 
161 increases, or the error variance decreases, West- 
lake's method progressively changes - in favour of 
accepting bioequivalence from a two-sided to a one- 
sided approach (Kirkwood 1981). This effect and the 
loss of information on the direction of change when 
switching from reference to test formulation are ma- 
jor criticisms of Westlake's symmetrization (Shirley 
1976; Mantel 1977; Kirkwood 1981; Mandallaz and 
Mau 1981 ; Mau 1981). Particularly in the case of a 
log-normal distribution and the corresponding ratio 
analysis, confidence limits symmetrical about unity 
are debatable. As they are frequently justified by 
symmetrical regulatory requirements (Westlake 
1979, 1981), the latter should be modified so that 
they account for the multiplicative character of the 
log-normal distribution; for example, the bioequiva- 
lence range of [0.80, 1.20] should be replaced by 

[0.80, 1.25] (Mantel 1977; Steinijans 1981 ; Kirkwood 
1981). 

Recently, there have been several papers adopt- 
ing a Bayesian viewpoint in bioequivalence assess- 
ment (Rodda and Davis 1980; Setwyn et al. 1981; 
Mandallaz and Mau 1981 ; Fluehler et al. 1981). The 
Bayesian approach not only provides a convenient 
way to review the difference between the conven- 
tional and Westlake's confidence-interval proce- 
dures (Armitage 1981), but it also allows generaliza- 
tion of the latter. For normal distributions and fixed 
subjects effects, Mandallaz and Mau (1981) derived 
an exact version of Westlake's procedure, i.e. with- 
out the approximation of ~tl = P~Refer~nce by ~Reference. 
Using the conventional (improper, vague) prior dis- 
tributions for ix1, ~t2, and the error variance, they 
showed that the posterior probability of ~t2/txl lying 
in [rl, r2] is greater than or equal to l-a, if and only if 
the exact, symmetrical (1-a)-confidence interval lies 
in [rb i"2]. As before, rl and r2, 0 < rl < 1 < r2 < 2, are 
bounds on the ratio of the expected formulation 
means ~L 2 and txl, such that for 1"1 < ~t2/~tl < r2 the test 
and reference formulations are considered bio- 
equivalent. In other words, the characteristic feature 
of Westlake's decision rule for bioequivalence is not 
symmetry, but rather its Bayesian interpretation. 
This is more readily seen from the approach taken by 
Rodda and Davis (1980). In their terminology, the 
odds are 19:1 (95: 5) against a bioavailability differ- 
ence of A percent, which in Westlake's terminology 
means the following: with 95% confidence the mean 
AUC for the test formulation is within A percent of 
that for the reference formulation. 

The statistical methods presented in this paper 
are based on the simple two-way cross-over design. 
If more than 2 formulations are to be compared in a 
multiple cross-over study, more complex statistical 
procedures must be employed. The commonest com- 
parative bioavailability trial is one in which 1 formu- 
lation (possibly replicated in each subject) serves as 
reference and in which the others are new formula- 
tions to be tested against it. A variety of experimental 
designs such as Latin squares, incomplete blocks and 
split-plot designs, and the corresponding analyses of 
variance have been described in the literature (Coch- 
ran and Cox 1957; Westlake 1974; Shirley and Un- 
win 1978). However, all these publications deal with 
hypothesis testing only and do not provide confi- 
dence intervals. In this area some valuable biometri- 
cal research could be undertaken, particularly with 
respect to nonparametric confidence intervals. 
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