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Abstract. The unsteady flow of an incompressible electrically-conducting and elasto-viscous fluid (Walter's 
liquid B') ,  filling the semi-infinite space, in contact with an infinite non-conducting plate, in a rotating 
medium and in the presence of a transverse magnetic field is investigated. An arbitrary time-dependent 
forcing effect on the motion of the plate is considered and the plate and fluid rotate uniformly as a rigid 
body. The solution of the problem is obtained with the help of the Laplace transform technique and the 
analytical expressions for the velocity field as well as for the skin-friction are given. 

1. Introduction 

The study of the flow of non-Newtonian visco-elastic fluids has considerably gained 
importance due to its practical application in various disciplines. The elasto-viscous 
boundary-layer flow, near a Stagnation point based on a system of constitutive 
equations for elasto-viscous fluids known as Walter's liquid B',  standed by Beard and 
Walter (1964). Soundalgekar (1974) studied the flow of an elasto-viscous fluid past an 
infinite impermeable plate moving impulsively in its own plane. Singh (1984) studied the 
flow of Walter's B' liquid past an infinite accelerated porous flat plate. The MHD flow 
of an elasto-viscous fluid past a porous flat plate, was presented by Sapria et al. (1990). 
In this paper we consider an incompressible, electrically-conducting, and elasto-viscous 
fluid filling the semi-infinite space in contact with an infinite non-conducting plate. The 
fluid and the plate rotate as a rigid body with a uniform angular velocity f2 perpendicular 

to the plate, in the presence of a uniform magnetic field of magnitude B o. The plate is 
assumed to be moving on its own plane with arbitrary velocity Uof(t), where U o is a 
constant velocity and f ( t )  a non-dimensional function of the time t. The effects on the 
velocity field and skin-friction of the various dimensionless parameters entering into the 
problem are discussed with the help of graphs. 

2. Formulation of the Problem 

Ler us consider the three-dimensional flow of an electrically-conducting incompressible 
and elasto-viscous fluid (Walter's liquid B ' )  in contact with a solid infinite plate, filling 
the semi-infinite space z > 0. On this plate an arbitrary point has been chosen as the 
origin O of a Cartesian coordinate system, with axes Ox and Oy fixed on the plate and 
Oz normal to it. The fluid and the plate rotate uniformly as a rigid body about the z-axis 
with an angular velocity fl > 0 in the presence of a uniform magnetic field of strength 
B o in the positive z-direction. Initially the plate and the fluid are at rest. Suddenly the 
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plate is moved with a time-dependent velocity U o f ( t  ) in its own plate along the x-axis. 
We assume that the amplitude of the forcing effect f ( t )  is small enough to permit us 
linearize the hydromagnetic equations relative to the rotating frame. Within the frame- 
work of these assumptions the equations which govern the flow are 

äv 1 ä2 v ä3 v B2v  
- - + 2 f ~ X V =  - -  Vq~+ v - - - k - - - c r - -  , (1) 
8t p (~Z 2 äz z ~t p 

V'v  = 0, (2) 

where v = (u, v, w)denotes the velocity field p, the density v the kinematic viscosity, ~ß 
the effective pressure field, a the electrical conductivity of the fluid, and k the elastic 
parameter of the fluid. The z-component of (1) shows thät the perturbation q~ to the 
centrifugal pressure is independent of z, and can be set equal to zero (see Acheson, 1975; 
or Puri and Kulshrestha, 1976). Ler us define 

q = u + i v ,  with i = x / 7 - 1  (3) 

and introduce the following non-dimensional quantities: 
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Z ~0 V ~ V 

V2 ' (V Uo)l/3 ' 

( ~ ) 1 / 3  /£ ( ~ ) 2 / 3  
t' = t , k' = 

( z ]  1/3 

f 2 ' = n \ u o /  ' 

= a B o (  v ~  '/3 

m p \ÜÕJ " 

(4) 

Then, after suppressing the primes, the equations relevant to the problem reduce to 

c3q 6~2q 633q 
- -  + 2 i ~ q  = - k - -  - m q .  (5) 
Ot Oz 2 äz 2 ät 

The initial and boundary conditions are: 

q(z ,  t) = 0,  for all t < 0,  

q ( O , t ) = f ( t ) ,  for all t>_0,  (6) 

q(oo, t)---,0, forall t > 0 .  

The exact solution of Equation (5), subject to the boundary condition (6), is the key to 
the study of the present problem. 

3. Solution 

We shall find solutions of Equation (5) under its boundary conditions (6) for the 
following particular value of the function 

f ( t )  = ( t / to )H( t )  , (7) 
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where t o is a constant and H(t) is the Heaviside unit step function. Following Beard and 
Walter's (1964) method we assume that the solution of Equation (5) is of the form 

q = qo + k q l ,  (8) 

which is valid for small values of k. If we substitute (8) in Equation (5) and equating 
the coefficient of the same powers of k, negtecting k 2, we get 

63qo 02qo 
- -  + 2i~qo - mqo , (9) & &2 

B1 ~2ql ~3qo 
- -  + 2if~ql mq~ ; (10) 
& ~z 2 &2 & 

with the boundary conditions 

q(0) = 0 ,  ql = 0 for all z and r < 0, 

q ( O ) = f ( t ) ,  q, =0  at z = 0 ,  (11) 

q ( 0 )  = 0 ,  q l  = 0 a s  z--~ 0 .  

The solution of Equations (9) and (10) using the boundary conditions (11) by the 
Laplace transform technique is given by 

q ( z ' t ) = H ( t ) ~ e x p ( - z x f h ) e r f c (  z t o  Ik 2 , / t -  x / ~ )  + exp(zxflh)erfc ( ~  + xfht ) l  - 

4,~//~ exp(-z . ,~)er fc  2x/~ -exp(zx/h)erfc + + 

{2[ ) (~ )] + k exp(-z  ~ ) e r f c  \2x/t( z x/ht + exp(z xfh)erfc 2~ ~  + xfh~ - 

~2[ (z 
4 exp ( - z x/ä) erfc 2 x/t - -  - . ~ )  - exp (z x/h) erfc ( ~  + xfht)]  + 

1[ (z 
+ - exp ( - z x/h) erfc 

2 2v/ t  
) (z )] 

- -  - x /~  + exp(z ,~ )e r fc  ~ + xf~ - 

1 Iexp( -2z  x/h)erfc (2 z x /~ )  (Tz  x /~ )  1 7//  + exp (2z x/h) erfc + + 
2 

~2 I(  q]}l + ~  exp - ht + ~ , 
(12) 
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"C w = ,o ' ,//(e«c~)-~)-~ 

2J~ 
- - -  [1 - (erfc ~ ) 1  + k { 1  - [ ~  (erfcx/ht) - 11 - - -  

where h = m + 2ifL 

exp( - ht) ; 

(t3) 

4 .  R e s u l t s  a n d  D i s e u s s i o n  

For the purpose of  discussing the results, numerical calculations are carried out for the 

velocity field, for different values of  m, £~, and k, respectively. Figure 1 shows that for 

a constant  value of  t, m, and k the velocity at any point increases as the value of  

non-Newtonian  parameter k increases while it decreases with an increase in m, when 

t, [~, and k are constants.  It can also be seen that the velocity increases as f~ increases 

for fixed values of  t, m, and k. Figure 2 shows the variation of  the skin-friction % for 

different values of  t, 9~, m, and k. The shearing stress decreases with the increase in t 
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Velocity profiles for different values of m, f2, and k. 
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Fig. 2. Variation of the skin-friction for different values of m, ~, and k. 

and k for fixed values of  m and ~ .  It is also seen that  shearing stress increases as the 

values of  m or f~ increases.  
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