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Abstract. In this paper the authors have extended Bayin's (1978) work to the case of charged fluid spheres. 
These solutions are matched at the boundary with the Reissner-Nordström solution. 

1. Introduetion 

The problem of charged matter distributions in general relativity has received con- 
siderable attention. A number of authors (Papapetrou, 1947; Majumdar, 1947; Bonnor, 
1960, 1965, 1980; De and Raychaudhuri, 1968; Tikekar, 1985; Ibrahim and Nutku, 
1976) have studied the charged fluid distribution in equilibrium. Interior solutions for 
charged fluid spheres have been investigated by Efinger (1965), Kyle and Martin (1967), 
Florides (1962, 1977, 1983), Chakravarti and De (1979) under different conditions. 
Shah (1968) has considered the generalization of Nordström's solution corresponding 
to the external field ofa radiating charged particle. Wilson (1969) has presented an exact 
solution for the interior of static charged spheres. Solutions for charged fluid spheres 
have also been obtained by Bonnor and Wickramasuriya (1972), Bailyn and Eimerl 
(1972), Omote (1973), Krori and Barua (1975), Mehra (1980), Nduka (1977), Singh and 
Yadav (1978), and Koppar et  al. (1991). 

Due to nonlinearity of Einstein-Maxwell equations exact solutions are difficult to 
obtain. In order to solve this system of equations, it is necessary to specify, in some 
manner, the unknowns or to introduce extra relation between them. In this paper we 
have obtained exact solutions for the spherically-symmetric charged fluid distribution 
by the method of quadratures making a specific choice of metric functions and total 
charge. Our work extends the method of Bayin (1978) to the case of charged fluids. 
Finally, the solutions are matched with exterior Reissner-Nordström solution. 

2. Field Equations 

The Einstein-Maxwell field equations for perfect matter fluid are given by 

G(j = - 8rc(T U + Eu), 

where the energy momentum tensor of perfect fluid distribution is 

Tij = (p  + P)Uik j - P g i j ,  
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and the energy momentum tensor of the electromagnetic field is 

1 1 kl 
E Ü = __ [gk'F, kE~ ̀  - agÜF~/F ]. 

4re 
(2.3) 

The electromagnetic field equations are given by 

[( __ g)l /2FÜ],/= 4~ji(  _ g)l/2 (2.4) 

and 
F~Ü" ~j = 0,  (2.5) 

where u i is the 4-velocity of a fluid element, F « is the electromagnetic field tensor and 
Ji is the 4-current. The units are so chosen that C = G = 1. 

We consider a static spherically-symmetric system for which the line element is 

d s  2 = - B 2 d r  2 - r 2 d 0  2 - r 2 sin 2 0 dq5 2 + A 2 d t  2 , (2.6) 

In co-moving coordinates, the field equations may be written as 

1 ( 2  A '  1 ) 1 2 Q  2 (2.7) 
8rcP = B2 \ r A +72 - r ~ + r ~ , 

= + - - - -  + - -  ( 2 . 8 )  
87rp ~ AB  r B r 2 ' 

where 

l ( 2 B '  1 )  1 Q2 
8 rtp = ~ \ rB r 2 + --r 2 + --r 4 ," (2.9) 

Q(r) = 4~ ~ j 4 z 2 A B  d Z (2.10) 
*J  
o 

is the total charge within a sphere of radius r. The corresponding electric field is given 
by 

F 4 1 _  Q ( r )  
- - - ;  ( 2 . 1 1 )  

ABr z 

where the prime denotes differentiation with respect to radial coordinate r. 
If we eliminate p from Equations (2.7) and (2.8) we write the result in the form 

dC~ < d(~ ) 
~\777#/+7r ~ + - - -  

1 d ( A A ' )  4Q 2 
+ = 0. (2.12) 

B2A 2 dr \ r / r 5 

Assuming A ' / A r  = C(r) Equation (2.12) can be written as 

(1 c) (1) ~~21C2rQ2) 
;,2B 3 + -B3 d B -  ~ d C -  \. -r3B 2 + - - B  2 + 7 7  d r = 0 .  (2,13) 
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3 .  S o l u t i o n s  o f  t h e  F i e l d  E q u a t i o n s  

Now, we first try to solve Equation (2.13) for B(r)  if C(r) is known or suitably chosen. 
For this purpose we write Equation (2.13) in the form 

1 dC 
_ _ _  + C 2 r  + - -  

dB 1 + Q2 r 3 dr 
- B 3 + B .  ( 3 . 1 )  

r 3 + C r 2 + C 

Choosing 1/B 2 = F Equation (3.1) can be written as 

1 dC 
-- + C 2 r  + 

dF r 3 dr 2(1 + Q2) 
- -  + 2 F = - ( 3 . 2 )  

dr 1 fr2( L )] 
- - + C  + C  
t"2 L \ r  2 

Thus if C(r), i.e., A(r) and Q(r) are known, the first-order linear differential equation (3.2) 
gives B(r). Hence, we can try a number of interesting cases. 

In order to find solution of Equation (3.2) we choose 

Then 

and 

1 dC 
- + C 2 r  + - -  

1.3 dr 

1 
+ C  

?.2 

(3.3) 

1 
C(r) - (3.4a) 

(Cor + r 2) 

A z =  (a o +  alr )  2.  

Equation (3.2) yields the solution 

(3.4b) 

( 4 r 2 ~  log[(Co + 2r)/r] - F(r)  = B -  2 = l + Bo r2 - (2 /Co)r  + \ C 2 j 

where we have taken 

2K 

(n - 2) 

B En 2 

rn + 2Kr2  (Co + 2r) dr ,  (3.5) 

Q(r) = K r "  ; (3.6) 

B o and K being constants. 
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If we substitute the values of A, B, and Q in Equation (2.7), we obtain 

t [ 1 ( a o + 3 a l r )  { 
P = 8re 2 K r " - 4  + 1 + Bo r2 - (2/Co)r  + 

r z r2(ao + alr)  

+ (4r2/(Tf 2) log[(Co + 2r)/r] 

Similarly, Equation (2.9) gives 

frn2 }1 2 K  r" + 2Kr  2 dr . 
(n - 2) (C O + 2r) 

(3.7) 

1 [K2r2,~ 4 + 4 + 2 ( n + l ) K r  ~'-2 12 l o g ( C o  + 2r )  + 
P = 8~ (7or (n - 2) (7 2 r 

4 2Kr"-~ I rn-2 1 
+ (7o((7 o + 2 r )  (C o + 2 r )  6K (C o + 2 r )  dr 3B 0 . (3.8) 

Next we consider the second possibility, that is, to solve C(r) for given B(r). 

Equation (2.13) reduces to 

dC ( 1  dB B 2 - 1 ) ( B  dB) B2Q 2 
(7 - C2r + - -  (3.9) 

r 5 

For known Q(r) given by (3.6), Equation (3.9) is a Riccati equation for C(r) and quite 
difficult to solve, in general. Therefore, we consider some cases of physical interest. 

C a s e H  

I fwe  take B = WoC(r  ) where W o is a constant, then orte can find the following solution 

I WgK2r2n- 2"1- 1/2 
c =  c l r 2  + w g  - ,'4 + ( ,  _ ~) J (3.10) 

where n g: 2. 

Sub-case (i) n = 1 

loga ~sin- [ !-(71 _+ 2r 2) ] = 1 + C2,  (3.11) 
{C  2 + 41,172(1 - K 2 ) } I / 2 j  

B = ~ / V o [ ( 7 1 r 2  -} - W g -  F 4 -  WgK 2 ] 1/2 (3.12) 

By use of Equations (3.11) and (3.12) Equations (2.7) and (2.9) give, respectively, 

1 K 2 
P - 87zW 2 [2(Wo 2 + C1 r2 - r 4 - W 2 K 2 )  1/2 + C1 - r 2] +---Szr 2 , (3.13) 

1 K 2 
p - [5r 2 - 3(7, ] + - -  (3.14) 

87zW 2 47fr 2 
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S u b - c a s e  (il) n = 3 

In this case, we have 

log A = 
2(1 - K2Wg) 1/2 

lr2y2(1-K2Wg)-CI]_[_ 
sin L c ~  - 4w~{~K2Wo2J c3, 

B = W o [ W g  + CI? .  2 - ( 1  - W ~ K 2 ) r  41  1/2 

With the help of Equations (3.15) and (3.16), from Equation (2.7), we obtain 

p - 1 3K2r 2 
8~W 2 [2{W 2 + C l r  2 - (1 - W g X 2 ? . 4 }  1/2 -{- C 1 - ?.21 + - - 8 7 (  

Similarly from Equation (2.9), one finds that 

(3.15) 

(3.16) 

(3.17) 

1 K 2 7 .  2 
B -  (5? .  2 - 3 C 1 )  - (3.18) 

8rtW~ 2re 

C a s e  I I I  

If we consider B ( r )  = W(r )C (? . )  then Equation (3.9) reduces to 

If we assume 

d «  ( ~  lr) W' ( ~ )  - -  - - + C -  - -  ? . 2 C 2  + C 3 _}_ r 3 _ W 2 K 2 r 2 n  3 . 

d r  W 

(3.19) 

W 2 

?. 
+ r 3 _ W 3 K 2 r 2 n  3 = O ,  

we get 

W 2 = 
?.4 

(K2r2~ - 2 _ 1) 
(3.20) 

When n = 1, we have 

C _ 
r 2 ( C 3 r  - 2 )  

(3.21) 

(3.22) 

9 2  = 
(K 2 - 1) ( C 3 r  - 2) 2 (3.23) 
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If  we subs t i tu te  the values  of  A and B in (2.7) and  (2.9), we get 

p = 
1 

8 ~ r  2 
[1 + (K 2 - 1 ) { 2 ( C 3 r -  1) + ( C 3 r -  2)2}1 ,  (3.24) 

1 
D = -  

8 g r  2 
[1 + K  2 + ( K  2 -  1 ) ( C 3 r - 2 ) ( 2 - 3 C 3 r ) ] .  (3.25) 

Similar ly,  we can  ob ta in  the solut ion for n = 3. 

Case I V  

W e  can  n o w  try the subs t i tu t ion  

1 dB B 2 -  1 B2K2r  a'' 
+ - -  

r2B dr r 3 r s 

C dB 
+ - O(r)C(r).  

B dr 
(3.26) 

If  we a s s u m e  O(r) = r -  l, one can  easi ly ob ta in  

3r 
c ( o  - 

(3c»  + r 3) 

A(r) = C6(3Cs + r3) ,  

B 3K2Csr2,  2 
Ba = (3Cs + 4r3)  3C5 + (C7 - 2r) r2  + (n - 2) 

(3.27) 

(3.2s) 

2 K 2 r 2 n  + 1 ] -  1 

(3.29) 

Wi th  the help of  Equa t ions  (3.32) and  (3.33) one  can  easi ly find the p ressu re  p which  

is given by 

(3C 5 + 7r 3) ~ (3C s + C7 r2  - 2r 3) + 
p = 8 rc r2 (3Cs  + 4 r  3) (3C 5 + r 3) / 

r a n - a  - (1 - 2 K a r  2 n - 6 )  (3.30) 
+ ( ( n  - 2) + (2n -- 1) 72 ' 

S imi lar ly  we can  find the dens i ty  p (to avo id  lengthy and  c u m b e r s o m e  express ion  we 

omi t  it). 

4. Matching with Exterior Solution 

N o w  we cons ide r  the ma tch ing  of  exter ior  R e i s s n e r - N o r d s t r ö m  metr ic  wi th  different  

in ter ior  so lu t ions  which  have  been ob ta ined .  The  exter ior  so lu t ion  is given by 

d~~ (1 ~ q~)' . . . .  + dr  2 - r 2 d 0 2  - r 2 sin 20dq)  a + 
r 

+ 1 - - -  + dt  2 , (4.1) 
F 
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where 

q 
F 1 4  = - -  . (4.2) 

f 2  

We take components  g~ ~, g44, and c3g44/6~r cont inuous across  the bounda ry  of  the sphere 

r = r o. Also 

Q(ro )  = q .  (4.3) 

Therefore, 

Kr~'  = q .  (4.4) 

Case  I 

= - - -  + , ( 4 . 5 )  

Co 

FO 

- + 2 r  o d r - -  1 - - - +  , ( 4 . 6 )  
(n + I) C o + 2r r o 

0 

M q2 
a l ( a  o + a l r o )  - (4.7) 

rg Co ~ 

S u b c a s e  (i) n = 1 

In this case the boundary  condit ions are given by 

( a o + a l r o )  2 (1  2M qr~) z - - -  "it- » 

F o 

(4.8) 

B o + 1 - rg  - 2 - rg - K r  4 + ~ ( K C  o - 2Co)r o log(Co + 2r) = 

(1 2ù q~) = - - -  + , (4.9) 
F o 

M q2 
a l ( a  o + a l ro)  - (4.10) 

re 4 

I f w e  solve (4.4), (4.8), (4.9), and (4.10) we get the constants  K, a o, a 1, Bo, and C o in 

terms of  M, q, and r o where r o is obta ined by equating p to zero. 
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Subcase (ii) n = 3 

(ao + a,ro)2 (1 2M 4) = _ _ _  + K 2 r  , 

r o 

co, ( % (KC~ - 8) ~ 6  l°g(C° + 2r°) + B° + 1 - ro 2 + 

(KCo 2 ) KCor ô Kró ( 2M ) + - 2  r~ ~ + = 1 - -  + K 2 r  2 , 

4 r o 

2M 
2al (a  o + alro) = + 4K2r 3 . 

~o ~ 

From Equations (4.11) and (4.13), we have 

a o 1 1 + K 2 2 
+ - » 

a l ro  2 r 0 M r 0 

which shows that 

a o 3 > 
- - +  0 
a 1 r 2  ro 

o r  

a o > - 3a l r  o . 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Case H 

Subcase (i) n = 1In this case at the boundary  r = r o, we have 

exp E {  «,+2« } ] (  2~ ) sin- , / ~ ~  + ~ ~ a õ  ~ K2i = 1 - - -ro  + K2 ' 

w 2 [ C 1 F o  2 _ r 4 q_ Wo2(1 _ K 2 ) ]  1 

( 2M ) -  1 
= 1 - - - + K  2 , 

ro  

exp[sin'~ «l+~r~ }1 « 
( x / C f  + 4W2(1 - K z )  d C 1  r 2  - r 4 + W 2 ( 1  - K 2)  

With the aid of  Equations (4.17), (4.18), and (4.19) we can easily obtain 

M = r A  d C l r ô  - r 4 + 17172(1 - K 2 ) .  
W2 

(4.17) 

(4.18) 

= M .  

(4.19) 

(4.20) 
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Since M, K, and Wo are positive quantities, 

r 2 >  C I . 

The value of r o is obtained by putting p = 0 in Equation (3.13). 

(4.21) 

Subcase (ii) n = 3 

[ 1 s i n - '  ~ 2r°2(1 - K2Wff)- C1 ~ = 

exp _,,/1 - K 2 W  2 [C7~ 2 :  47Vo7~ -~K2 W ~ i J J  

( 2M 4) = 1 - - - + K  2 , 
ro 

2 2 C l r 0 2 ( 1  2 2 4  ( 2M 4 )  1 - W d K ) r o ]  ' Wd[W d + - = 1 K2r , 
r o 

(4.22) 

(4.23) 

[ 1 s i n - '  ~f 2 r 2 ( 1 -  K 2 W 2 ) -  C1 "~] x 

exp _ x / i  _ K2Wo 2 {C72 ~ 4~V027-1 7 K7~02).} j 

x r~ = M  + 2K2ro 5. 
x /C~r 2 + W 2 - r4(1 - K 2 W  2) 

By use of  Equations (4.22) and (4.23) in (4.24) we have 

(4.24) 

r ~  ~ W  2 + C l r o  2 _ (1 - WoK 2)r (~  = a + 2K2ro  5 . (4.25) 
W2 

Again for positive M, K, and W o one has 

C 1 > (1 - Wo2K2)rff. (4.26) 

Furthermore, putting the value of  p = 0 in Equation (3.17) the value of r o is obtained. 

Case I l l  n = 1 

The boundary conditions are 

( 2)(2  ) 
C 2 C 3 - -  = 1 - - -  + K 2 , (4.27) 

r o 

/ 
[(K 2 - 1 ) ( G r -  2 ) 2 1  - I  = ~ 1  - - -  

C 4 = M .  

From these equations we obtain 

2M ) -  1 
+ K 2 , (4.28) 

ro 

(4.29) 

i + K  2 
c 3  - ( 4 . 3 0 )  

M 
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Case  I V  

Subc a se  (i) n = 1 

C 2 ( 3 C 5 ~ - r ~ )  2 (1 2M ) = - - - + K  2 , ( 4 . 3 1 )  

r o 

(3C5 + 4rd) [3C5 + (C 7 _ 2ro)r2 _ 3C5K 2 + 2K2r3]-- I  = 

2M ) - 1 
= 1 - - -  + K 2 , (4.32) 

r o 

(4.33) 3c~(3G + r~ ) ro  ~ = ~ .  

From Equations (4.31)-(4.33) we can obtain 

C 5 7 1 + K a 
_ _  + - (4.34) 
r 2 3r o M 

Hence, 

C 5 7 - -  + - -  > 0 (4.35) 
ro 4 3r o 

Or 

7 
C 5 > - - -  (4.36) 

3rj 

Similarly for subcase (ii) one can obtain 

7 
C 5 > - - -  (4.37) 

3rg 
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