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Abstract. In this paper the authors have extended Bayin’s (1978) work to the case of charged fluid spheres.
These solutions are matched at the boundary with the Reissner—Nordstrém solution.

1. Introduction

The problem of charged matter distributions in general relativity has received con-
siderable attention. A number of authors (Papapetrou, 1947; Majumdar, 1947; Bonnor,
1960, 1965, 1980; De and Raychaudhuri, 1968; Tikekar, 1985; Ibrahim and Nutku,
1976) have studied the charged fluid distribution in equilibrium. Interior solutions for
charged fluid spheres have been investigated by Efinger (1965), Kyle and Martin (1967),
Florides (1962, 1977, 1983), Chakravarti and De (1979) under different conditions.
Shah (1968) has considered the generalization of Nordstrém’s solution corresponding
to the external field of a radiating charged particle. Wilson (1969) has presented an exact
solution for the interior of static charged spheres. Solutions for charged fluid spheres
have also been obtained by Bonnor and Wickramasuriya (1972), Bailyn and Eimerl
(1972), Omote (1973), Krori and Barua (1975), Mehra (1980), Nduka (1977), Singh and
Yadav (1978), and Koppar et al. (1991).

Due to nonlinearity of Einstein—Maxwell equations exact solutions are difficult to
obtain. In order to solve this system of equations, it is necessary to specify, in some
manner, the unknowns or to introduce extra relation between them. In this paper we
have obtained exact solutions for the spherically-symmetric charged fluid distribution
by the method of quadratures making a specific choice of metric functions and total
charge. Our work extends the method of Bayin (1978) to the case of charged fluids.
Finally, the solutions are matched with exterior Reissner—Nordstrém solution.

2. Field Equations
The Einstein-Maxwell field equations for perfect matter fluid are given by
G, = -8n(T, + E,), 2.1)
where the energy momentum tensor of perfect fluid distribution is

T, = (p+ Py, — Py » (2.2)
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and the energy momentum tensor of the electromagnetic field is

1
E,; = 4‘ [gk[FikF/’/ - %tgiijle[] . (2.3)
T

The electromagnetic field equations are given by

[(-9)'2F] , = 4nJ'(-g)'7 (2.4)
and
Friym=0, 2.5)

where u is the 4-velocity of a fluid element, F¥ is the electromagnetic field tensor and
J' is the 4-current. The units are so chosen that C = G = 1.
We consider a static spherically-symmetric system for which the line element is

ds? = - B2dr® - r>d#> - r2sin20d¢? + 42 ds?, (2.6)

In co-moving coordinates, the field equations may be written as

1 /24" 1 1 207

8@:_( +f>_“+£, .7)
B>\ rd4 r? P2t
1 7" A/B/ 1 ! BI 2

87rp=—[ - +*(f—*>:|+Q—, (2.8)
B*l 4 AB r\A B r?
1 /2B 1 1 2

87rp=—( ——)+~+—Q—; (2.9
B2\ rB r? r2 ot

where
O(r) = 4n J J4y2AB dy (2.10)

0

is the total charge within a sphere of radius r. The corresponding electric field is given
by

_00) |

F41
AByr?

(2.11)

where the prime denotes differentiation with respect to radial coordinate r.
If we eliminate p from Equations (2.7) and (2.8) we write the result in the form

d/1-B? d( A 1 d /44’ 40?
*( 22>+—< > >+ 5 2~<—>+%=0. (2.12)
dr\ B*r dr \B*A4r B°A4% dr\ r r

Assuming 4’ /Ar = C(r) Equation (2.12) can be written as

1 2__1 2 2
Ly ap—(L)ac- (B 1,7 @Yo, (2.13)
rZBS B3 B2 r332 B2 ,,.5
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3. Solutions of the Field Equations

Now, we first try to solve Equation (2.13) for B(r) if C(r) is known or suitably chosen.
For this purpose we write Equation (2.13) in the form

d > _13+C2 +Ci1_c
B
B _ 1+0° 5, 7 " B 3.1)
dr 1 1
r3<~+C> —+C
’,.2 r2

Choosing 1/B? = F Equation (3.1) can be written as

1 d
——3+C2r+d—c s
d~F+2 A F:_M

dr .
L +C I:r2 (i + C>]
},2 }"2

Thus if Cfr), i.e., A(r) and Q(¥) are known, the first-order linear differential equation (3.2)
gives B(r). Hence, we can try a number of interesting cases.
In order to find solution of Equation (3.2) we choose

(3.2)

~ % + C%r + (iTC
r r__ b (3.3)
1 r
—+C
r2
Then
1
C(r) = 3.4a
¢ (Cor +12) (3.42)
and
A% = (ay + a;r)?. (3.4b)
Equation (3.2) yields the solution
. R 4r2
F(r)=B~2=1+ Byr* - (2/Cy)r + F log[(C, + 2r)/r] -
0
2 n—2
K r"+2Kr2J L (3.5)
(n-2) (Co + 2r)

where we have taken

Q@) = Kr"; (3.6)

B, and K being constants.
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If we substitute the values of 4, B, and Q in Equation (2.7), we obtain

pzi[xw4_i+gwﬁﬁﬂ
8n ¥ ray + a,r)

n—2
2K r" 4+ 2Kr? J o dr}} )
(n-2) (Co +21)

{1 + Bor? — (2/Cy)r +

+ (4r3/C3) log[(C, + 20)/r] —

(3.7)
Similarly, Equation (2.9) gives
n—2
p=i|:K2r2”4+—4—+2(n+1)Kr _Elog(C0+2r>+
8n Cor n-2) CZ ¥
4 n—1 n—2
4 _ 2k 6KJ S P 330]. (3.8)
Co(Co +2r)  (Cy + 2r) (Co + 25

Next we consider the second possibility, that is, to solve C(r) for given B(r).
Equation (2.13) reduces to

2 Bz 2
d—C:(L(LB—B 1>+<ld—B>C—C2r+—Q—. (3.9)
dr Br? dr r? B dr r®

For known Q(r) given by (3.6), Equation (3.9) is a Riccati equation for C(r) and quite
difficult to solve, in general. Therefore, we consider some cases of physical interest.

Case I1

If we take B = W C(r) where W, is a constant, then one can find the following solution

(3.10)

W2K2r2n—2 -1/2
C=[qﬂ+wﬁ—ﬂ+_i—~4— ,

(n-2)
where n # 2.

Sub-case (i) n= 1

_ 2
logd =3sin~! (-G +2r7) +C,, (3.11)
{CE+4W2(1 - K212

B =W, [Cir* + Wg —r* - WZK?]" 12, (3.12)
By use of Equations (3.11) and (3.12) Equations (2.7) and (2.9) give, respectively,
1 K2

= [2(W3 + Cr> = r* = W2K?)'2 + C, — 2] + , (313
s 2078+ € ; Pl s ()

p

KZ
[572 - 3C,] +

= . 3.14
8nWg 4rr? (.14)

p
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Sub-case (if) n =13

In this case, we have

1 231 - KW - C
logAz——sinl[ r i) 1J+C3, (3.15)
201 - K2W2)ih2 CZ - aWz(l - K2W2
B=WW3+ Cyr? — (1 - WEK>)r*]~ V2, (3.16)

With the help of Equations (3.15) and (3.16), from Equation (2.7), we obtain

1 2 2 212,411/2 2 3K%r?
= [2{W5 + C;r? = (1 - WgK*r*}'2+ C, - r?] + .
SaWE 87

p
(3.17)

Similarly from Equation (2.9), one finds that

K2}’2
(5r2 - 3C)) - .

p (3.18)

8w

Case 111
If we consider B(r) = W(r)C(r) then Equation (3.9) reduces to

' ’ 2
dC _ _<_VK+1>C_ w F2C2 + C3<K+r3— W2K2r2n3>.

‘d? W or 114 r
(3.19)
If we assume
2
W ey,
’
we get
4
Kr"== -
When n = 1, we have
1
C= - (3.21)
r?*(Cyr — 2)
7\ 172
A=0C, <C3 - ~> , (3.22)
¥
B? = ! . (3.23)

(K% = 1) (Cyr = 2)?
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If we substitute the values of 4 and B in (2.7) and (2.9), we get

p= 8—15 [1+(K?-1) {2(Cyr = 1) + (Cyr - 2)2}] . (3.24)
nr

pe 14 K2 4 (K - 1)(Cyr— 2) 2 - 3G (3.25)
8mr?

Similarly, we can obtain the solution for n = 3.

Case IV
We can now try the substitution

1 dB Bz—l B2K2r’” C dB

2B dr r3 r’ E E = 6CW. (3.26)
If we assume 8(r) = r~ !, one can easily obtain
Cr) = I , (3.27)
(BCs +7?)
A(r) = Cs(3Cs + 1), (3.28)

3K2C 2n—2 2K2 2n+17]—1
BZ=(3C5+4r3)[3C5+(C7—2r)r2+ U ] .

(n - 2) @2n - 1)
(3.29)

With the help of Equations (3.32) and (3.33) one can easily find the pressure p which
is given by

3
_ (3Cs + 7r) [(3C5 LG )+
87nr2(3Cs + 4r*) (3C5 + r3)
3C; N 2r 22| i (1 - 2K2p?—8) (3.30)
n-2) @Cn-1 r?

Similarly we can find the density p (to avoid lengthy and cumbersome expression we
omit it).
4. Matching with Exterior Solution

Now we consider the matching of exterior Reissner~Nordstrom metric with different
interior solutions which have been obtained. The exterior solution is given by

2\ — 1
ds? = (1 _M + q_) dr? — r2d6? — r?sin?0 d¢? +

v v

2
(1o g, (4.1)
2

¥ r
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where

Fuu=-5 - (4.2)

We take components g, ,, g44, and 0g,,/0r continuous across the boundary of the sphere
r=ry. Also

Q) =gq. (4.3)
Therefore,
Krp=gq. (4.4
Case I
) M ¢
(ag + ayrp)* ={1-—+—=], (4.5)
o ro

2Krg "3 + Krn ! M g
Bord - 2rg - =00 +2r0j!—dr=<1—m+q—>, (4.6)

(n+ 1 Cy + 2r Yo Fg
M 2
ay(ag + ayrg) == 1 @.7)
o To
Subcase (i) n =1
In this case the boundary conditions are given by
) 2M g?
(ag+ayrg) =\ 1-—+= 1/, (4.8)
fo 1o
By+1-KS), 2 (5 K re — Krg + 3(KC§ — 2Cy)re log(Cy + 2r) =
0 WAL 0 o t1&¢, 0)7o log(Cy + 2r) =
2M g7
=<1———+q—>, 4.9)
N
M g7
a(ay + a,rg) =5 -5 (4.10)
fo 7o

If we solve (4.4), (4.8), (4.9), and (4.10) we get the constants K, a,, a,, By, and C, in
terms of M, g, and r, where 7, is obtained by equating p to zero.



120 T. SINGH ET AL.

Subcase (if) n =13

M
(ag + a,ry)* = <1 -+ Kzr(?) ,

To

(KC2 - 8) 1060 log(C, + 2ry) + <B +1 -

+ <KC°2 - 2) e - KC60r5‘ + 92

8

2M
2a,(ap + ayro) = — + 4K%rd .
o

From Equations (4.11) and (4.13), we have

g +1_1+K2 2

”

2
arg T M Yo

which shows that

a 3
© +2>0
al”oz o
or
ap > —3airy .
Case 11

K ro
4

g

KC3
>r02+
8
1—2—]‘/{+K2 z
Fo

Subcase (i) n = 1ln this case at the boundary r = r,, we have

explisin”{ ~Ci 25 }j|=<
JCF+ 4wzl - K?)

-1
1-—+K2) ,

woCrrg —rg +wi(1 = K*)] 7!

2M

l—zﬂ+K2>,

o

3
o

4.11)

) . (4.12)
(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

exp [sin‘1 { “Gi 2
JCF + 4wl - K?)

|

JCrg - ¢+ wal

_KZ):

(4.19)

With the aid of Equations (4.17), (4.18), and (4.19) we can easily obtain

M=-2 \/CrO*rO+W02(1—K2)

Wo

(4.20)
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Since M, K, and W, are positive quantities,
2> C . (4.21)
The value of r, is obtained by putting p = 0 in Equation (3.13).

Subcase (i) n =3

1 20 - KW -C
exp | ————— sin~ ' { 20— 797 LG
J1 - KW C2 - 4W(1 - K2W2)

2
- (1 M, K2r5‘> . (422
o

2M -1
WEIWE + Crg — (1 - W2KHrd ! = (1 - K2r5‘> , (4.23)

To

|: 1 . 41{2r(,2(1—K2W02)~C1 }]
exp| —————— sin X
V1 - K2Wg C? - 4wWi( - K*Wg3)
3
7o

X _—
JCr*+ wg —rd(1 - K2W3)

=M +2K%5.  (4.29)

By use of Equations (4.22) and (4.23) in (4.24) we have

3
y
Woz \/WO2 + Crg - (1 = WZKHry =M + 2K%rg . (4.25)

0
Again for positive M, K, and W, one has
C, > (1 - WZK>)rg. (4.26)
Furthermore, putting the value of p = 0 in Equation (3.17) the value of 7, is obtained.

CaseIll n =1

The boundary conditions are

CZ<C3—3>=<1 —2ﬂ+1<2>, (4.27)

I’O 7'0

(K2 - D(Cyr - 2)2] 1 :<1 —%u@)_ : (4.28)
o

C2oM. (4.29)

From these equations we obtain

1 + K?
C, = . (4.30)
M
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Case IV

Subcase (i) n =1

C2(3Cs +13) = <

(3C, + 4rd) [3Cs + (C; = 2rg)rg — 3CK? + 2K?rg ]!

T. SINGH ET AL.

1——2M+K2>,

Yo

3C23C + ) =M.

From Equations (4.31)-(4.33) we can obtain

Hence,

or

Cs 1 1+K?
+

Similarly for subcase (ii} one can obtain

7
Ci> —— .
3rg
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