The Thermochemistry of Transition Metal Carbides

Stephen R. Shatynski*

Received March 29, 1978 Revised May 18, 1978

A general survey is made of the available data for the standard Gibbs energies of formation of solid carbides of transition metals'. The results are plotted as standard Gibbs energy vs. temperature diagrams. The equations and the estimated accuracy when available are given for each substance.

KEY WORDS: standard Gibbs energy of formation; transition metal carbides; Ellingham diagrams.

INTRODUCTION

A review of the equilibrium and thermodynamic data of the transition metal carbides is presented with particular emphasis on the Gibbs energy of formation. This work reviews, updates, and extends the earlier surveys performed by Richardson¹ and Kubaschewski *et al.*,² and the more recent ones by Reed³ and Wicks and Block.⁴ Much of Reed's compilation of carbide thermochemical data was gathered from Richardson.¹ Data for the Gibbs energies of formation for carbides as a function of temperature are presented as Ellingham plots as shown in Figs. 1 and 2. In this paper, the Gibbs energies are normalized with respect to 1 mole of C. The general reaction considered is:

$$
x\mathbf{M}+\mathbf{C}\rightarrow\mathbf{M}_{x}\mathbf{C}
$$

For these reactions the standard states are as follows[†]: (1) for solid or liquid metal, a coexistence with its lowest carbide, (2) for C, a solid of unit activity, and (3) for carbides, the solid and liquid carbide in coexistence

- 105

^{*}Rensselaer Polytechnic Institute, Materials Engineering Department, Troy, New York 12181.

tMany of the existing data are based on coexistence standard states, not pure standard states.

Fig. 1. Ellingham diagram for the first transition series carbides. The formation of the lowest compound formed from the metal upon reaction with 1 mole of C is denoted only by the compound $\mathbf{M}_{\mathbf{x}}\mathbf{C}$ **. (Note: all Gibbs energy values are reported in calories and are normalized to I mole of carbon and since many of the existing data are based on coexistence standard states, the unit activity for the metal is the metal saturated with respect to the carbide and likewise unit activity for the carbide is the carbide saturated with its respective metal.)**

equilibrium with the other condensed phase of the reaction. Many transition metals form several carbides, and an effort is made to report their existence and stabilities. Examination of the available phase diagrams notes the large deviation from stoichiometry of many of the transition metal carbides. An

Fig. *2. Ellingham* diagram for the second and third *transition* series carbides. The formation of the lowest compound formed from the metal upon reaction with 1 mole of C is denoted only by *the* compound M_x C.

effort has been made to note this deviation from stoichiometry. Generally a carbon deficit is observed. The influence of the nonstoichiometry upon the thermochemistry has not generally been examined.

The standard free energy change for each reaction (ΔG_f^0) is related to the standard enthalpy change (ΔH_f^0) and the standard entropy change (ΔS_f^0) by the following equation:

$$
\Delta G_f^0 = \Delta H_f^0 - T \Delta S_f^0
$$

Many of the reported data appear in this form. Since the change in enthalpy and entropy can be expressed directly in terms of heat capacity and temperature, an empirical equation may be written for the standard free energy change:

$$
\Delta G_{\rm f}^0 = \left[\Delta H_{\rm f}^0 (298) + \int_{298}^T \Delta C_p \, dT \right] - T \left[\Delta S_{\rm f}^0 (298) + \int_{298}^T \frac{\Delta C_p \, dT}{T} \right]
$$

Since C_p is normally expressed as

$$
C_p = a + bT + cT^{-2}
$$

the above expression can be readily integrated to yield ΔG_f^0 as a function of temperature.

CARBIDES OF THE FIRST TRANSITION SERIES

Titanium

Only one carbide of Ti is known to exist, 5^{-8} TiC (melting point 3340°K). "TIC" is generally considered to have a considerable deficit of carbon and thus may vary continuously from $Ti_{1.8}C$ to TiC. Richardson¹ first reported the Gibbs energy of formation of TiC corresponding to the reaction

$$
Ti + C \rightarrow TiC
$$

to be:

$$
\Delta G_{\rm f}^{\rm 0}({\rm TiC}) = -43,750 + 2.41 T {\rm\ cal/mole\ C}~(\pm 3000 {\rm\ cal})
$$

in the temperature range $298-1150$ °K. At higher temperatures (1150- 2000° K). Richardson¹ reported:

$$
\Delta G_f^0(\text{TiC}) = -44,600 + 3.16T \ (\pm 3000 \ \text{cal})
$$

These early measurements are found to be in good agreement with more recent data of Wicks and Block⁴ and Kelley and Mah.¹⁰ Wicks and Block⁴ report for the above reaction

$$
\Delta G_{\rm f}^0(\text{TiC}) = -45,100 - 2.48T \ln T + 1.37 \times 10^{-3} T^2 + 0.74 \times 10^5 T^{-1} + 19.4T
$$

for the temperature range of $298-1150^{\circ}$ K and

$$
\Delta G_f^0(\text{TiC}) = -45,200 - 0.23 T \ln T + 0.11 \times 10^{-3} T^2 + 0.74 \times 10^5 T^{-1} + 4.96 T
$$

for the temperature range $1150-1800^{\circ}$ K. Fujishiro and Gokcen,¹¹ using a Knudsen cell equilibrium pressure measurement, have found the $\Delta G_f^0(TiC)$ for the temperature range $2383-2593^{\circ}$ K to be

$$
\Delta G_{\rm f}^0(\text{TiC}) = -141,064 + 35.0T \ (\pm 2000 \text{ cal}).
$$

Vanadium

Numerous carbides of vanadium have been reported^{5,9,12}: V_2C (melting point 2460°K), V_3C_2 (stable below 1800°K), V_6C_5 , V_8C_7 , and VC (melting point 2921°K). A large degree of nonstoichiometry is present in both V_2C and VC. Storms *et al.*¹² report that VC exists between $VC_{0.74}$ and $VC_{0.91}$ at 1700°K. At the upper composition, the vacancies apparently order at 1403°K to give V_8C_7 and C. V_2C in a similar manner extends from $VC_{0.45}$ to $VC_{0.58}$ at 1700°K.¹² Pillai and Sundaresan, 13 using EMF techniques, have measured ΔG_f^0 (V₂C) to be

 ΔG_f^0 (V₂C) = -41,970 + 21.26 × 10⁻³T cal/mole C (±1800 cal)

for the reaction

$$
2V + C \rightarrow V_2C
$$

within the temperature range $770-850$ °K. These results are in good agreement with the previous work of Worrell and Chipman¹⁴ and Kireev and Karapetyantes,¹⁵ but not with the earlier work of Volkova and Gel'd¹⁶ and Alekseev and Shavartsman.¹⁷ Apparently difficulties due to mixed vanadium carbides can account for the lack of agreement, which thus discounts the earlier work. For the above reaction Worrell and Chipman¹⁸ report

$$
\Delta G_{\rm f}^0(V_2C) = -35,200 + 1.0 T \text{ cal/mole C } (\pm 2000 \text{ cal})
$$

for the temperature range $1200-1350$ °K. For the reaction

 $V + C \rightarrow V C$

Worrell and Chipman¹⁴ report

$$
\Delta G_f^0 (\text{VC}) = -24,100 + 1.5T \text{ cal/mole C } (\pm 850 \text{ cal})
$$

for the temperature range $1180-1370$ °K. This result is in good agreement with those reported by Wicks and Block, 4 while this work supercedes that reported by Richardson.¹ Fujishiro¹⁹ used a Knudsen cell to obtain hightemperature data for the above reaction. For the temperature range 2350- 2550° K he reports

$$
\Delta G_{\rm f}^{\rm 0}({\rm VC}) = -23,300 + 2.0T
$$

which is in good agreement with the results of Mah.²⁰

Chromium

Three carbides of Cr have been reported⁹: $Cr₂₃C₆$ (melting point 1848°K), Cr_7C_3 (melting point 2038°K), and Cr_3C_2 (melting point 2083°K). Kulkarni and Worrell²¹ have recently remeasured the reaction

$$
\frac{23}{6}Cr + C \rightarrow \frac{1}{6}Cr_{23}C_{6}
$$

and obtained

$$
\frac{1}{6}\Delta G_f^0(Cr_{23}C_6) = -12,833 - 3.05T \text{ cal/mole C } (\pm 1200 \text{ cal})
$$

for the temperature range of $1150-1300^{\circ}K$. Although in disagreement with the previous data reported by Wicks and Block^{4} and Richardson,¹ the torsion effusion experiments performed by Kulkarni and Worrell²¹ are believed to be more reliable.

Kulkarni and Worrell²¹ also studied the reaction

$$
\frac{7}{27}Cr_{23}C_6 + C \rightarrow \frac{23}{27}Cr_7C_3
$$

and obtained for the temperature range $1100-1720^{\circ}$ K

$$
\Delta G_{f}^{0}(\frac{7}{27}\text{Cr}_{23}\text{C}_{6} \rightarrow \frac{23}{27}\text{Cr}_{7}\text{C}_{3}) = -29,985 - 7.41T \ (\pm 400 \text{ cal})
$$

This is also in conflict with the previously reported data.^{1,2,4} In addition, they studied 21 the reaction

$$
\frac{3}{5}Cr_7C_3 + C \rightarrow \frac{7}{5}Cr_3C_2
$$

in the temperature range $1300-1500^{\circ}$ K and obtained

 $\Delta G_{\rm f}^0$ (${}_{5}^{3}$ Cr₇C₃ \rightarrow ${}_{5}^{7}$ Cr₃C₂) = -9840 - 2.64*T* cal/mole (±400 cal).

These results are in good agreement with the previous results of Mabuchi and Matsushita,²² Storms,²³ and Tanaka *et al.*²⁴ They are in fair agreement with the previous results of Kleykamp, 25 and Vintaikin²⁶ and are in poor agreement with the results of Kelley *et al.*,²⁷ Gleiser,²⁸ Wicks and Block,⁴ and Richardson.¹ Again mixed carbides appear to account for the poor agreement of earlier results.

Manganese

Numerous carbides of Mn have been reported^{9,29}: $Mn_{23}C_6$ (melting point $123^\circ K$), Mn_1sC_4 (stability range 1123-1293°K), Mn_3C (stability range $1243-1323^{\circ}$ K), Mn₅C₂ (melting point 1360°K), and Mn₇C₃ (melting point 1423° K). Moattar and Anderson²⁹ have studied the reaction

$$
^{23}_{6}Mn + C \rightarrow ^{1}_{6}Mn_{23}C_6
$$

and have determined $\frac{1}{6}\Delta G_{f}^{0}(Mn_{23}C_{6})$ for the temperature range 900-

 $1100^{\circ}K$:

$$
\frac{1}{6}\Delta G_f^0(\text{Mn}_{23}\text{C}_6) = -15,359 + 5.6T \text{ cal/mole C } (\pm 1200 \text{ cal})
$$

For the compound $Mn₁₅C₄$ there are no reported thermodynamic data. The compound Mn_3C has been extensively studied. Frad³⁰ notes that Mn_3C is thermodynamically unstable below 1123° K. Richardson¹ and Wicks and Block⁴ report data for Mn₃C for 298-1010 and 1500 K , respectively. For the reaction

$$
3Mn + C \rightarrow Mn_3C
$$

Richardson¹ reports $\Delta G_f^0(Mn_3C) = -3330 - 0.26T$ cal/mole C (± 3000 cal) for the temperature range $298-1010$ °K. This result is in good agreement with the results of Wicks and Block.⁴ Moattar and Anderson²⁹ also have studied the reaction

$$
\frac{5}{2}Mn + C \rightarrow \frac{1}{2}Mn_5C_2
$$

and have determined the $\frac{1}{2}\Delta G_f^{\circ}(Mn_5C_2)$ for the temperature range 900-1100°K:

$$
\frac{1}{2}\Delta G_f^0(\text{Mn}_5\text{C}_2) = -10,780 + 3.2 T \text{ cal/mole C } (\pm 300 \text{ cal})
$$

for the reaction

$$
\frac{7}{3}Mn + C \rightarrow \frac{1}{3}Mn_7C_3
$$

Moattar and Anderson²⁹ obtained

$$
\frac{1}{3}\Delta G_f^0(\text{Mn}_7\text{C}_3) = -10{,}130 + 3T \text{ cal/mole C } (\pm 440 \text{ cal})
$$

for the temperature range $900-1100^\circ K$. This is in good agreement with the previous results of McCabe and Hudson³¹ but in poor agreement with Gokcen and Fujishiro. 32

Iron

Numerous carbides of Fe have been reported, ranging in composition from Fe₄C to Fe₂C. There are few data concerning most of the carbides except for the great wealth of data available concerning $Fe₃C$. It is generally agreed upon that the compounds Fe_4C , Fe_3C (melting point 1500°K), Fe_5C_2 (melting point greater than 503°K), Fe_7C_3 , Fe_2O_9 , and Fe_2C exist. Fe_2C was first suggested by Glud *et al.*³³ Hagg³⁴ noted that above 498°K mixtures of $Fe₂C$ and $Fe₃C$ were found, whereas above 673°K only $Fe₃C$ was noted. Hultgren *et al.*³⁵ note that Fe₂C can better be described as Fe₂₀C₉. For the reaction

$$
3Fe + C \rightarrow Fe_3C
$$

Wicks and Block⁴ report for the temperature range of $298-463^{\circ}$ K: ΔG_f^0 (Fe₃C) = +4530 – 5.43 T ln T + 1.16 $\times 10^{-3}T^2$ – 0.40 $\times 10^5T^{-1}$ $+31.98T$

$$
\Delta G_f^0(\text{Fe}_3\text{C}) = +3850 - 11.41 T \ln T + 9.66 \times 10^{-3} T^2 - 0.40 \times 10^5 T^{-1} + 66.2 T
$$

for the temperature range 1033–1179[°]K:
\n
$$
\Delta G_t^0(\text{Fe}_3\text{C}) = 13,130 + 9.68T \ln T - 0.99 \times 10^{-3} T^2 - 1.05 \times 10^5 T^{-1} - 78.14T
$$

for the temperature range $1179-1500^{\circ}$ K: $\Delta G_f^0(\text{Fe}_3\text{C}) = -1000 - 7.00T \ln T + 3.5 \times 10^{-3} T^2 - 1.05 \times 10^5 T^{-1}$ $+46.45T$

for the temperature range $1500-1674$ ^oK: ΔG_f^0 (Fe₃C) = 7340 – 11.95 T ln T + 5.01 \times 10⁻³ T² – 1.05 \times 10⁵ T⁻¹ $+74.62T$

for the temperature range $1674-1803$ °K:

for the temperature range $463-1033^{\circ}\text{K}$.

 ΔG_{ϵ}^{0} (Fe₃C) = 21,700 + 4.4T ln T + 0.5 \times 10⁻³T² – 1.05 \times 10⁵T⁻¹ – 47.48T

while for the temperature range $1803-1900^{\circ}$ K:

 ΔG_f^0 (Fe₃C) = 8980 + 3.50T ln T + 0.51 \times 10⁻³T² – 1.05 \times 10⁵T⁻¹ – 33.8T Hultgren *et al.*³⁵ have reported ΔG_f^0 (Fe₂C) = 373 cal/mole C at 600°K.

Cobalt

Two rather unstable carbides of Co have been reported, $Co₂C$ (range of stability between 773 and 1073° K) and Co₃C. Richardson¹ reports for the reaction

$$
2Co + C \rightarrow Co_2C
$$

that the free energy of formation of $Co₂C$ is

$$
\Delta G_{\rm f}^{\rm o}({\rm Co}_2{\rm C}) = +3950 - 2.08T \text{ cal/mole } {\rm C} (\pm 500 \text{ cal})
$$

for the temperature range $298-1200^{\circ}$ K. Wicks and Block⁴ note

$$
\Delta G_f^0(Co_3C) = +9000 \text{ cal/mole C at } 298^\circ \text{K}
$$

Nickel

One carbide of Ni has been reported, N_i ₃C. Ni₃C has been reported to be unstable even under a pressure of 60 kbar.⁸ Richardson¹ had reported for the reaction

$$
3Ni + C \rightarrow Ni_3C
$$

$$
\Delta G_f^0(Ni_3C) = +8110 - 1.70T \text{ cal/mole C } (\pm 3000 \text{ cal})
$$

for the temperature range $298-1000^{\circ}$ K. This is in good agreement with the results reported by Wicks and Block. 4

Copper

Only the explosive carbide $Cu₂C₂$ has been reported.⁸

Zinc

The compound ZnC_2 has been reported but no further work has been reported. 8

CARBIDES OF THE SECOND TRANSITION SERIES

Zirconium

Only one carbide of Zr has been reported: $ZrC^{4,5}$ (melting point 3718°K). Kubaschewski *et al.*² report the $\Delta G_f^0(ZrC)$ for the reaction

$$
Zr + C \rightarrow ZrC
$$

to be

$$
\Delta G_{\rm f}^{\rm o}({\rm ZrC}) = -44,100 + 2.2 T \text{ cal/mole C } (\pm 3000 \text{ cal})
$$

within the temperature range 298-2220°K. These results are in good agreement with the later results of Wicks and Block⁴ at 298° K and Pollock³⁶ at 2675°K.

Niobium

Two carbides of Nb have been identified: $Nb₂C$ (melting point 2777° K)^{5,9} and NbC (melting point 3881°K).^{5,9} Worrell and Chipman^{14,18} studied the ΔG_f^0 of both Nb₂C and NbC. They determined the ΔG_f^0 (NbC) for the reaction

$$
Nb + C \rightarrow NbC
$$

to be

$$
\Delta G_{\rm f}^{\rm o}({\rm NbC}) = -31,100 + 0.4 T {\rm cal/mole} (\pm 600 {\rm cal})
$$

for the temperature range $1180-1370$ °K. These results are in excellent agreement with the data obtained by Pankratz *et al. 37* In a similar manner, Worrell and Chipman^{14,18} measured the $\Delta G_f^0(Nb_2C)$ for the reaction

 $2Nb + C \rightarrow Nb_2C$

to be

$$
\Delta G_f^0(Ng_2C) = -46,000 + 1.0T \text{ cal/mole C } (\pm 900 \text{ cal})
$$

for the temperature range $1180-1370^{\circ}$ K.

Molybdenum

There appears to be some conflict concerning the number and composition of molybdenum carbides. Gleiser and Chipman³⁸ report measurements on "Mo₂C" where the composition varies from Mo_{2.21}C to $Mo_{1.98}C$. Wallace *et al.*³⁹ report values for $MoC₆₁$ which is approximately $\frac{1}{3}$ Mo₃C₂. Rudy, ⁵ in his phase diagram, illustrates only two compounds, Mo₂C and MoC_{1-x} . Storms, ²³ however, notes the formation of three carbides, MoC (melting point 2800°K), α -Mo₃C₂ (melting point 2823°K), and Mo₂C (melting point $2978^\circ K$). The apparent discrepancies are most probably related to the high degree of deviation from stoichiometry that is exhibited in the Mo-C system. For the reaction

$$
2Mo + C \rightarrow Mo_2C
$$

Solbakken and Emmett⁴⁰ report

$$
\Delta G_f^0(\text{Mo}_2\text{C}) = -12,030 - 1.44 T \text{ cal/mole C } (\pm 1000 \text{ cal})
$$

for the temperature range $600-900$ °K. These results are in good agreement with the previous results of Gleiser and Chipman,³⁸ who report

$$
\Delta G_{\rm f}^0(\text{Mo}_2\text{C}) = -11,710 - 1.83 T \text{ cal/mole C } (\pm 1000 \text{ cal})
$$

for the temperature range $1200-1340^{\circ}$ K. These results are also in good agreement with the vaporization studies of Fries.⁴¹ The standard free energy of formation of $Mo₃C₂$ at 2100°K was reported by Wallace *et al.*³⁹ to be

$$
\Delta G_f^0(\text{Mo}_3\text{C}_2) = -2600 \text{ cal/mole C} (\pm 1500 \text{ cal})
$$

Browning and Emmett⁴² report the ΔG_f^0 of MoC at 950° to be ΔG_f^0 (MoC) = -3211 cal/mole of C.

Ruthenium

A eutectic phase diagram with no compound formation has been reported.⁸ Gingerich,⁴³ however, has identified RuC as a gas phase compound.

Rhodium

A eutectic phase diagram with no compound formation has been reported.⁸

Palladium

A eutectic phase diagram with no compound formation has been reported. 8

Silver

Sneed and Brasted⁴⁴ and Sidgewick⁴⁵ report the existence of the highly unstable Ag_2C_2 .

Cadmium

There is no reported compound formation in the Cd-C system.

CARBIDES OF THE THIRD TRANSITION SERIES

Hafnium

There is little information concerning the carbides of Hr. One carbide, HfC (melting point 4201° K), has been reported.⁵⁻⁹

Tantalum

Two carbides of Ta have been identified: TaC (melting point 3603° K) and TiC (melting point 4256°K). Using the torsion-effusion technique, Kulkarni and Worrell⁴⁶ obtained for the reaction

 $2Ta + C \rightarrow Ta_2C$

 ΔG_f^0 (Ta₂C) = -47,000 + 2.1 T cal/mole C (±300 cal)

for the temperature range $1740-1900^{\circ}$ K. Worrell and Chipman^{14,18} obtained thermodynamic data for the reaction

 $Ta + C \rightarrow Tac$

For the temperature range of $1250-1400^{\circ}$ K, they obtained

 ΔG_f^0 (TaC) = -34,900 + 0.5 T cal/mole C (±600 cal).

This result is in good agreement with previous results of Pankratz *et al. 47* but not with the reported values of Wicks and Block. 4

Tungsten

Two compounds of W have been identified: W_2C (melting point 3049° K) and WC (melting point 3049°K). Gupta and Seigle⁴⁸ have recently reinvestigated the W-C system. For the reaction

$$
2W + C \rightarrow W_2C
$$

They obtained ΔG_f^0 (W₂C) = -7300 - 0.5 T cal/mole C (\pm 100 cal) for the temperature range $1150-1575$ °K. These results are in good agreement with previously reported data by Kubaschewski et al.,² but in poor agreement with the data reported by Wicks and Block.⁴

Rhenium

No carbide compounds have been reported.⁸

Osmium

A eutectic system with the compound OsC has been reported. 8 No further data are known.

Iridium

There are no reported Ir compounds.⁸

Platinum

There are no reported Pt carbides; a simple eutectic phase diagram has been proposed.⁸

Gold

The highly explosive Au_2C_2 compound has been reported.⁴⁵

Mercury

There are no reported Hg carbides.⁸

REFERENCES

- 1. F. D. Richardson, *J. Iron SteelInst.* 175, 33 (1953).
- 2. O. Kubaschewski, E. L. Evans, and C. B. Alcock, *Metallurgical Therrnochemistry* (Pergamon Press, Oxford, 1967).
- 3. T. B L Reed, *Free Energy of Formation of Binary Compounds: An Atlas of Charts for High Temperature Chemical Calculations* (M.I.T. Press, Cambridge, Mass., 197t).
- 4. C. E. Wicks and F. E. Block, *Bur. Mines Bull.* 605 (1973).
- 5. E. Rudy, "Ternary Phase Equilibria in Transition Metal-Boron, Carbon, Silicon Systems," Part V, "Compendium of Phase Diagram Data," AFML-TR-65-2, Wright-Patterson Air Force Base, Ohio, (1967).
- 6. M. Hansen, *Constitution of Binary Alloys* (McGraw-Hill, New York, 1936).
- 7. R. P. Elliott, *Constitution of Binary Alloys,* First Supplement (McGraw-Hill, New York, 1965).
- 8. F. A. Shunk, *Constitution of Binary Alloys,* Second Supplement (McGraw-Hill, New York, 1969).
- 9. W. A. Moffatt, *The Handbook of Binary Phase Diagrams* (General Electric Co., Schenectady, N.Y., 1976).
- 10. K. K. Kelley and A. D. Mah, *Bureau of Mines Report of Investigations Number* 5490 (1959).
- 11. S. Fujishiro and N. A. Gokcen, J. *Phys. Chem.* **65,** 161 (1961).
- 12. E. K. Storms, A. Lowe, E. Bacca, and J. Griffin, *High Temp. Sci.* 5, 276 (1973).
- 13. P. V. S. Pillai and M. Sundaresan, *Trans. Ind. Inst. Met.* 28, 319 (1975).
- 14. W. L. Worrell and J. Chipman, Z *Phys. Chem.* 68, 860 (1964).
- 15. T. Kireev and R. Karapetyantes, J. *Chem. Phys.* 40, 68 (1966).
- 16. N. M. Volkova and P. V. Gel'd, *lnz. Vyssikh. Zaved. Tsvem. Met.* 77, 8 (1965).
- 17. V. I. Alekseev and L. V. Shavartsman, *Dokl. Akad. Nauk SSSR* 113, 1327 (1960).
- 18. W. L, Worrell and J. Chipman, *Trans. Am. Inst. Min. Metall. Pet. Eng.* 230, 1682 (1964).
- 19. S. Fujishiro, *Trans. Jpn. Inst. Met.* 35, 997 (1971).
- 20. A. D. Mah, *Bureau of Mines Report of Investigations Number* 6177 (1963).
- 21. A. D, Kulkarni and W. L. Worrell, *Metall. Trans.* 3, 2363 (1972).
- 22. H. Mabuchi and Y. Matsushita, *Metall. Trans.* 2, 1503 (1971).
- 23. E. K. Storms, *The Refractory Carbides* (Academic Press, New York, 1967).
- 24. H. Tanaka, Y. Kishida, A. Kawayuchi, and J. Moriyama, unpublished research, Department of Metallurgy, Kyoto University, Japan (1970).
- 25. H. Kleykamp, *Bet. Bunsenges. Phys. Chem.* 73, 354 (1969).
- 26. Y. Z. Vintaikin, *Fiz. Met. Metalloved.* **16,** 144 (1963).
- 27. K. K. Kelley, F. S. Boericke, G. E. Moore, E. H. Huffman, and W. M. Bongert, U.S. Bureau of Mines, Technical Paper 662 (1944).
- 28. M. Gleiser, J. *Phys. Chem.* 69, 1771 (1965).
- 29. F. Moattar and J. S. Anderson, *Trans. Faraday Soc.* 67, 2303 (1971).
- 30. W. A. Frad, *Adv. Inorg. Chem. Radiochem.* 11, 188 (1968).
- 31. C. L. McCabe and R. G. Hudson, *Trans. Am. Inst. Min. Metall. Pet. Eng.* 209, 17 (1957).
- 32. N. A. Gokcen and S. Fujishiro, *Trans. Am. Inst. Min. Metall. Pet. Eng.* 227, 542 (1963).
- 33. W. Glud, K. V. Otto, and H. Ritter, *Ber. Ges. Kohlentech.* 3, 40 (1929).
- 34. G. Hagg, *Z. Kristallogr.* 89, 92 (1934).
- 35. R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, *Selected Values of Thermodynamic Properties of Metals and Alloys* (Wiley, New York, 1963).
- 36. B. D. Pollock, J. *Phys. Chem.* 65, 731 (1961).
- 37. L. B. Pankratz, W. W. Weller, and K. K. Kelley, *Bureau of Mines Report of Investigations Number* 6446 (1964).
- 38. M. Gleiser and J. Chipman, J. *Phys. Chem.* 66, 1539 (1962).
- 39. T. C. Wallace, G. P. Gutierrez, and P. L. Stone, J. *Phys. Chem.* 67, 796 (1963).
- 40. A. Solbakken and P. H. Emmett, *J. Am. Chem. Soc.* 91, 31 (1969).
- 41. R. J. Fries, 3". *Chem. Phys.* 46, 4463 (1967).
- 42. L. C. Browning and P. H. Emmett, J. *Am. Chem. Soc.* 74, 4773 (1952).
- 43. K. A. Gingerich, *Chem. Phys. Len.* 25, 523 (1974).
- 44. M. C. Sneed and R. C. Brasted, *Comprehensive Inorganic Chemistry,* Vol. II (Van Nostrand, Princeton, N.J., 1954).
- 45. N. V. Sidgewick, *The Chemical Elements and Their Compounds* (Oxford Univ. Press, Oxford, 1950).
- 46. A. D. Kulkarni and W. L. Worrell, *Metall. Trans.* 4, 931 (1973).
- 47. L. B. Pankratz, W. W. Weller, and E. B. King, *Bureau of Mines Report of Investigations Number* 6861 (1966).
- 48. D. K. Gupta and L. L. Seigle, *Metall. Trans.* 6A, 1939 (1975).