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~CHANICS OF BUILT-UP VISCOELASTIC BODIES SUBJECTED TO AGING 

IN FINAL DEFOLIATIONS 

N. Kh. Arutyunyan and A. D. Drozdov UDC 539.376.001 

We obtained the basic equations of the mechanics of built-up viscoelastic bodies, subjec- 
ted to aging, in final deformations. Problems of axisymmetric build-up of a sphere of incom- 
pressible viscoelastic material are solved. 

i. Statement of the Problem. We examine the deformation of a built-up viscoelastic body 
subjected to aging. Before application of the load the body Ko occupies the domain ~o with 
piecewise-smooth boundary ~o. At the instant t = 0 surface and volume forces are applied to 
the body, and the process of build-up begins which continues up to the instant t = T. We de- 
note by D(t) the domain taken up by the body at the instant t, and by r(t) the piecewise-smooth 
boundary of this domain. The sets D(t) and F(t) are determined in the actual state. 

First we examine the process of discrete build-up of a body. We fix the instants tl, t2, 
.... t N ~ [0, T], tl = 0, t N = T. In discrete build-up the elements K. are added at the in- 
stants t. to the surface of the built-up body. 3 

J 
We introduce the notion of the initial state of the built-up element. We denote by yo the 

part of the boundary of the domain ~o on which the process of building up is determined. By the 
initial state of the element K~ we mean the state in which it can be superposed on yo without 
deformation as a rigid whole, with continuity being maintained along yo. We denote by ~i the 
domain occupied by the body KI which is in the initial state and is superposed on Yo. We put 
~' = ~o U ~i. By y~ we denote the part of the boundary of the domain ~' on which the process 
of building up is determined. By the initial state of the element K2 we mean the state inwhich 
it can be superposed on y~ without deformation as a rigid whole, with continuity being main- 
tained along y~. The domain occupied by the body K2, which is in the initial state and is su- 
perposed on y~, is denoted by ~2. Analogously we determine the initial state of an element K. 
for any j > 2. Thus, whereas the built-up elements Kj are in the initial state, the built-u~ 
body K at the instant T is composed of bodies Kj as rlgid bodies, with continuity maintained 
along the surface of building up. We denote by ~ the domain occupied by body K in the initial 
state. Into ~ we introduce the system of coordinates ~2~3. We adopt the coordinates $ = 
(~j) as Lagrange coordinates of points of the basic body and of the built-up elements. 
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The introduction Of the initial state enables us to show which points of the boundaries 
of the basic body and of the built-up elements are joined in build-up. The law according to 
which the correspondence of the points of the boundaries is established is formulated impli- 
citly, namely: the set of points of the boundary to which the new element K. is joined is 
specified a pmior~, but the actual form of the surface Yj_I is found in sol~ing the problem of 
determining the state of stress and strain in the built-up body. In the simplest cases, when 
there is central or axial symmetry, the form of the surface yj can be determined beforehand. 

We denote by r(~) the radius vector of the point ~ in the initial state. The base vec- 
tors of the system of Lagrange coordinates in the initial state are denoted by gi = r i (the 
subscript after th~ comma denotes the derivative with respect to the corresponding La~range 
coordinate). By gl we denote the vectors of the mutual base: giog. = ~.l (~i are Kronecker 
deltas), and by gi ~, gij the metric tensors.of the principal base ~nd o~ theJmutual base in 
the initial state: 3 gij = gi'gj ; giJ = gi,gj. 

We introduce the notion of the natural (reference) state of the element K.. If an elem- 
ent K~ is in the natural state, then in the absence of an external load it is ~ot being de- 
forme~ and there are no stresses in it. The domain occupied by the body K. in the natural state 
is denoted ~ o. By r~ we denote the radius vector of the point ~ in t~e natural state. We 
introduce th~ base vectors of the principal base and of the mutual base and the corresponding 

�9 ~ ~ji; o = ri~ o = gij ~ gi~176 metric tensors in the natural form by the formulas gi ; gOl.gj = 
gO13 = gOiogOJ. 

The process of continuous building up is regarded as the limit of the process of discrete 
building up on condition that At i = tj+~ -- t~ § 0. Going over to the limit, we obtain the 
Lagrange coordinates of the points of the bo@y, and also the corresponding metric tensors in 
the initial and the natural state in continiuous building up. 

We denote by ~(t) the domain which at the instant t the built-up body K(t) occupies, by 
y(t) the boundary of this domain, and by v(~) the rate of build-up along the normal to the 
surface y(t) at the point ~'y(t) in the initial state. In continuous build-up the element 
dK(t) is added within time dt to the surface y(t); this element occupies in the initial state 
the domain d~(t), and it is a film with variable thickness v(g)dt (the thickness of the film 
is measured in the initial state). 

In various problems it is expedient to specify the rate of build-up along the normal to 
the boundary in the actual state V($), and not in the initial state. It is obvious that with 
the function v(~) specified, V($) can be found after the problem of determining the displace- 
ments of the points of the built-up body has been solved, and conversely, with the function 
V(~) specified, we can determine the magnitude of v(~). The two approaches are therefore 
equivalent. 

By R(t, ~) we denote the radius vector of the point ~ in the actual state at the instant 
t. We introduce the base vectors of the principal and the mutual base and.the corresponding 
metric tensors in the actual state: G i = R,i ; GI-Gj = ~ji; Gi j = Gi~ ; GiJ = G1.G 3. 

Thus at the instant t the built-up body may be regarded as a three-dimensional manifold 
o 

referred to Lagrange coordinates on which the three metric tensors gij' gij and Gij are de- 
termined. 

The construction of the theory of building up viscoelastic bodies is based on the intro- 
duction of three states of the elements of the body: the natural, the initial, and the actual 
states. We note that in the choice of the initial state there is a certain arbitrariness pos- 
sible. If the technological process of building up a given object or equipment is specified, 
then the initial state expresses the true picture of this process (plan of build-up). If the 
technological process of build-up is not specified, then the initial state may he chosen by 
proceeding from the conditions of the production of the body or from design considerations or 
other considerations. 

2. Principal Equations and Boundary Conditions. We denote by ei~ the Almansi strain 
components ei. = (G.~ "~ gi~)/2. These magnitudes are expressed throughJthe displacement com- 

3 Ij i J 1 
ponents u = R-- r; u = u G i = uiG by the formulas [i] 

~i~= (Viu~+ Vju~- V~UkVjUh) / 2. (2. i) 

Here, V. is the operator of covariant differentiation with respect to the coordinate ~i in the 
base oflthe actual state, and summing is carried out according to the repeated subscripts. 
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We denote by olj the Cauchy stress components measured per unit surface area of the de- 
formed body, in the base of the actual state. If the processes of applying the external load 
and of build-up are sufficiently slow, then the forces of inertia may be neglected and the 
problem of deformation of the body may be examined in the quasistatic statement. Then the equa- 
tions of equilibrium of an element of the body have the form 

VloO+~J=0. (2.2) 

Here ~ = ~iG i is the vector of mass force acting on unit volume. 

in a viscoelastic aging body, the stress components oiJ(t, ~) are correlated with the 
O 

strain components r = -- gij~ by the relations (Gij 
otJ(t,~)=FO[t--*(~),T--*(~),~,80~ *E[~ (~ ) , t ] .  ~2.3) 

Here ,  FiJ a r e  some f u n c t i o n a l s  based  on the  sys t em of  axioms of  the  mechanics  of  the  c o n t i n u -  
um [1-3] whose form i s  de t e rmined  by the  e l a s t i c  and r h e o l o g i c a l  p r o p e r t i e s  of  t h e  b u i l t - u p  
v i s c o e l a s t i c  body,  and •  i s  t he  i n s t a n t  of  o r i g i n  ( p r o d u c t i o n )  of  t he  e lement  of  the  body 
w i t h  the  c o o r d i n a t e  ~ [4] .  

The equation of state in the form (2.3) describes simultaneously the effect of two kinds 
of inhomogeneity of the viscoelastic body. The first kind is the age inhomogeneity which exists 
in aging material only. The second kind of inhomogeneity, when elements of the built-up body 
are made of different materials, exists also in nonaging bodies. 

Putting ~..o = E*ij (gij (2.3) in the f~m ~ij +e*ij' where = -- gij~ we write the equation of state 

aO(t, ~) =FO [ / - •  (~), ~--x (~), ~, e~j (~, ~) +e*O(~) ]. (2 .4)  

For the sake of simplicity we assume that the surface load has been specified on the entire 
boundary of the domain D(t) 

oiJni=fJ; R ~ F ( t ) .  (2 .5)  

Her~ f = fJG. is the vector of surface forces per unit surface area of the deformed body; n = 
n.G J is the ~ector of the unique outer normal to the surface F(t). 
3 

The system of equations (2.1)-(2.4) with the boundary conditions (2.5) determines the 
state of stress and strain in the built-up body. 

In investigations of the deformation of a body with fixed boundary it is usually assumed 
that the initial state coincides with the natural state, i.e., e*ij ffi O. In problems of build- 
up this assumption is correct for the basic body but it need not apply to the elements that 
are being built up. In build-up with preload, the built-up element is first transferred from 
the natural state to the initial state, and it is maintained in this by an additional load 
which is relieved when this element grows together with the body. Here the state of stress 
and strain in the body depends on the tensor c*ij which has to be specified at each point of 
the built-up element. 

In the general case the strain tensor e*ij is a function of the Lagrange coordinates of 
the points of the built-up elements $. It is technically expedient to specify the tensor e*.. 
either as a function of the radius vector of the point in the initial state r($) or as a fun~ ! 
tion of the radius vector of'the point in the attual state at the instant of growing together 
with the basic body R[~(~), $]. We note that these approaches lead to fundamentally different 
results. If the material of the body is elastic, then in the first case the state of stress 
and strain in the body does not depend on the history of build-up and loading, and it is de- 
termined solely by the shape of the body at the running instant. In the second case the state 
of stress and strain in the body depends substantially on the rate of build-up v and on the 
history of loading. Below both approaches are illustrated on actual examples. 

To describe the process of build-up with preload we use the preload strain tensor e*... 
We.note that this approach differs somewhat from the approach known from the literature [~] 
In describing the process of build-up it is usual to specify the preload strain tensor [4]. 
However, for the specified regularity of the state of the material, both approaches are equiv- 
alent. 
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3. Build-Up of a Viscoelastic Pipe Subjected to Aging=. We examine the deformation of a 
circular pipe made of incompressible viscoelastic material. Before deformation, the pipe is 
a cylinder Ko whose inner radius is a, and outer radius is rl. At the instant t = 0 external 
Pressure ql and internal pressure qo are applied to the body, and the build-up process begins. 
It consists in the following: within time dt a cylindrical shell dK(t) is laid on the outer 
contour of the pipe; the thickness of the shell is proportional to dt, and it grows together 
with the body. The initial state of the built-up element need not coincide with the natural 
state. We assume that in the transition from the natural state to the initial state and from 
the initial state to the actual state plane axisymmetric deformation is effected. 

The problem of continuous build-up is the limit problem of the following problem of dis- 
crete build-up. We have the basic body Ko and a finite set of built-up elements Kj (j = i, 2, 
..., N). In the initial state the body K~ occupies the domain ~, a cylinder whose inner rad- 
ius is equal to ri, and the outer radius is equal to rj+1. All 0the cylinders are coaxial. 
The process of build-up concludes when at the instant t- the cylinder ~. is 'Blipped over" 

3 3 
j--I 
U ~ i  Assume that the build-up process is concluded and there is no deformation of the 
i=0 

cylinders. As a result of the build-up we obtain a body K which occupies the domain ~. In 
the domain ~ we introduce the system of coordinates rOz whose z axis coincides with the cylin- 
der axis. We take the coordinates r, O, z as the Lagrange coordinates of the points of the 
bodies K~. We denote by ~ o the domain occupied by the body Kj in the natural state. In sym- 
metric d~formation the domain ~ o is also a cylinder. We denote by r ~ O~ and z ~ the cylin- 

J o o 
drical coordinates of the points of the domain ~j whose z axis has the direction of the cyl- 
inder axis. 

Going over to the limit with N + =, we obtain the coordinates of the points of the body 
Ko and of the built-up elements K. in the initial and in the natural states during continuous 
build-up. 3 

Let R, @, Z be the cylindrical coordinates of the body K(t) in the actual state at the 
instant t. According to our assumption concerning the nature of the deformation R = R(t, r); 
r ~ ~(r) ; @ = ~o z o = =:0 ;  Z = = z.  

The function R, determining the radial displacements in the transition from the initial 
state to the actual one, is continuously differentiable. The function ~, characterizing the 
dispiacement in transition from the initial state to the natural state, may be discontinuous. 
In the problem of discrete build-up this function is continuously differentiable on the inter- 
vals (rj, rj+t), and it may have a discontinuity at the points rj. 

The nonzero components of the metric tensors in the initial, natural, and actual states 
have the form 

g u = l ;  g22=r~; g3a=l;  g l l = l ;  g22=r--2, gaS=l; gllo---(~')2; 
g~20=~; g~30=l; g0!1=(~,)-2; g02~=~-2; g033=1 ; G . = ( R , ) 2 ;  

G22=R2; G33=1; G u =  (R')-2; G22=R-2; Gss=I.  
(3 .1)  

A prime indicates the derivative with respect to the argument r. At the points r. by deriva- 
tive of the function ~ we mean the corresponding one-sided derivative. 3 

According to (3.1) 

O=det I O,~l = (R'R)~; g ~  Ig,?l = (r162 g = d e t  Ig,~l =r~. (3 .2 )  

From (3.2) and the condition of incompressibility of the material G = gO = g we obtain 

R'R=r; ~'~=r. (3 .3 )  

When we integrate these equalities, we find 

R=(t,r)=r~+C(t) . 

In discrete build-up 

~2(r)=r2+X~(r); XN (r) = 6'~i 

(3.4) 

r ~  (rj, rj+l). (3 .5 )  
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Here,cC ~ ~ are the specified constants (in the general case different for each built-up element 
K~); C(t) is a function of time to be determined. 

We denote by X(r) the limit in the norm of the domain L2 of the function ~(r) with N § 
m. According to (3,5) in continuous build-up 

~=:  r=+X(r). (3.6) 

We denote by to(t) the outer radius of ithe built-up body in the initial state, by Ro(t) its 
outer radius in the actual state, and by A(t) the inner radius of the built-up cylinder in the 
actual state at the instant t: Ro(t) = R[t, ro(t)]; A(t) = R(t, a). In continuous build-up 

t 

ro(t)=r,+ ~v(s)ds, 
0 

where v~t) = d r o / d t  i s  the s p e c i f i e d  r a t e  of bu i l d -up  along the normal to the boundary in  the 
initial state. 

In continuous build-up the built-up element dK(t) is transferred instantaneously from the 
natural state to the initial state and grows together with the basic body and changes into the 
actual state. We denote by ~ (r) the instant of growing together of the element dK(t) with the 
basic body. This value is determined from the equality ro[X(r)] = r. 

We take it that the material of the body satisfies the equation of state 

o o = p G ~j + ~ ( 1 -  L) (gOO_ Jl G ij / 3). ( 3 . 7 )  

Here, ~ is a constant determining the properties of the material; p is the vressure; J1 = 
g~ is the first invariant of the measure of Cauchy deformation; I is the unit operator; 
L is the relaxation operator [4], 

lh=h(t,r); Lh= jl[t-• 
x(r) 

where l(t, T) is the relaxation kernel. 
of investigations and experiments carried out with polymer and rubberlike materials 

In accordance with (3.1), (3.3), we obtain 

J, = I + (R/r + (r (3.8) 

From relations (3.7), taking (3.1), (3.3) into account, we find 

~" =p (~')-~ + tt (I -  L) [ (r 1, (t~/r) ~/31; 
o2~=pR-~+tt(l-L ) (~-~-JiR-~/3); (3.9) 

o3S=p+l~(l-L) (1-Jt /3) .  

Relation (3.7) was adopted on the basis of the results 
[5]. 

The remaining stress components are equal to zero. 

We denote by Or, o , o z the physical stress components o r = o*1(R')2; o 
o~s. From relations (3~9) with the aid of (3.3) we obtain 

o~=p+~R~(I-L)  (~-I,R2/3); o~=p+~R~(l-L ) (~ , - J ,R -z /3 ) ;  
oz=p+~(l -L)  ( I - / , / a ) .  

Eliminating from these relations the unknown pressure p, we find 

%= ~+ ~f (t, r); 
l = R ~ ( I -  L) (~ -2_  1,R-2/3) - R-~ (1 -  L) ($~-  lira~3). 

The equation of equilibrium of an element of the body has the form [I] 

aodaR + (~r - %)./R = O. 

= O2aR2; o z 

(3.10) 

(3.11) 

(3.12) 
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We substitute expression (3.10) into relation (3.12) 

O~/OR = IXf ( t, r) IR. 
Integrating this equality with respect to R from A(t) to Ro(t) and taking into account that o 
is continuous and that Or(t , a) =--qo; Or(t, ro(t)) =--ql, we obtain r 

~o(t) 
.[ f(t, r)dR qo-q, 

a(t)a R Ix 

We now go over to the integration with respect to the variable r, using equality (3.4): 

qo- ql 
to(t) 

rf(t,r)dr 
r~+C(t) Ix (3.13) 

From (3.4), (3.6), (3.8), and (3.11), we find 

f = + {  r2+C (I-L) [2 r2+X ( r2+--X ) ~ - -  )2 r2+---'-~ r2+C r2+C ] r~+X ( ,_L)[2  r2+X ( r'+Cr~TX ]} 

If we substitute this expression into (3.13), we obtain the integral equation for determining 
the unknown function C(t) 

ro:(t) 

I a2 

• [2 x+C 
x+Xl 

X.Jl_Xl ( x..~Xl )2 2 

x+C x+C ]-( x+X~ ) 
x+C )~ 
X"~XI ] }~x.~.xldX =6~t-'(qo-ql); 
X~ (x) = X(x'/,). 

(3.14) 

Having determined the function C(t), we find the displacements of the points of the pipe in 
build-up from relation (3.4). If the material of the pipe is elastic (L = 0), then Eq. (3.14) 
becomes simplified : 

r02(O 

~ x+X----~- x+-----~ 'x+C =2~-l(q~ (3.15) 

In build-up without preload, when the initial state of the built-up elements coincides 
with their natural state (X = 0), we obtain from (3.15) an algebraic equation for determining 
the function ~(t) = C(t)ro-2(t): 

(1--[$)~ ] (l--[i)o: 2(qo--qO . ~=(a/ro) 2 
In 1+ l+a[~ + (1+~) (1+(~) -  IX ' 

In build-up of a cylinder of viscoelastic material without preload, when the initial state of 
the built-up elements coincides with their natural state, we find from relation (3.14): 
to'( t ) 

; { ( I-- / ) [2 x+C x+C ] - (  x+C x " - ' ~  ] }?-=6~t-'(qo-q,) ~2 

With small deformations, when Ca -2 << i, it follows from this equality that 

ro(t) 

~ (l_L)Cr_adr= qo-ql 
2IX 

(3.16) 

If we substitute the expressions for the operators I and L into (3.16), we obtain an integral 
equation for determining the function C(t) 
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to(t) t 

I {c(,)- I 
a u(r) 2 ~  

If we change the sequence of integration, we obtain a Volterra equation of the second kind 

t 

C(t) - ~l, (t, ~)C(x)dr (qo-ql) {p[a'~-ro -2 (t) ] }-'; 
0 

,.0(~) 
l, (t, , )= [a-:-ro-"(t) l- ' { l(t, T)(a-Z-- r :  z) + 2 j" l[t--• ,--u(r) ]r-Sdr }. 

TI 

We denote by 12(t, T) the relaxation kernel in the form 

le (t,x) = [a - 2 -  ro - :  (x) ] - '  [a - e -  ro -2 (t) ] l, (t,~) = 
T 

= [a- ' - ro-2(x)]- |  [ l(t,T)(a-2--rl-2)+2~ l(t-s.,-s)u(s)ro-S(s)ds]. 
0 

and by : z) ka,t, 
formula 

the creep kernel corresponding to it. The function C(t) is determined by the 

t 

c(,):.-,(~o-q,)t~ , +  I ~ . , . . ) ~ ]  �9 <~.~,) 
0 

If the relaxation kernel of the material is a difference kernel l(t, T) = l(t -- T), then 
la(t, ~) = l(t -- ~), and the kernel k2(t, T) coincides with the creep kernel k(t -- ~) of the 
material of the cylinder. In this case we obtain in accordance with (3.17) 

t 

0 

According to (3.4), radial displacement of points of the pipe with small deformations is 
determined by the formula 

u,=R-r=C(t)  / (2r). (3.18)  

Relations (3.17), (3.18) are analogous to the expressions for the displacements of points of 
a built-up cylinder with small deformations obtained in [4]. 

If we determine build-up without preload as build-up in which the natural state of the 
built-up element coincides with its actual state at the instant of growing together with the 
basic body, we obtain from relations (3.4), (3.6) 

X(r)=C[x(r)]; r>~r,. (3.19) 

For the body Ko the initial state coincides with the natural state: 

X(r) =0; a<~r<~r,. 

In this case the equation for determining the function C(t) assumes the form 

TI 2 

x 
a2 

( �9 • 
- -  x----+~) ( I - L )  

• [ 2  x+C 
X 

ro2(t) 
x + C  o _ (  ._  

- -  --7-- .--x-- x + C 

(3.20) 
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_ ( x + C O ) 2  __)2 , 
x+C x+C ~ ( X+x+C ~ ] }  x+C ~176 Co=c[x(x,,O].(3.2I ) 

If the material of the cylinder is elastic (L = 0), then we find from (3.21) 

rt ro(t)  

I [  r2+C(') rU ] rdr [ C(,) ru+C[x(r)] ] rdr = qo-q____._L 
a r2 r2 ~_-~ (t) r2+C(t) Lt- I r~+ r, r2+C(x(r)) r2+C(t) r~+C(t) 

In the case of small deformations, when Ca -2 << i, this equation becomes simplified: 

r,  to(t) 
I C(t)dr C C[• qo-qi r ~  4- I ( t)-  ] d r = ~  r 3 211 

(i r l  

We transform this relation: 

to(t) 

C(t)[a_2_ro_,~.(t)]_2 I C[x( r ) ]  dr= qo-q. 
t ,3 ~ ' 

TI 

and hence we find for qo = const, ql = const 

C(t) = (q0--ql) [~(a-~--r=-2)] - ' .  (3 .22)  

I t  f o l l o w s  f rom ( 3 . 1 8 ) ,  ( 3 . 22 )  t h a t  w i t h  a s e l e c t e d  t y p e  o f  b u i l d - u p ,  t h e  r a d i a l  d i s p l a c e -  
ments  o f  t h e  b u i l t - u p  l a y e r s  do no t  depend on t i m e ,  and t h ey  a r e  i n v e r s e l y  p r o p o r t i o n a l  to  the  
d i s t a n c e  from t h e  c y l i n d e r  a x i s .  

Assume t h a t  t he  m a t e r i a l  o f  t h e  body i s  v i s c o e l a s t i c .  Then the  e q u a t i o n  f o r  d e t e r m i n i n g  
t he  f u n c t i o n  C( t )  w i t h  sma l l  d e f o r m a t i o n s  assumes the  form 

r ,  r d t )  

I (l-L)-~a + I (I-L) (C-C~ = q 0 - - q i  . Co=C[x(r)]" 
r 3 21~ 

(~ T 1 

When we substitute the expressions for the operators I and L into this relation, we find 

ro(t)  rj t . rr,(t) t 

dr I l[t-• "~-• c(t) I v; l" _ I d,: II(t,,)c(,)a,- I >- 
a u 0 r l  Xlr) 

r a G )  to(l) t 
f dr dr 

C [ x ( r ) ] - ~ +  S, ,C[•  ] ~ l[t-• J 
r, r= xlr)  --r-  

Replacing the variable r = ro(s), s = x(r) in the integrand, we obtain 

ro(t)  t r j  t t t 

S <,,. <,, --~--- ~ ,(t,x)C(x)dx I l ( t -s ,x-s)C(x)dr-  I C(s) o(s)ds 
- ro~(s) ro3(s) 

c~ 0 a 0 

t t 

v(s)ds : l ( t - s ,  
+ I C(s) roS(S------ 3- 

0 

r - s ) d , = - -  qo--ql 
2p 

(3.23) 

Introducing the notation 
to(t) r= 

s <', S +oS Hi(t)  = 7 ;  g2(t,x)=l(t,x) l(t-s, 
t 

T - - S ) , - -  

t 

& ( s )  -~ ro 3(,) s-T)ds ], 
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we rewrite Eq. (3.23) in the form 

lt,(t)C(t)- ~ H,(t,'QC(~)d'~=q~ . 
o 

(3.24) 

With ql = 0, Eqs. (3.18), (3.24) coincide with an accuracy within the notation with the 
analogous equations obtained for the problem of build-up of a hollow cylinder with small de- 
formations in [4, p. 119]. 

4. Build-Up of a Hollow Sphere of Agin~ Viscoelastic Material, We examine the deforma- 
tion of a hollow s~here of incompressible viscoelastic material. Before deformation, the body 
Ko is a hollow sphere whose inner radius is a, and the outer radius is r:. At the instant 
t = 0 the external pressure q~ and the internal pressure qo are applied to the body, and the 
process of build-up begins; it ends when within time dt the film dK(t), whose thickness is 
proportional to dt, is superposed on the outer contour of the sphere. After being superposed, 
the film grows instantaneously together with the sphere. The initial state of the built-up 
element need not coincide with its natural state. We assume that upon transition from the na- 
tural state to the initial state and from the initial to the actual state, centrally symmetric 
deformation is effected. 

The problem of continuous build-up is the limit problem for the following problem of dis- 
crete build-up. We have the basic body Ko and a finite set of built-up elements K= (j = i, 
2, ..., N). In J " the initial state the body K. occupies the domain ~., a hollow sphere whose 
inner radius is rj and outer radius is rj+l. j The process of build-Up consists in the follow- 

j-I 
ing: at the instant tj the domain ~j is joined to the domain i=0U~i We assume that the pro- 

cess of build-up is completed and that there is no deformation of the bodies K~. As a result 
of the build-up we obtain the body K which occupies the domain ~. We introduc~ into ~ the 
spherical coordinates r,~ , ~; the origin of coordinates coincides with the center of the 
sphere. We regard the coordinates r, ~, and ~ as the coordinates of the points of the bodies 
K. in the initial state. 3 

We denote by gjo the domain occupied by the body K. in the natural state. In accordance 
with our assumptions concerning the nature of the deformation, the domain ~.o is a hollow 
sphere. We denote by r ~ ~o, ~o the spherical coordinates of the points of Jthe domain ~jo. 
Going over to the limit N + ~, we obtain the coordinates of the points of the initial body and 
of the built-up elements in the initial and in the natural state in continuous build-up. 

Let R, @, and Abe the spherical coordinates of a point in the actual state at the instant 
t. From the condition of central symmetry of the deformation these equalities follow: R = 
R(t, r); r ~ = @(r); 0 =~o  = O; h = X ~ = X. 

The nonzero components of the metric tensors in the initial, natural, and actual states 
have the form 

En=l ;  g~=r~; gaa=r2sin~; g " = l ;  g~=r-2; gSa=r-~sin-2~; 
gllO=(~,)~; g~2o=~; g33O=~2sin~; gon=O~,)-2; go~2=~-2; 

go3a = ~-~ sin-2 0; 
Gn=(R')2;" G~2=R~; Gaa=R2sin2~; Gn=(R')-2; G2~=R-2; 

Ga3 = R-2 sin-. ~ ~. 

(4.1) 

In accordance with (3.2), (4.1), we find 

a=(R'R2sin~)~; gO=(~,~2sin~)~; g=(r~sin~)2. (4.2) 

From relations (4.2) and the condition of incompressibility of the material we obtain 

R,R2= r2; ~ , ~ 2 =  r2. 

When we integrate these equalities, we find in analogy to (3.4)-(3.6) 

R 3 (t,r) = r3 + C (0, 

(4.3) 

(4.4) 
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with discrete build-up 

with continuous build-up 

~23(r)=r3+X~-(r ) ;  X x ( r ) = C j ;  r~ ( r j . r~+, ) ;  

~3 (r)  = r 3 + X ( r ) .  ( 4 . 5 )  

Here, C. are the specified constants;. X(r) = limN~oXN(r); C = C(t) is a function of time to 
be determined. 

We denote by ro(t) the outer radius of the built-up sphere in the initial state, by Ro(t) 
its outer radius in the actual state, and by A(t) the inner radius of the sphere in the ac- 
tual state at the instant t: 

t 

Ro=R[t,ro(t)]; A=R(t,a); ro(t)=r,+~v(s)ds,  
o 

where v(t) = dro/dt is the specified rate of build-up of the sphere along the normal to the 
boundary in the initial state. 

We assume that the material of the sphere satisfies the equation of state (3.7). In ac- 

cordance with (4.1), (4.3), we find 

] 1  = (* I R)4+2(* IR) 2. (4.6) 

From relations (3.7), (4.1), (4.3), we obtain 

o n =p (R ' ) -~?+ i . t r - 4 ( l - L )  ( ,4- ]1R4/3)  ; 

.~22= pR--~ + ~t ( I - L )  ( , -~  -J IR-= /3 )  ; 

a33 = [pR-~ + j~ ( I -  L) ( , -2  _ 11R-2/3) ] sin-2 ~}. 

�9 d22R 2 The remaining stress components are equal to zero We denote by d r = d11(R')2; do = 
~ = a3a(R sin@) 2 the physical stress components 

~r=p+,~-4(l-L) (,4-J,~V3); 0o= ~=p+~R2(/-L) (,-2-&R-~/3). 

When we eliminate the unknown pressure p from these equalities, we find 

oo= o,.+ ~tf(t,r) ; (4.7) 

/ (t.r) = R 2 ( I -  L) (02 -~ - JiR-Z/3) - R -4 ( 1 -  L) ( , 4 _  1,R4/3). 

The e q u a t i o n  o f  e q u i l i b r i u m  o f  an e lement  o f  the body has the fo rm [1]  

0~, I 0R+2 (~, - ~ ) J R  = 0. 

I n t e g r a t i n g  t h i s  e q u a l i t y  w i t h  r e s p e c t  co R from A( t )  to  Ro( t )  and t a k i n g  i n t o  accoun t  the  con- 
t i n u i t y  o f  d r and the  boundary  c o n d i t i o n s  ~ r ( t ,  a)  = --qo; d r [ t ,  r o ( t ) ]  = - q ~ ,  we o b t a i n  

P,o(t) 
f f ( t , r ) d R _  qo-ql 

@ 2~ A(t)  

In this relation we go over to integrating with respect to the variable r with the aid of 
(4.3) : 

to(t) 
r2f (t,r) dr qo- ql 

a r a + C ( t )  = 21 ~ (4 .8)  

We transform expression (4.8) using relations (4.4)-(4.7): 

rob(t) 

j" , ~  { ( I - L ) [  1 - (  x-~cx-~-XI ]-2( ~ ( I - L ) X  
a~ (4.9) 
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If the material of the body is elastic (L = 0), Eq. (4.9) becomes simplified: 

r.~(t) 

x+'X~ a a 

) a _ (  x+X' ) 2 x+ C ] dx x+C 
_ 9 (qo-q,) 

2~ 

With small deformations (Ca -3 << I) we find from Eq. 

to(t) 

; (I-L)(C-X) d__r_=__ 
r 4 

a 

(4.9) 

qo- -  qz 
4~ 

that 

(4.10) 

In accordance with (4.4) 
by theformula 

the radial displacement of the points of the sphere is then determined 

u~fR .r fC( t )  / (3ra). (4.11) 

Assume that the build-up proceeds in such a way that the natural state of the built-up 
element coincides with its actual state at the instant of growing together with the basic body, 
Then the function X(r) has the form of (3.19), (3.20), From (4.10), we have 

to( t )  r~( t )  

(l_L)Cr._4dr_ ~ (l_L)COr_4dr= qo-q t  
411 

- - ;  C~ 

Into this equality we substitute the expressions for the operators I and L: 

ro(t) r ,  t ro(t) t 

C(t) ; dr ;-~-C~'(t'x)C(x)dx- ; dr " ~ -  7- ~ l [ t - • 2 1 5  
a a O r~ n ( r )  

t o ( t )  ro ( t )  t 

j" C[~(r)ldr + ~ C[• ~ l [ t-u(r), x-u(r ) ]dx= qo--ql 
- -  , " ) 

r 4 1,4 4 .  
r, n xir) 

(4.12) 

We substitute the variables of integration r = ro(s), s =x (r). Then we obtain from (4.12): 

t o ( t )  .rt t t t 

c(t) j" ~ 7 o  o ro'(s) 
l (t, ~) C (r) dxdr (s) ds 

[g a 8 

t ~ 

_~ C(s)vls)ds Cls)o(s)ds 
0 r~ (s) d- ~0 ro 4 (s) ~l(t-s,x-s)dx=s qo-ql41 x 

(4.13) 

We introduce the notation 

to(t) 

H , ( t )  = 7 ; 
r i  .dr 

H2(t, x) =l(t, x) a "7  + 0 I(t--s, T--S) u(s)dSro 4(s~ -~ ro 4u(T)(T) 
t 

,[ 
(4.14) 

In accordance with (4.14), Eq. 

For ql ~ 0, Eqs. (4.11), 
gous expressions obtained in [4, p. 
small deformations. 

(4.13) assumes the form 

t 

H~(t)C(t)- ; H2(t,~)C(x)dx= qo-q, (4.15) 
o 4~ 

(4.15) coincide accurately within the notation with the analo- 
iii] for the problem of build-up of a hollow sphere with 
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EFFECT OF FILLEP~ AND RADIATION CROSS-LINKING ON STRESS RELAXATION 

IN POLYETHYLENE 

V. I. Grigor'ev and V. P. Gordienko UDC 620.1:678.01 

The processes of stress relaxation in polYethylene (PE)are due to rearrangement of the 
structure of different degrees of organization, and the value of the activation energy char- 
acterizes the degree of ordering of the structure of the polymer [i]. The addition of differ- 
ent additives to PE and the effect of ionizing radiation result in a change in the crystal 
structure and the appearance of new intermolecular chemical bonds in the polymer. The struc- 
tural transformations should affect the mechanism of tensile deformation of samples of modi- 
fied PE and the character of the rearrangement of the structure during stress relaxation in 
the polymer. The method of stress relaxation with initial deformations of Eo = 10% in the 
region where intense formation of submicron fissures is characteristic was used to evaluate 
the degree of modification of the properties of PE. 

Brand 15303-003 high-pressure PE was used for the study. The rutile form of titanium di- 
oxide, TiO2, with a specific surface of (5-7),103 m2/kg and particle size of less than 10 -3 
mm, and brand NSO-6 chopped glass fibers (GF)with an unfinished surface (8-10).10 -3 mm in 
diameter and 5-6 mm long were used as the fillers. The choice of fillers was due to the fact 
that Ti02 can be an efficient cross-linkin~ agent in PE. Addition of Ti02 in the volume frac- 
tion of approximately 0.1% primarily affects the formation of the small spherulite structure, 
and addition of approximately 2.0% also causes an increase in the degree of crystallinity and 
an increase in the cross sections of the crystallites [2]. Addition of GF improves the mech- 
anical [3] and thermophysical [4] properties of the polymer, and samples of such polymers are 
not destroyed when ~o = 10%. 

Filled PE composites were prepared on a Brabender plastograph at 443~ The samples for 
the studies were prepared by hot molding; the working size of the samples was 1 • 8 x 50 mm. 
The samples were irradiated in air with an EIT-I.5 electron accelerator with a dose rate of 
~i0 kGr/sec. For elimination of postradiation effects in the PE, heat treatment at 403~ for 
300 sec was immediately conducted after irradiation. Stress relaxation in the samples of PE 
was studied on a setup which ensured fixed deformation. 

The experimental data were processed by the method of relaxation spectrometry, which per- 
mits determining the discrete relaxation time spectrum and distinguishing the most probable 
elementary processes [i, 5]. Five elementary processes of stress relaxation were observed for 
the samples of high-pressure PE during the observation. In this case, the relaxing stress 
o(t) is described by the expression [6] 
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