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Long-Term Oxidation of Superalloys*

C. L. Angerman‘t

Received May 30, 1972—Revised August 28, 1972

The oxidation of 24 commercially available superalloys was measured after
exposure in still air at up to 1150°C for up to 10,000 hr. The total depth
affected by oxidation, which includes subscale reactions, followed the expected
exponential relationship with temperature and the expected parabolic relation-
ship with exposure time at 1000°C; oxidation of “Haynes” 25 and TD nickel
chromium was not parabolic at 1150°C. The alloys could be divided into four
groups dccording to relative resistance to oxidation at 1000°C. These differ-
ences in resistance could be explained qualitatively by the nominal compositions
of the alloys.

INTRODUCTION

Because of their strength and resistance to oxidation at elevated temperatures,
the nickel- and cobalt-based superalloys are candidate cladding for radio-
isotope heat sources that could supply power for remote marine and terrestrial
locations. The superalloys are particularly suited for encapsulating irradiated
cobalt metal (°°Co) for these heat source applications.’*? Resistance to
oxidation is required because heat source capsules may be directly exposed
to a heat transfer fluid that contains oxygen or oxide compounds as impurities
or to air under emergency conditions. Problems of compatibility between
capsule materials and cobalt are minimized because the properties of the
superalloys and cobalt are similar. Since no gas is generated inside the
capsule as the °°Co decays, the stress in the capsule wall is low (< 500 psi)

*The information contained in this article was developed during the course of work under
Contract AT(07-2)-1 with the U.S. Atomic Energy Commission.
tSavannah River Laboratory, E. I. du Pont de Nemours & Co., Aiken, South Carolina.
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and makes feasible the desired service life of 1-5 years at temperatures
near 1000°C. The service life is based on the half-life of *°Co, 5.27 yr; high
temperatures are required to increase the efficiency of the power conversion
systems.

This report summarizes measurements of the oxidation of 24 super-
alloys during exposure to still air at up to 1150°C for times as long as 10,000 hr.
Published oxidation data were inadequate to predict the resistance of the
superalloys to oxidation at the expected service conditions. These tests
were part of a program to select suitable alloys for encapsulating ¢°Co,
define the limiting operating conditions, and demonstrate the performance
of capsules at typical heat source conditions.>—>

EXPOSURE CONDITIONS

The 24 alloys that were tested are listed in Table I with their composi-
tions and a summary of oxidation test results. Most of the alloys were selected
because published oxidation data suggested that they might withstand
the expected operating conditions of heat sources. Other alloys were selected
because they were representative of certain classes of alloys. For example,
“Tophet” A, “Tophet” C, and “Haynes” 150 are simple binary or ternary
alloys based on nickel or cobalt; GE 2541 and ““Haynes” 188 have minor
additions of rare earth elements. Three commercial grades of pure nickel
were selected as reference materials. Only a few iron-based alloys were
tested because published data indicated that they would have an inadequate
resistance to oxidation. None of the precipitation-hardenable alloys, such
as “Udimet” 700 or IN-100, were tested because the phases responsible for
the increased strengths of these alloys begin to dissolve at the expected
service conditions.2°

Since the purpose of these tests was to provide data for predicting the
performance of the alloys, exposure conditions were designed to measure
the kinetics of oxidation. The effect of temperature was measured by expos-
ing cylindrical samples 0.250 to 0.500 inch in diameter x 0.500 inch long to
still air (ambient muffle furnace atmosphere) for 500 hr at 850, 950, 1000,
and 1150°C. The effect of time at temperature was measured by exposing
coupons 1.000 in. long x 0.500 in. wide x 0.060 to 0.080 in. thick at 1000°C
for 1000, 5000, and 10,000 hr. All samples were heated at each temperature
concurrently in the same furnace. Cylindrical samples of the more resistant
alloys were exposed for 3000 hr at 1150°C in an accelerated test to confirm
the kinetics observed in the other tests. The latter conditions were selected
because the expected amount of oxidation would be approximately the same
as that predicted for typical operating conditions of a heat source, 50,000 hr
at 1000°C.
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Long-Term Oxidation of Superalloys 153

EXAMINATION PROCEDURES

Capsules made from these materials must reliably contain the cobalt
source under a wide variety of circumstances. Consequently, the measure
of oxidation resistance most important to this application is the total depth
affected by the various reactions that occur during oxidation. These reactions
include formation of the surface scale, spalling of the scale, intergranular
oxidation, internal oxidation, and depletion of the alloying constituents
by diffusion to the sample surface where they become part of the oxide scale.
In these tests the thickness of each of the reaction zones was measured on
photographs at 100 to 250 x from at least three representative areas from
the center of each sample. Loss of the surface scale by spalling was calculated
from measurements of sample thickness, excluding the retained scale,
before and after the test. The total depth affected by oxidation was the sum
of the scale thickness, after correcting for any spalling, and the maximum
depth in the metal affected by the surface reaction, whether caused by
depletion of alloy constituents, internal oxidation, or grain boundary
oxidation. (See Fig. 4 for examples.) Weight changes were measured on a
few samples as an independent measure of scale spalling. The total depths
affected were not corrected for the lower density of the oxide scale because
the correction would be small for all the alloys.

X-ray diffraction and electron microprobe analyses were used to
determine the compositions of the oxide scale and the alloy depletion
zone and to identify the precipitates formed in the center of the samples
as a result of long-term heating.

OXIDATION KINETICS
Effect of Temperature

The total depth affected by oxidation after 500 hr exposure increased
with increasing temperature according to the expected exponential relation-
ship (Table II and Fig. 1). The slopes of these curves correspond to “activa-
tion energies” between 24 and 37 kcal/mole, but the diffusional processes
responsible for oxidation are too complex to attach any particular signif-
icance to these energy values.

The temperature dependence of oxidation in these tests is in general
agreement with data of other investigators, as shown in Fig. 2. Although
the slopes of the lines in Fig. 2 are nearly equal, the depths affected by oxida-
tion were different. These differences are attributed to differences in test
conditions and differences in the details of the measurements made in the
various investigations. For example, scale thickness often was measured
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Fig. 1. Effect of temperature on oxidation.

in terms of weight change, or no measurements were made of the thickness
of the alloy depletion zone.

Effect of Time

The total depth affected by oxidation increased with increasing time
according to the expected parabolic relationship, although there was some
scatter in the data (Table I and Fig. 3). Each reaction zone (surface scale,
intergranular penetration, and alloy depletion) also grew parabolically
with time as expected, indicating that the reactions were controlled by
diffusion. The data for total thickness were extrapolated to 50,000 hr to
select the best capsule alloys for further testing, and as indicated in Table I,
the alloys could be ranked into four groups according to relative resistance
to oxidation. The microstructure of the oxidation zone on a representative
alloy from each group is shown in Fig. 4. Independent tests with selected
alloys yielded identical results.*

Accelerated Tests

Cylindrical specimens of “Hastelloy” C, “Hastelloy” X, “Inconel” 600,
“Haynes” 25, and TD nickel chromium were tested (3000 hr at 1150°C)
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Fig. 2. Published data on oxidation of
“Hastelloy” X and “Haynes™ 25.

to measure the ability to predict alloy performance from the kinetics observed
in the other tests. Good agreement between the observed and predicted
amounts of oxidation were obtained with the two “Hastelloys” and with
“Inconel” 600 (Table III). However, much higher than expected rates of
oxidation were observed over the entire surface of the “Haynes” 25 sample
and in one area of the TD nickel chromium sample.

A surface scale approximately four times thicker than predicted formed
on the “Haynes” 25 (Fig. 5). Wlodek'® observed catastrophic oxidation
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Fig. 3. Effect of time on oxidation at 1000°C.
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at 1200°C and attributed the increased oxidation rate to the formation of a
low melting scale containing a tungsten compound. Wolf and Sandrock!!
observed variations in the oxidation rate and indicated that the time—
temperature thresholds for the catastrophic oxidation were related to the
manganese and silicon contents of the particular heat of metal being tested.

Although the general oxidation of TD nickel chromium was about as
predicted, a tenfold increase was measured in one region of the specimen
(Fig. 6). This local attack occurred by the formation of a subsurface layer
of oxide followed by intergranular penetration of the oxide along those
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TYPE OF THICK.
MATERIAL REACTION (mils)
Group A-TD Nickel Chromium
Oxide Scale 2.4
s Pl o Total Depth
-s-‘-' ke ~--r~--¥ T~ Affected 2.4
Group B - "Hastellov" C
|Oxide Scale 3.0
]nlloy Depletion 8.0
Total Depth
Affected 1.0
Oxide Scale 4.0
(Spalled Scale) (2.0)
Alloy Depletion 10.0
Total Depth
Affected 16.0
* Oxide Scale - two
distinct layers 44.0
Internal Oxidation 8.0
Total Depth
Affected 52.0

Fig. 4. Typical oxidation after 10,000 hr at 1000°C.
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Fig. 5. Multilayered oxide scale on “Haynes” 25 after 3000 hr at 1150°C.

grain boundaries that were depleted in thoria particles, presumably during
the oxidation test. The “depleted”” boundaries did not extend into the center
of the specimen and did not occur in other regions of the specimen where
oxidation was limited to the formation of a thin, continuous scale typical
of that in other tests at less severe conditions. Such behavior was not reported
in recent studies of the oxidation of other nickel-chromium-ThQO, alloys.*?:*3
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Table III. Resuits of Accelerated Oxidation Test in
Still Air at 1150°C for 3000 hr

Total depth affected by
oxidation (mils)

Observed Predicted

“Hastelloy” X 18.0 19.0
“Hastelloy” C 20.5 25.0
“Inconel” 600 385 49.0
TD Nickel chromium (40)° 50
“Haynes” 25 175 41.5

“40 mils in local area; 4 mils generally.

20 mils —f

Fig. 6. Oxidation of TD nickel chromium after 3000 hr in still air at 1150°C.

OXIDE SCALE COMPOSITION

To aid in understanding the test results and assist in extrapolating them
to longer times, the oxidized surfaces of selected samples of “Inconel” 600,
“Hastelloy” C, “Hastelloy” X, “Haynes” 25, and TD nickel chromium were
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analyzed by electron microprobe and x-ray diffraction techniques. The
formation of relatively volatile oxides of alloy constituents, such as molyb-
denum and tungsten, could change the rates of oxidation. The microprobe
analyses were made on the same samples as used for the metailographic
measurements of oxide thickness. Because of the small amounts of oxide
present on most samples, the x-ray diffraction patterns were taken directly
from the oxidized surfaces.

“Inconel’’ 600

As found by other investigators for a number of alloys,®!* the same
two-layered scale was present on all five samples examined (1000, 5000, and
10,000 hr at 1000°C; 500 and 3000 hr at 1150°C). The outer layer was a
spinel with the approximate composition of (Co, Ni, Fe)(Cr, Mn),O,. The
inner layer was essentially Cr,O;. The lattice parameters of either compound
did not change significantly with oxidizing conditions.

In the alloy depletion zone, the manganese and chromium concentra-
tions decreased, while the nickel and iron concentrations increased. The
thickness of this zone measured on the microprobe scans agreed well with
the thickness measured metallographically.

“Hastelloy” C

The scale was the same as found on “Inconel” 600: an outer layer of
manganese-rich spinel and an inner fayer of Cr,O5 (Fig. 7). Immediately
below the scale was a band of globuiar oxide particles rich in silicon and
tungsten with none of the other elements present. These particles could be
easily mistaken for voids during metallographic examination because of their
dark gray color. There was no molybdenum in any portion of the oxide.

The alloy depletion zone was not as well defined as in other alloys;
the distinguishing metallographic characteristic was a change in the mor-
phology of the particles in the matrix. The chromium and manganese
concentrations decreased, the iron and molybdenum contents increased
slightly, and the nickel, silicon, and tungsten concentrations were un-
changed.

The particles in the matrix were identified as the “mu phase” that has
been found in Ni-Co-Mo alloys'® and in “Hastelloy” X.® The appropriate
composition was (NiCrFe),(MoWSi)g.

“Hastelloy” X

The compositions of the scale and the underlying zone of globular
particles were the same as on “Hastelloy” C, except that no tungsten was
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Long-Term Oxidation of Superalloys 163

present (none present in this alloy initially). The mu phase was present in
the matrix.

“Haynes” 25

The composition of the scale changed when the oxidation rate changed.
Scales formed after 1000, 5000, and 10,000 hr at 1000°C and after 500 hr
at 1150°C were the same as observed on the ‘“‘Hastelloys,” an outer layer
of spinel, an inner layer of Cr,0,, and a zone of globular particles rich in
tungsten and silicon. In the alloy depletion zone, the chromium, manganese,
and silicon concentrations decreased, but the cobalt, nickel, iron, and
tungsten concentrations increased.

The thick, multilayered scale formed during 3000 hr at 1150°C was a
complex mixture of cobalt oxides, cobalt tungstate, spinel, and silicates
(Fig. 5). The outer layer was predominantly CoO with Co;0, precipitated
along the surfaces of the cracks, at the grain boundaries, and within some
of the grains. The other alloying elements were present in solution in minor
amounts. The five inner layers were composed of a nearly homogeneous
mixture of spinel and CoWO, with (Co, Fe),SiO, concentrated in alternate
layers (layers 3 and 5).

Although the manner in which this thick scale is formed cannot be
explained at present, the presence of the tungstate, as also observed by
Wlodek'® and Wolf and Sandrock,'! suggests a causal relationship. For
example, the rapid oxidation may be associated with the decomposition
of the tungstate to form WO; vapor and the outer layer of CoO. However,
Douglass and Armijo'® observed a scale with similar appearance in Co~Cr—
Mn and Co—Cr-Si alloys.

EFFECT OF ALLOY COMPOSITION ON
OXIDATION RESISTANCE

Differences in oxidation resistance among the four groups of alloys
(Table I) can be attributed qualitatively to the effects of certain alloying
elements. These effects are illustrated by the curves shown in Fig. 8 that
were obtained by the technique of graphical multiple correlation.!” The
parameters used in this analysis were the nominal composition and the
expected total depth affected by oxidation at 1000°C after 50,000 hr. Four
iterations of the analysis were required to eliminate further effects on the
shapes of the curves.

Chromium

The well-known increase in oxidation resistance®!® provided by
chromium additions of .15 to 20 wt.% was again demonstrated by these
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tests [Fig. 8(a)l. The majority of the more oxidation-resistant alloys of
groups A and B have chromium contents within this range. In contrast,
the alloys of group D contain no chromium, and the alloys of group C

contain > 20 wt. %, chromium.
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Molybdenum and Tungsten

Increasing the molybdenum and tungsten contents increased the
resistance to oxidation [Fig 8(b)]. The more resistant alloys of group B,
“Hastelloy” X, “Haynes” 25, and “Hastelloy”” C, have the highest molyb-
denum and tungsten contents. The beneficial effect of tungsten may only
apply at 1000°C. The rapid oxidation of “Haynes” 25 at 1150°C may be
associated with tungsten, as discussed above.

Silicon

Increasing silicon contents lower the resistance to oxidation [Fig. 8(c)].
For example, “Tophet” A is less resistant than “‘Inconel” 600, although the
compositions are similar except for the higher silicon content of “Tophet” A.

Columbium, Copper, and Titaniom

Columbium, copper, and titanium apparently reduce the resistance to
oxidation [data points for allovs containing these elements always lay
above the curves, Figs. 8(a) through 8(c)]. Several alloys in group C contain
up to 4 wt. % of these elements; these levels counteract the beneficial effects
of the intermediate levels of tungsten and molybdenum that are also present
in these alloys. For example, “Inconel” 625, with a composition similar
to that of “Hastelloy” X, except for the addition of 4 wt.%, columbium, is
significantly less resistant to oxidation than is “Hastelloy” X. The detri-
mental effects of columbium and titanium have been reported previously.’
Titanium increases the susceptibility to intergranular penetration, as shown
in these tests by “Incoloy” 825, which had deeper intergranular attack
than any of the other alloys tested.

Manganese

Manganese has only slight, if any, beneficial effect, on oxidation
resistance [Fig. 8(d)]. Some beneficial effect might be expected because
manganese is a principal constituent of the spinel oxide that forms during
parabolic oxidation.

Iron

Iron has no effect on oxidation resistance, as might be expected, because
its properties are similar to nickel and cobalt [Fig. 8(e)].
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Lanthanum and Yttrium

The reported increase in oxidation resistance provided by additions
of rare-earth elements was not confirmed conclusively by these tests.!®
“Haynes™ 188, containing 0.5 wt. %, lanthanum, was more resistant than
expected for the given levels of the other alloying constituents (data point
lies below the curves in Fig. 8). However, “Haynes” 188 was less resistant
than ““Haynes” 25, an alloy of a similar composition with no lanthanum
added. GE 2541, containing 0.2 wi.% yttrium and 4 wt.%, aluminum, was
no more resistant than expected for its particular iron and chromium
contents. A similar Fe-Cr—Al alloy with no yttrium was reported to be more
resistant than GE 1541 in 600-hr tests at up to 1093°C.”

Thorium Oxide

TD Nickel chromium, containing 2 wt.%, ThO,, was more resistant
to oxidation than any of the alloys tested, indicating a large beneficial effect.
This 1s exemplified by the greater resistance of TD nickel chromium com-
pared to “Tophet” A; both are essentially 80Ni—20Cr alloys, but TD nickel
chromium contains 2% ThO, added. In contrast, a similar addition of
ThO, to pure nickel had no effect on oxidation resistance.
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