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The high efficiency of laminated and laminofibrous composite structures is achieved by 
matching the fields of the strength characteristics with the external stress fields. By 
creating high strength in the direction of the laminations, we obtain low interlaminar shear 
and normal tensile strengths. In its turn, the loss of interlaminar monolithicity results in 
a fall in the strength and stiffness of the structure relative to the principle design loads. 
Laminated composite structures are especially sensitive to defects of the delamination type. 
These defects can arise both in the fabrication process (e.g., as a result of the action of 
interlaminar residual stresses [I]) and under the influence of service loads. In connection 
with the establishment of defect tolerances for acceptance and routine maintenance purposes 
it is necessary to investigate such questions as the maximum size of the safe (stable) de- 
fects, the rate of growth of defects under cyclic and long-term loading, and the loss of 
carrying capacity of structures with defects of the delamination type. A number of problems 
of the stability of bars and shells with such defects subjected to static compressive loads 
were examined in [2, 3]. A review of the work on the application of the methods of fracture 
mechanics to laminated composite structures can be found in [4, 5]. 

In fracture mechanics it is possible to distinguish between the global (energy) approach 
based on a consideration of the body-load system as a whole and various local approaches. 
The global approach has its origin in the classical work of Griffith. Though the premises 
may differ, the local approaches (Irwin criterion, various models of the end zone, etc.) have 
a common feature: the fracture conditions are expressed in terms of the parameters of the 
processes taking place directly at the crack front. The local criteria should also be taken 
to include all the semiempirical crack growth equations, since these relate the crack growth 
rate exclusively to the values of the parameters at the front. In the local approach we dis- 
regard the method of loading and how the loads behave during crack development. At the same 
time, experimenters know how strongly the results of mechanical tests depend on the method 
of loading. For example, a low-cycle fatigue crack develops differently depending on whether 
the method of loading is "hard" (given displacements) or "soft" (given loads). In the over- 
whelming majority of fracture mechanics problems studied so far this difference is of no 
significance, since the stiffness of the body as a whole is little affected by crack growth. 
However, this factor may be decisive in connection with thin exfoliations and, in general, 
with all problems where geometric nonlinearity must be taken into account. 

In this article problems of the mechanics of bodies with defects of the delamination 
type are examined on the basis of the axiomatic approach [6]. This approach, which generalizes 
Griffith's energetic concept, includes both the case of multiparameter cracks under conditions 
of multiparameter loading and the description of the process of quasiequilibrium crack growth 
under cyclic and (or) long-term loads. Here the theory of quasiequilibrium growth is based on 
a joint consideration of two mechanisms -- the development of the macroscopic crack and the 
accumulation of diffuse (microscopic) damage along the path of the growing crack. 

i. Let us consider a body with cracks, the size, shape, and distribution of which within 
the body are given correct to the m parameters l~, ..., I m. We choose these parameters in 
such a way that the conditions of irreversibility have the form d/j ~ 0 (j = i, ..., m). Let 

the body be subject to a monotonic loading process given correct to the ~ parameters s~, ..., 
s~. These parameters may include the values of the external forces, the displacements, the 
temperature parameters, etc. For brevity, in what follows we will employ the vector notation 
1 = {l~ .... , /m }T and s = {sl .... , s }T. The system of cracks thus specified we will call 

m-parametric, and the loading ~-parametric. The loading process and the response of the body 
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will be assumed to be relatively slow: at each moment of time at each point of the bodythe 
equilibrium conditions are fulfilled. The materialof the body may be elastic or viscoelastic, 
elastoplastic, etc. 

Starting from Griffith's concept, we will give axiomatic definitions of the notions of 
equilibrium and stability for bodies with cracks. Let I be a certain functional characteriz- 
ing the state of the load--body system at a certain fixed moment of time. We assign to the 
parameters ZI ..... Z m arbitrary small increments ~ZI ~ 0 .... , ~Z m ~ 0 at l~iI > 0. Let us 

consider the arbitrary small increment ~I of the functional I calculated for the following 
conditions: time and the given loads and external influences are not varied, there is no 
supply of heat, and at each point of the body, except perhaps for a small neighborhood of 
the crack fronts, the equilibrium and strain compatibility conditions are satisfied. We will 
call ~I the Griffith variation of the functional I. Obviously, this variation is a linear 
form of the increments ~Z., At the same time, we introduce a second Griffith variation ~2I = 

3 
6(~I), which is a quadratic differential form. These forms play a central role in the 
Griffith theory extended to the case of multiparameter cracks and multiparameter loading. 

We will calculate the Griffith variation from the total energy of the body-external load 
system taken with the opposite sign: 

fiI=-SU+SA-8@-2 ~, ;V[SX• I. 
i S i 

(l.1) 

On the right we have the Griffith variation ~U of the strain energy of the body U. the ele- 
mentary work 6A done by the external forces, and the elementary dissipation 60 in the material 
of the body. The last term on the right is equal to the elementary work expended on crack 
growth. Here, y is the amount of energy going toward the formation of unit crack surface; 
~% is the crack size increment; do is an arc element of its contour. We carry out the summa- 
tion over the contours S i of all the cracks in the body. In general, the quantity y may be a 
variable even within the limits of a single crack. By a suitable choice of the sum ~U + ~ 
we can take into Qonsideration materials with different mechanical properties. 

We will introduce a classification of systems of cracks in a loaded body. We will call 
a system subequilibrium if for all I81[ > 0 the inequality ~I > 0 is satisfied, and equili- 
brium (according to Griffith) if for all [~I I > 0 we have ~I = 0. If among the variations 
there is at least one for which 6I > 0, we will call the system of cracks nonequilibrium. 

The Griffith equilibrium condition means that upon a small change in the sizes of the 
cracks the total increment in the work done by the external forces and the potential energy 
liberated is exactly compensated by the dissipation in thebody and the work expended on 
crack growth. We introduce the following notation for the group of terms on the right side 
of relation (i.i): 

m 

-SU+SA-8~----- ~ Gj(I, s)S/j; 
J=t (1;2) 

m 

i S t j=i 

The quantities G. and r. are the generalized forces corresponding to the generalized coordi- 
3 3 

nares Z.. We will call G. the generalized forces driving the cracks, and F. the generalized 
3 3 3 

forces of resistance. Relating the dissipation ~ to the forces driving the crack is conven- 

tional, but convenient, slnce indlssipatlve materials it is often impossible to draw a llne 

between ~U and~. Moreover, ~ takes into account the dissipation throughout the body where- 

as the work ~A corresponds to the processes localized in a small neighborhood of the crack 
T 

fronts. In terms of the generalized forces, using (I.i) and (1.2), we find that for sub- 

equilibrium cracks all G. ~ Fj, and for equilibrium cracks all G. = F. (j = 1 .... m). If 
3 3 3 
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for at least one of the generalized coordinates G. > P., then the system of cracks as a whole 
is regarded as nonequilibrium. 3 3 

Clearly, subequilibrium cracks are stable, nonequilibrium cracks are unstable. Equili- 
brium cracks may be either stable or unstable depending on the sign of the second variation 
621. If 621 < 0, then the system of equilibrium cracks is stable; if 621 > 0, it is un- 
stable. When 621 = 0, it is necessary to investigate the sign of the third variation and so 
on. In applications it is usual for some of the cracks to be subequilibrium and for some, or 
at least one, to be equilibrium. If a crack is given correct to two or more parameters, it 
may be subequilibrium with respect to some parameters and equilibrium with respect to the 
rest. Since the subequilibrium cracks are stable, in analyzing the stability of the system 
of cracks as a whole we should exclude from the variation those generalized coordinates for 
which G. < F.. Thus, the dimension of the vector 7. is reduced to the number of generalized 

J 3 
coordinates for which G. = r., and the remaining generalized coordinates play the part of 
parameters. 3 3 

The approach outlined is, essentially, the original Griffith method extended to multi- 
parameter problems and explained in terms of analytical mechanics. Significantly, this 
approach makes it possible to describe slow (quasiequilibrium) crack growth. In [6] the 
author formulated an hypothesis to the effect that, when the stress reaches a local extremum, 
a slowly growing crack satisfies the Griffith equilibrium condition with allowance for the 
fact that the resistance of the material to the propagation of the crack is reduced as a 
result of the previously accumulated damage. In special cases this approach leads to equa- 
tions similar in structure to the known semiempirical equations of fatigue crack growth. 
However, it is also suitable in more general situations, in particular in connection with 
multiparameter loading processes and combinations of long-term quasistatic and cyclic loading 
processes. 

2. Let us consider a quasistatic loading process slowly progressing in time t. We de- 
note the set of characteristic crack dimensions at time t by ~(t), and the set of loading 
parameters by s(t). Let the maximum loads and crack dimensions he such that at any moment 
of time all the crack dimensions are less than the equilibrium values calculated for the un- 
damaged material. We introduce the basic assumption of the theory: the cracks grow in such 
a way that at the moments when the parameters s:, ..., s~ reach their most dangerous (usually 
maximum) values the condition 61 = 0 is satisfied, with allowance for the damage accumulated 
along the path of the cracks throughout the previous loading process. As a result we obtain 
the system of equations 

( i=1 . . . .  ,m). (2 .1)  
"f--O T=~ 

Equations (2.1) relate the generalized forces driving the crack to the corresponding 
generalized resistances. The equations contain memory functionals that take into account 
the loading history on the interval [0, t]. For the purposes of direct numerical solution 
Eqs. (2.1) are subjected to discretization. As a result we arrive at the equations 

Gj[| (1), S ( l ) , . . . ,  | (n) ,  S(n)] =l"j[ |  (1), S(1) . . . .  , l(n), s(n)] 
(] = 1 . . . . .  m ) .  

( 2 . 2 )  

If the loading is cyclic, then the discrete argument n entering into Eqs. (2.2) repre- 
sents the number of loading cycles or units. In this case the vector parameters s(n) are 
referred to the n-th cycle or unit and include the extreme values of the loads, their ampli- 
tudes, etc., together with the duration of the given cycle or unit measured in units of time 
t. Equations (2.2) can be solved for i(i), 1(2), ... by a recurrence method, if the initial 
condition i(0) ffi io is given. In fatigue crack growth calculations the numbers of cycles are 
usually very large. In these circumstances it is convenient to treat the number of cycles 
from the start of loading as a continuous argument, and the crack dimensions as continuous 
functions of that argument. If the loading vector s(n) is a slowly varying function of n, 
then instead of (2.2) we again obtain the system of functional equations (2.1). 

The form of the functionals entering into Eqs. (2.1) depends on the memory properties 
of the material and on the choice of damage accumulation model. The memory properties of the 
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material are introduced via the parameters of the undisturbed state in computing the variation 
(l.1) at themoment of time in question. The damage accumulated at the crack front can be 
taken into account by introducing the phenomenological damage criteria ~z(t), .... ~(t). If 
the materialdoes not possess memory properties, then instead of (2.1) we have 

G~[l(i),s(/),~(t)Jfrj[l(/),s(t),~(t)] (]=l, . . . ,m),  (2.3) 

where ~ = {~, ..., ~ }T is the damage vector. In general, the damage is scattered through- 

out the body. However, we are primarily interested in the damage at the crack fronts. Let 
us arithmetize the location of the fronts at time T by means of the vector ~(T) (Fig. i). 
We assume that the rate of damage accumulation at points at which the front arrives at future 
moments of time t > T depends on the position of the fronts at time �9 and also on the loading 
vector and the damage vector @(t, T) at that time. As a result we arrive at a system of 
differential equations 

@~(t,z) =[~[l(t),l(z),s(T),~(t,z)] (kf l , . . . ,v ) ,  (2.4) 

On the right sides of which stand the functions fk(...) of the above-mentioned arguments. 

System of equations (2.3), (2.4) is closed by the relations 

 k(t,t) f k(t) (k=l . . . . .  (2.5) 

If for the given initial conditions I(0)=Io; ~(0,0)=40 system (2.3)-(2.5) does not have 

real solutions for at least some of the components of the vector I, then the crack parameters 
corresponding to these components are subcritical. This corresponds to the incubatory stage 
of damage accumulation at the crack fronts. The quasiequilibrium growth of these parameters 
begins when the damage at the front, whose accumulation is described by Eq. (2,4), reaches 
a certain level. 

We will demonstrate how the system (2.3)-(2.5) can be approximately reduced to a system 
of ordinary differential equations in the components of the process ~ (t). Let m ffi ~ and to 
each crack parameter Zj let there correspond the damage criterion ~i"~ Owing to the heavy 

stress concentration at the crack fronts accumulation is most intense in the neighborhood of 
the fronts. Accordingly, from (2.5) there follow the approximations 

t 

$#(t) = ~  (0) +' ~ fj[! (t), ! (g), s(z), ~(T) ]dz (/= 1,. , m). (2.6) 

Here, AT. is the characteristic time of passage of the front through the intense damage 
3 

accumulation zone. We will denote the characteristic dimension of this zone by 0j (see Fig. 

1). Let the average velocities dl./dt # 0. Then ATjNpj(dl~dt) -l . This approximation in- 
S 

cludes averaging over a large number of zones of dimension ~0j simultaneously located at the 

crack fronts [7]. Instead of (2.6) we obtain 

~#(t) ~, ~(0) § (t), I(t), s(0, ~(t) ] (]= 1,.,., m). (2.7) 

Solving Eqs. (2.7)for ~j(t) and substituting the results in (2.3), we arrive at the desired 

system of differential equations. We can achieve further simplifications by assuming that 
the damage accumulation rate ~j(t) depends on the corresponding generalized forces G.[l(t) 

3 
S(t)] and not on the processes ~(t) and s(t) separately. This assumption, analogous to the 
self-simi!arity postulate in linear fracture mechanics, makes it possible to narrow consider- 
ably the class of functions in relations (2.7). In what follows we assume that 

~s(t) ~$j(O) +p~(dl~ldt)-'Fj[Gj(t), ~j(t) J (#= ! ...... m). (2.8) 
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3. The arrangement of the laminations and the structure of the composite predetermine 
the orientation and direction of development of the defect. If the delamination is in the 
interior of a compressed structural element and issufficiently extensive, then the defect 
will have an important influence on the carrying capacity [2]. If the defect is close to 
the surface, then its development may have an adverse effect on the functional properties 
of the main element (airtightness, aerodynamic quality, etc.) and it may also become a source 
of further damage leading to complete failure. In what follows we will consider defects 
located close to the surface. We will refer to such defects as exfoliatlon. 

Usually, the relations between the dimensions of the structural element and the size 
of the defect are such that it is permissibl e to consider the loading of the defect "hard," 
i.e., corresponding t o given strains. The magnitude of these strains is determined by the 
loads applied to the main element and is practically independent of the exfoliation behavior. 
Particularly important is exfoliation that develops in compression. Such conditions may arise 
both in the manufacturing stage (compressive residual stresses) and during service (main 
element in compression or in bending with the exfoliation in the compression zone, nonuniform 
temperature fields of external origin). In composites with a layered structure, where the 
thermal expansion coefficients change sharplyon transition from one layer to another, 
compressive strains may develop even if the temperature field is uniform. 

The behavior of the exfoliation, especiallywhen small, depends on the initial warping 
and the initial stresses in the middle surface. ~ As a rule, these factors are already present 
in the fabrication stage. It is necessary to distinguish the unstressed exfollation undeformed 
in the starting state, the deformed exfoliation without initial stresses, and the deformed 
exfoliation with initial stresses. In the latter case the initial stresses in the middle sur- 
face may vary widely depending on the fabrication history and, possibly, preloadlng. In the 
first approximation the initial stresses are close tothe critical values determined from the 
corresponding elastic stability problem. Precisely these values are required to maintain the 
exfoliation in the slightly buckled state. During the growth of the exfoliation the stresses 
in its middle surface change. To determine them it is necessary at each stage to solve the 
nonlinear problem of the postcritical strains. In order to simplify the calculations we will 
assume that at each moment the stresses in the middle surface coincide with the critical values 
of the linear theory for an exfoliation of the given configuration. 

Let us consider the conditions corresponding tothe plane problem and assume that the 
composite is linear-elastic and macroscopically orthotropic with the principal directions of 
elasticity oriented along the coordinate axes. The element is subjected to "hard" loading 
with relative deformation e = -~ in the direction of the Ox axis (Fig. 2). We will treat 

x 

the exfoliation as a thin elastic plate clamped at the ends x = +Z/2. This corresponds to the 

"beam" approximation introduced into fracture mechanics as early as 1930 by I. V. Obreimov. 
For the deflection w(x) developed during loading we take the expressions 

�9 w (x) •f cos ~ (~x/O. (3. l) 

Here f ~ h, where the thickness of the exfoliation h << I. Outside the exfoliatlon w(x) ~ 0. 
In this schematization the problem of finding the Griffith equilibrium forms of the exfolia- 
tion was examined in [8, 9]. Below, following the general theory, we will investigate the 
quaslequilibrlum growth of the exfoliation. 

In the initial state let the exfoliation be plane and unstressed, and during the buckling 
of the exfollation and its quasiequillbrlum growth let the deformation of the middle surface 
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be equal  to the  c r i t i c a l  va lue ,  i . e . ,  E = - ~ , ( / ) .  Here 
X 

e, (Z) = (~z213) (h. l l )  "~. (3.2) 

Equating the mutual displacements of the ends of the exfoliation, expressed In terms of its 
deformatlon, in the given approximation u(~/2) -- u(--Z/2) = --E~, we find the relation between 
f, l, and e: 

p =  (41~/~ ') [e--~,(/) ]. (3.3) 

We wlll compute the potential energy of deformation of the exfoliation together with its 
prolongation over the entire length of the main element: 

I/z 

U=const_ I Exhl[&,_g ., (1) j +.l ~ D=w =.,dx. (3.4) 

Here Ex = Ex(1-~xyVyx )-z i s  the  modulus of e l a s t i c i t y  fo r  p lane  s t r a i n ;  Dx = Exh3/12. The 

energy is referred to unit width of the exfoliation. The right side of Eq. (3.4) contains a 
constant equal to the potential energy of compression of the unexfoliated continuation of the 
surface lamination. With account for Eqs. (3.1)-(3.3), Eq. (3.4) gives U=corlst-I/2E=hl[8-8,(1)] 2. 

Since in the case of "hard" loading the external forces do no work, the generalized force 
G(l, E)driving the exfollatlon is linked with the potential strain energy U(l, E) by the 
expression 

o=  -aulal. 
(3.5) 

Hence 

G = 1  Exh [e ~ + 2ee, (1) - -  38, "~ (l) ]. (3.6) 

Equation (3.6) is valid as long as G(~, c) ~ O. If G(l, E) < 0, then it is necessary to 

set G(l, ~) = 0. This corresponds to the exfollation "collapsing". In fact, the boundary 

values of the strain cf determined from the Conditions f = 0 mzd G(Z, ~) = 0 coincide and 

constitute E = ~,(Z), which has an obvious mechanical interpretation. 

Let the work necessary to form a unit of new surface be constant and equal to Yo. 

Then the generalized resistance Fo = 2yo. We find the equilibrium dimensions of the exfollation 

from the equatlon G(~, E) = Fo. Substituting the expression (3.6) gives 

8 = + 28e~, ( l )  - 3 8 J  ( l )  = e .  z, 

where we have i n t r o d u c e  the n o t a t l o n  

s| (4y0/Ezh)'P. 

(3.7) 

(3.8) 

The value of the strain e| is fairly large. Typical values of the specific fracture 

energy for epoxy bonds [5] are 7o ~ 10 2 N/m for a modulus of elasticity of the composite in 

the direction of the laminations Ex ~ 10zz N/m2" Substituting these values in Eq. (3.8%, 

taking h ~ I ,~n, gives E - 10 -3 . 

When (/3/2)c ~ E < ~ Eq. (3.7) has two real roots l, and when E > ~ one real root. 

This is illustrated by the right-hand curve in Fig. 3. The descending branch of the curve is 

unstable, the ascending branch stable. This is apparent, ln particular, from the fact that 

to the rlght of thls curve we have the inequality G(Z, ~) > To, i.e., the corresponding exo- 

foliation dimensions are nonequlllbrlum. The left-hand curve corresponds to the critical 
strain (3.2). Thus in this formulation quasiequilibrium growth of the exfollatlons is posslble 
only in thereglon left unshaded in Fig. 3. 
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In order to describe the growth of an exfollation under long-term loads it is necessary 
to introduce additional assumptions concerning the effect of the damage criterion ~ on the 
generalized forces G(Z, e) and F, and to postulate an equation of the type (2.4) describing 
the process of damage accumulation. Let G(1, e) not depend on 4, whereas 

(3,9) 

where a > 0. Damage accumulates only in the neighborhood of the lines x = +I/2, the deriva- 
tive d~(t)/dt, equal to the value of B@(t, T)/BT at T = t, being a power function of the 
generalized force G(l, E): 

dQ 1 ~G~m/2 
dt : re' ~ ' -~ ! " (3.10) 

Here t c is the time constant; r~ is a certain characteristic of the resistance to dsmsge 

accumulation, which we assume to be a material constant. The exponent m has been introduced 
into Eq. (3.10) and the analogous equations with the coefficient 1/2. This has been done 
to preserve for m a significance analogous to that of the exponents in the semiemplrlcal 
fatigue crack growth equations (Parls--Erdogan, Forman, etc.). In fact, for sufficiently 
developed exfoliatlons the generalized force G(1, E) is approximately proportional to E 2, so 
that the damage accumulation rate (3.i0) is approximately proportional to E m. 

In what follows, we assume that F~ = 829o. In (2.8), taking into account (3.10), we 

must set F=t~-1(G/~2F0)ml 2 . For initial damage ~(0) = 0 we obtain ~(t)~(p/~)(dl]dt)-'(G/~2F0)m~, 

where p is the characteristic dimension of the damaged zone. Substituting this expression in 

(3.9), we construct the basic equation G(l, e) = P, describing the quasiequllibrlum growth of 

the exfoliation. Solving it for dl/dt, we obtain 

dl p ~a/Z(l, e) O (l, 8).. (3 .11)  
d'-T'='t~ - - W  [ l - g ( t ,  ~ ) 1 ~  ; g(1, 8) = ro " 

Equation (3.11) is valid as long as g(l, e) < i, i.e., the size of the exfoliatlon is sub- 

equilibrium. If according to Eq. (3.6) G(1, E) < 0, then it is necessary to put g(l, c) = 0. 

Examples of the integration of the equation for various initial conditions are presented 
in Fig. 4. For the initial conditions I (see Fig. 3) we obtain the family of curves i de- 
scribing the quasiequilibrium growth of the exfoliations. Curves 2 in Fig. 4 correspond to 
initial conditions 2 in Fig. 3 for which an abrupt increase in the exfoliatlons to new sub- 
equilibriumvalues is possible. A method of calculating these values was indicated in [6]. 
Curve S corresponds to the initial condition for which after the attainment of a certain 
size quasiequillbrium growth becomes impossible. Dependences of the same type as curves 2 
and 3 are observed in the region of e ~ e~ and sufficiently small lo/h. This is typical of 
exfoliations with a very low resistance to interlaminar fracture. Otherwise the initial 
values of lo/h will fall in a region where the "beam" approximation is inappropriate. 
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4. Let the exfollation have an initial elastic deflection: 

,,,'o (x) = f0 c o s  ~ (~/1o) 

with a deformation of the middle surface E ~ = --e,(Zo), where ~,(Z) is the critical strain 
x 

(3.2). Instead of (3.3) we obtain the relation 

Relations (3.4) and (3.5) remain valid. The generalized force G(l, e) is given by 

The magnitude of this strain cf may be found from (4.1) by setting f = 0. 
o b t a i n  

{..+ =...,,, . . . . , ,  - ,  ] }. ,o' , .  

For all e and Z > lo Eq. (4.3) gives G(Z, e) > 0. However, the expression loses its signifi- 

cance at f < 0. To this there corresponds a certain limiting strain of the main element. 
Using (3.2), we 

=,--=.(o[�88 ,§ _,]. (4.3) 

If fo § 0, Z = Zo, then (4.3) gives ef = 0. In general, an exfoliation with an initial deflec- 

tion "collapses" in the presence of tensile strains (see left-hand curve in Fig. 5). 

When (3.2), (3.8), and (4.2) are taken into account, the equation G(Z, c) = Fo takes the 
form 

e~+2ee,(l) +38,2(1)[/.~./~...~/.+.~.fo 2 4\) _ 1 1 =e| (4.4) 

The solution of Eq. (4.4) is represented schematically by the right-hand curve in Fig. 5. 
Since, by condition, Z ~Io, only those segments of the curves for which this inequality is 
satisfied are meaningful. Therefore, despite the qualitative difference between the diagrams 
in Figs. 3 and 5, large discrepancies in the numerical results are not to be anticipated in 
the region left unshaded in Fig, 5. 

This is confirmed by an analysis of the quasiequilibrium growth of the exfollations. 
Retaining assumptions (3.9) and (3.10), we again arrive at Eq. (3.11) with the difference 
that inthis case the generalized force is determined from (4.2). The graphs of the growth 
of the exfoliations are presented in Fig. 6. The dashed curves correspond to the case of a 
plane and initially unstressed exfoliatlon. With increase in l, the curves asymptotically 
approach parallel straight lines. This corresponds to the fact that in both cases we have 
the limits 
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lim g(l, ~) =eVeJ, 
l/h--+r (4 .5)  

so that at sufficiently large I/h, or more precisely at E >> e,(Z), Eq. (3.11) takes the 
form 

d / =  p (e/~eo=) ~ (4.6)  
at to [ l - ( s / ~ |  

If e = const, this gives a constant rate of growth of the exfoliation. 

Similar results are obtained for cyclical loading. For the fatigue damage criterion, 
instead of (3.10) it is natural to take the equation 

d~__ ( AO ~,~,r- (4 .7)  
dn ~ ~12Fo ' 

in the function ~(n) of the tlme-smoothed number of cycles n(t). Here AG is the amplitude of 
the generalized force G(l, e) within the cycle, which we assume to be a slowly varying func- 
tion of n. The constants m~ and B~ are generally different from the constants m and B in 
Eq. (3.11). As a result, instead of (3.11) we obtain the fatigue delamination equation 

dl p [g(l, 8 .~ . ) -g ( l ,  8,n~)] ",,/~ (4 .8)  
dn ~l ~, [1 - g ( l ,  era=) ] l/~ ' 

where ~max and Emi n are the extreme values of the strains within the cycle. We take into 

account the existence of a fatigue damage accumulation threshold by taking instead of (4.7) 
the equation 

d$ ( AG_Gth )m,/2 (4.9) 
dn = ~l~F0 ; AG>Gm. 

Here Gth i s  a c o n s t a n t  equa l  to  the  t h r e s h o l d  va lue  of  the  ampl i tude  AG. When AG < Gth,  we 

have d~/dn = 0. 

I f  the  p r o c e s s e s  of  f a t i g u e  and q u a s i - s t a t i c  damage accumula t ion  p roceed  in  p a r a l l e l ,  
t hen  the  damage s,,mmation p r i n c i p l e  l eads  to  the  e q u a t i o n ,  g e n e r a l i z i n g  Eqs. (3.11)  and ( 4 . 8 ) ,  

dl P { ~ / '  (l, 8m)/(to~ m) + [g (l, era=) -g( l ,  8ram) ]m~ (dn~O/~,m'}, 
at =' [ 1 - e ( l ,  8 . = ) ] ' ~  

where E (t) are the mean long-term strains; dn/dt is the number of deformation cycles per unit 
m 

< where ef is the limiting strain of the main time. For those cycles for which emi n cf, 

element, at which the exfollation "collapses," it is necessary to take g(~, ~min ) = 0 in 

Eqs. (4.8) and (4.9). We proceed similarly if e < Ef and so on. 
m 

Z 

Fig. 7 

x 
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5. In the earlier sections we have explained the general approach to the investigation 
of the conditions of stability of exfoliations in laminated composite structures and have also 
obtained the equations of quasiequilibrium exfoliation growth under cyclic and/or long-term 
loads. As an example we considered exfoliation under the conditions of the plane problem. 
The proposed approach is especially effective in the case of multiparameter exfoliation and 
multiparameter loading regimes. Let us consider an exfoliation which in plan has the shape 
of an ellipse with semiaxes a and b, The center of the ellipse coincides with the coordinate 
origin, and the principal axes are oriented along the coordinate axes Ox and Oy (Fig. 7). 
We will regard the exfoliation as an elastic orthotropic plate clamped along the edges and 
subjected to displacements corresponding to the strains of the main element s and E . The 

x y 
thickness of the exfoliation h is assumed to satisfy the condition h << a, b. If the main 
element is not loaded, then the deflection of the plate will be zero, and there will be no 
stresses in its middle surface. In the presence of deformations of the main element exceeding 
the critical values for loss of elastic stability, buckling will occur. We denote the deflec- 
tion of the exfoliation at the coordinate origin by f. In general, the deflection f may be 
of the order of the thickness of the plate or even greater. However, we will assume that 
f << a, b. 

It is necessary to solve the secondary problem of the buckling of exfoliations with 
fixed dimensions u and b. For the deflection function we will take the expression 

x~, y2 (5.1) W(x,y)=,(1 a' b 2)z'  

which satisfies the edge clamping conditions. The critical forces in the middle surface N 
X 

and Ny are found from the condition U b = W. Here U b is the potential bending strain energy of 

the plate, 

uo= - J'j" 2 .w =:) 
g 

(5.2) 

W is a quadratic functional of the linear theory of elastic stability, 

I ~ (Nxw,=~+Nyw,y~)d~" (5.3) 
~=-f . 

Here W,x = ~w/~x and so on; D x and ~ are the cylindrical stiffnesses of the exfoliation; 

D is the combined and D the torsional stiffness. The forces N and N are assumed to be 
xy t x y 

positive in compression. The integration in (5.2) and (5.3) is carried out over the area of 

the exfoliation ~ = Tab. Substitution of (5.1) in (5.2) and (5.3) after equating U b and W 

gives an equation in the critical strains ~x*(a, b) and ~;(a, b): 

(e*x+v=us*~)E=b=+ (e*y+vr~e*=)E,a"= (h/ab)"H(a, b). (5.4) 

Here, for brevity, we have introduced the following notation: 

H(a,b)=12(l_vz,~ux)h_.~ D=b~+ (Dx~+2Dt)a.Zb=+D~a4 . (5.5) 

The elastic constants in (5.4) and (5.5) are so selected that the symmetry condition has the 

form~xy/Ey = ~yx/Ex. 

Equation (5.4) contains two unknowns and in what follows will be supplemented by other 
equations. For the present we will evaluate this equation for the particular case of an iso- 
tropic plate circular in plan under conditions such that N = N = N. Setting D = D = D; 

x y x y 
Vxy Vyx ~; Dxy ~D; D t ~/2(i -- ~)D, for the critical force we obtain the expression 

N = 16D/a 2. The exact solution is 14.68D/a 2. For the purposes of this analysis an error of 
about 7% may be considered acceptable. 
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In order to obtain a closed system of equations we will consider the shortening of the 
chords of the ellipse parallel to the coordinate axes during the deformation of the main 
element. The deformation of the middle surface of the exfoliation satisfies the approximation 
U,x + */2w,x2~-e*x . Integrating this relation over the interval [--x,(y), x,(y)], where 

x = +x,(y) is the equation of the boundary of the ellipse, and noting that u[x,(y), y]- u, 

[-~x,(y), y] = --2x~(Y)ex, we obtain (Fig. 8) 

z, (~) 

I__ [. w2lx, y)dx=(ex_Z.x)2X,(y). 2 --x,(~) 
Integrating again with respect to y over the interval [--b, b] gives 

o fl 
(5.6) 

(the second equation was obtained from the first by index substitution). 
pression (5.1) in (5.6), we arrive at the relations 

P = 3a 2 (~-- e'z) = 3 b '  ( ey  - e'.). 

Using (5.4) and (5.7), we compute the critical strains 

,',= [Eu (a2 +v~b ") (~a'-cub ~) + (h/a)~H (a, b)]/H, (a, b); 
e'y= [ Ex(b" +v:va ~) (evb~-~za ~) + (h/b)'H (a, b) ]IHj (a, b). 

Substituting ex- 

(5.7) 

(5.8) 

Here, together with (5.5), we have used the notation 

H, (a, b ) = Exb 4 + 2v~Ezcfb' + Er 4. (5.9) 

For the isotropic case we find that for v = 1/3 the functions H(a, b) and HI(a, b) coincide. 

Substitution of expressions (5.8) in one of relations (5.7) gives 

3a~b 2 
P =  H, (a, b) [ Exex(b~+v~a~) +EYeu(a~+~vxb~) - hZM(a' b) 

a~b ~ ] �9 
(5.10) 

Taken together, relations (5.8) and (5.10) now make it possible to construct the equa- 
tions determining the equilibrium and stable dimensions of the exfollatlons. 

6. Let the surface layers of the main element be subjected to compressive strains 

> e* (a, b) and e > c* (a, b). We will compute the potential strain energy of an element 
Cx x y y 

= + Uo. Here with an exfollation as a function of the dimensions of the exfoliation U U b + U c 

U b is the bending energy of the exfoliation determined from (5.2) by substituting in it ex- 

pressions (5.1) and (5.10); U is the compressive energy of the exfoliation; Uo is the poten- 
c 

tial strain energy of the main element. Considering that within the exfoliation the strains 
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of the middle surface are assumed to be constant and equal to the critical strains ~*x(a, b) 

and E* (a, b), we find that, irrespective of the shape of the structure and the way it is 
Y 

supported and loaded, we have 

U,.  + Uo = const - 
aabh (6.1) [E~(~-s*~ ~) + 2v~E=(8~ey-~*~'v)+E~(~.~--~*~)]. 

2 ( 1 - v = ~ v ~  ) 

Here we have written down explicitly only that part of the energy which makes the main contrl- 
butlon to the generalized forces responsible for the growth of the exfollatlon. These general- 
ized forces we determlne from the expressions 

G.==-OU/cga; Gb=--aUldb, (6.2) 

which follow from the generalrelations (1.2). Considering that the elementary work done by 
t h e  r e s i s t a n c e  f o r c e s  dAv=2~[~(a+da)(b-Jcdb)-~ab], we o b t a i n  

ra=2~b; rb=2gY0 a. 

The e q u i l i b r i u m  d i m e n s i o n s  a and b a r e  found f rom t h e  e q u a t i o n s  

G=(a, b) = 2 ~ 0 b ;  Gb(a, b) = 2 ~ ? ~ .  

In the general case the further computations are very clumsy and do not permit general 
conclusions of a qualitative kind to be drawn. Accordingly, we will consider the particular 
case of an exfoliatlon circular in plan. In this case the load-carrying layers of the compo- 
site will be considered isotropic and the compression uniform. Thus, a = b; E = E = E; 

x y 
Vxy Vyz v; e x ~y e. We obtain a further simplification by setting 9 ffi 1/3, so that 

t h e  r i g h t  s i d e s  o f  ( 5 . 5 )  and ( 5 . 9 )  c o i n c i d e .  In  t h i s  c a s e  e.(a)-(h~)~; p~3(~2-h2); H(a)ffiH,(a)- 

8E~13. Substituting these expressions in (5.2) and (6.1), we calculate the force driving 

the exfoliatlon: 

a -  -OUIOa=3~E~[e'-, ,'(a) I. ( 6 . 3 )  

Equation (6.3) is valid as long as ~ ~c,(a). In order to find the corresponding resis- 

tance Po, we find the work which must be done to increase the radius of the exfoliatlon a to 

the value a + da: dA ffi 2yo[~(a + da) 2 -- wa2]. 
Y 

~ - 4 ~ y ~ .  ( 6 . 4 )  

The G r i f f i t h  e q u i l i b r i u m  d i m e n s i o n s  o f  t h e  e x f o l i a t i o n  a r e  d e t e r m i n e d  f rom t h e  c o n d i -  
t i o n  G(a ,  ~) = r o .  S u b s t i t u t i o n  o f  e x p r e s s i o n s  ( 6 . 3 )  and ( 6 . 4 )  g i v e s  

a-h(P-,.D-'/~. 

where as distinct from (3.8) we have introduced the notation 

(6 .5 )  

e - - ( 4 y o l 3 E A ) * ~  

If ~ < ~| then there are no Grlffith equilibrium exfoliations. At ~ > ~= the dependence 

a(z) is a monotonically decreasing one. Thus, equilibrium dimensions (6.5) correspond to un- 
stable exfoliations (Fig. 9). When ~e,(a), the exfoliation remains plane. Quaslequlllbrium 

growth is possible only in the unshaded region of Fig. 9. 

The equations describing the growth of the exfoliations are obtained from general consi- 
derations (2.3)-(2.8) by introducing special assumptions concerning the laws of damage accu- 
mulation and the effect of the damage on the properties of the composite. Thus, if we retain 
assumptions (3.9) and (3,10), we arrive at the system of differential equations 
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da pa (Ga/~a2r~)"o/2 db pb (Gb/~b2rb) mb/z (6.6) 
dt tr (1-Ga/ra)l /% ' dt te (1--Gb/rb) i/% 

In Eqs. (6.6) we have taken into account the essentlalanlsotropy of the elasticity and 
strength properties of the composite. 

We will examine in more detail a circular exfollation in a composite with isotroplc ioad- 
carrying layers. We write down the growth equation of the exfoliatlon for cyclic loading (the 
duration of the cycle is identical with the time constant tc): 

daft p[g(a, emx)-g(a, emla)] mp (6.7) 
dn p" [ l -g (a ,  em*)] ua 

In this case 

0 (a, 8) l 
e(a,,) ~--~--=~., [,~-,J(a) l 

If Ema x < ~,(a), it is necessary to set a(a, c) = 0. Certain results of integrating Eq. (6.7) 

are presented in Fig. i0. In this case the initial conditions for curves i were taken from 
the unshaded region in Fig. 9 at e < e . Curves 2 were obtained for initial conditions from 

the same region at ~ > e~. These conditions correspond to small values of a/h, at which the 
approximation of thin plate theory is inapplicable. Accordingly, the corresponding numerical 
results are of the nature of a model. 

7. So far we have assumed that in the initial state the exfollatlon is plane, and that 
there are no initial stresses in it. In reality, the initial exfollatlons of technological 
origin are buckled and the middle surface is under stress. We will show what changes must 
be introduced into the results obtained above in order to take into account the initial buck- 
llng. Let the initial buckling have the form 

~ y~ ! ~e, (7.1) 
wo(x, y) = fo ( 1 a~ ~ b~ 

where ao and bo are the dimensions of the initial exfoliation in plan; fo is the initial rise. 

We assume that fo << do, bo, but fo ~ h. The initial stresses in the middle surface mainly 
depend on how the product was formed. We will assume that these stresses are equal to the 
critical values from the corresponding linear problem of elastic stability. In this case the 

O initial strains gOx = ex*(d~ bo) and ey = ey(~O, bo) are related by expression (5.4). We 

will neglect the initial strains in the adjacent region of the maln element. 

In order to obtain the analog of Eq. (5.7), we write out the expressions for the compo- 
nents of the finite strain tensor and equate them to the difference between the critical 
strains in the state in question and the initial strains, referred to the dimensions of the 
exfoliatlon ~ and b: 
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u,x + '/2w,x 2 -  '/2 U-'o,= 2 = - (g*x- -  ex~ 

v,v + 'l~w,~ 2 -  '1~o,,~ ~ --- -- ( d y - -  e~~ ). (7.2) 

Here u(x, y) and v(x, y) are the displacements in the middle surface in the direction of axes 
O and Oy, respectively. The strains have been considered positive if they correspond to 

compression. On the other hand, the displacements at the ends of the chords of the ellipse 

y ffi const and x = const (see Fig. 8) are related by the expressions u[x,(y),y]--u[--x,(y),y]= 

--2Xl(Y)ex; V[g, YI(X)]--~[X,--YI(X)] =--2yl(X)Sy . Here  x = + x l ( y )  and y = +_yl(x) a r e  t h e  e q u a -  

t i o n s  o f  the  b o u n d a r y  o f  t h e  e x f o l i a t i o n ;  g and ~ a r e  t he  s t r a i n s  o f  t he  main  e l e m e n t .  We 
x y 

integrate relations (7.2) over the lengths of the chords. As a result we arrive at equations 
of type (5.6). Repeat integration with respect to y.gives 

2 1 

2 ' ev-e  ,+e, ,~ ) f~. 
fl fie 

( 7 . 3 )  

The equations are consistent in the sense that for the initial state, when ex=sv=0; a=ao; 
b=b0; 8z~ bo); g~~ , they are satisfied identically. In this connection, it is 

important that we took the initial forces in the exfoliation to be equal to the critical values 
of the linear problem. Substitution of (7.1) in Eqs. (7.3) gives 

P = 3a 2 (8,=- s'x) + (abdaob) [0 2 + 3aa0e= o =  ( 7 . 4  ) 

= 3b ~ (ev-  e'y) + (aoblabo) [o ~ + 3bboe~ ~ 

J o i n t l y  s o l v i n g  Eqs .  ( 5 . 4 )  and ( 7 . 4 )  we e x p r e s s  t h e  s t r a i n s  Ex.*(a, b) and ~* ( a ,  b) and t h e  ' y 

r i s e  f i n  t e r m s  o f  t h e  g i v e n  p a r a m e t e r s  o f  t h e  p r o b l e m .  I t  i s  t h e n  n e c e s s a r y  t o  c a l c u l a t e  t h e  

p o t e n t i a l  s t r a i n  e n e r g y  f rom ( 5 . 2 )  and ( 6 . 1 ) ,  a f t e r  whieh  we d e t e r m i n e  t h e  g e n e r a l i z e d  f o r c e s  

GU(a, b) and Gb(U, b) from Eqs. (6.2). 

As in the previous case of a plane exfoliation, for the purposes of obtaining more trans- 
parent results we will examine in greater detail a circular isotropic exfoliation. We construct 
the expression for f. Using (7.4), we have p-3(e#-h2)+ro2+3(a/ao) h', where we have borne in mind 
that go ffi g,(ao) ffi (h/ao) 2 Instead of (6.3) we obtain the expression 

and instead of (6.5) the equilibrium dimension equation 

8 , + ( h )  ' '  a 2 '0 ' _1 )  ~ + ~  -e-~. ( 7 . 6 )  

The growth equations have the same form as in the case of an initially plane exfollation. 
Thus, for a circular exfoliation in a composite with isotropic load-carrylng layers Eq. (6.7) 
is appllcable. However, in this case, taking into account Eq. (7.5), 

! [~+%,(a) l a 2ro' \ 1 

For all u >_-ao we have g(a, e)~ O. If 

/ a fo' _1 ~ 8<8,--~.(a) ~,~+'K~" ) ' 
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then it is necessary to set g(a, e) = 0. The condition s = sf corresponds to the vanishing 

of the rise f. Thus, the region of initial values for a in the plane {e, a} is bounded by 

the curve of equilibrium exfoliations whose dimensions satisfy Eq. (7.6), by the curve 

e = ef(a) and by the straight line a = ao. As a result, we arrive at a diagram very similar 

to the diagram for the plane problem (see Fig. 5). 

At ~ >> e,(a) the difference in the results given by the two models considered ceases to 
be important. In this case g(a, a) z E2/E =, which is analogous to the limit (4.5) for the 

plane problem. The a(n) curves for exfoliations with an initial deflection are shown dashed 
in Fig. i0. 

This simplification is also valid in the general case. Let the following condition be 
satisfied: 

2 2 *2 * * *2 ex + 2vxyexau+ (Ey/Ex)~y >>e ==+2v=ye xs y+ (EJE=)e ~. (7.7) 

We will use the notation for the reduced strain ~r=[Sx~-~2vxvexs~q-(Er Then, if (7.7) 

is satisfied, we obtain G=/rn~Gb/Pb~l~xhe~/4?=(n,/e~)~, where s is determined from (3.8). 

Thus, Eqs. (6.6) take the form 

d.a__ p.___= (~,/~,,soo) m= db pb (St/JibS=) mb (7 .8 )  
dt to [ 1 - ( ~ r / ~ = ) = l , : = =  ' dt  to [ l  - -  (sr/~|  'J '/=b 

Al though Eqs. (7 .8)  were ob ta ined  f o r  a p lane  e x f o l i a t i o n  i n  a p lane  s t r u c t u r a l  e lement ,  
under  c e r t a i n  c o n d i t i o n s  they a l so  app ly  to  e x f o l i a t i o n s  on the  s u r f a c e  o f  curved e lements .  
These c o n d i t i o n s  take  the form 

e~'< e, (a, b, Rl., R2), max {a, b} << min {R,, R2}, 

where e r is the reduced strain (7.8); E, is the critical strain for the exfoliation; RI and 

R2 are the principal radii of curvature of the exfoliation. In this case it is sufficient 

to project the exfoliation onto a tangent plane with a local rectangular Cartesian coordinate 
-system, and in computing the generalized forces G and G b to take into account only the re- 

lease of energy of the moment-free state at the exfoliation front. From Eqs. (7.8) it follows 
that when P==pb; ma=mb; ~==~b; ~==~b the dimensions a and b will grow at the same rate, des- 

pite the anisotropy of the strain field: a = ao + r b = bo + ct. Thus, if these equalities 
are satisfied, as the exfoliation grows its shape will approach the circular. 

8. The ultimate aim is to predict the growth of defects incomposite structures under 
the action of operational and natural loads and to provide a basis for standards on permissible 
defects. By combining Eqs. (2.3) and (2.8) we arrive at a vector differential equation des- 
cribing the growth of the defects in time: 

a (t) (t)]. (8. l )  
dt 

Equations (3.11), (4.6), (6.6), etc. are particular cases of Eq. (8.1). Predicting the growth 
Of defects reduces to integrating Eq. (8.1) for given initial conditions and a given loading 
process. In order to determine the permissible defects it is necessary to solve the inverse 
problem -- to find the initial conditions for which in the course of a specified period of 
service the size of the defects will not exceed a predetermined limit. 

Of particular interest is the solution of these problems for random loading. In many 
applications the loading process s(t) is quasistationaryand quasiergodic. This means that 
any realization of the process s(t) during the period of service T can be divided into seg- 
ments, each of which can be treated as a representative realization of a stationary ergodic 
random process. On transition from one segment to another the properties of the process 
change only slightly. Following [i0], we introduce two arguments for describing the loading 
process s(t, T) -- "fast" time t and "slow" time T. The vector 1 varies slowly with time and 
hence can be regarded as a certain function of "slow" time r. Within each segment we will 
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treat T as a parameter. The probability density of the values of the process s(t, T) will be 
denoted by p(s; T). Averaging Eq. (8.1) gives an approximate expression for the mean rate of 
of growth of the defects 

di(~), = ~ f [ l (~),  s]p(s;~)ds.  
d~ 

The integration on the right is carried out over the entire region of values of the process 
s(t, ~). 

As an example, consider Eqs. (7.8) with e << E . The equations are simplified as 
follows: r 

,,o ,= ( , .  ,,. ( , .  

d-T= t'7- ~ ~,, , .  I ; d-7-= t--f ~ 1  " 

Let the reduced strain e (t, T) be a quasistationary" and qua~iergodic random process, whose 
r 

v a l u e s  fol l~r~ a R a y l e i g h  d i s t r i b u t i o n  w i th  s l o w l y  v a r y i n g  p a r a m e t e r  ~ (T) > O. Then 
C 

~r [ e,= ] (8.3) 
p{~r, t) . . . .  8c2( T ) - exp 2eez(T) . 

Averaging the right sides of Eqs. (8.2) with allowance for distribution (8.3), we find that 

d~ t~ L ,13~| .I 

db{T) pb[ Ec(T) l~b '%/~ 

where F(x) is the gamma function. If T is the specified life, and a, and b, the maximum per- 
missible dimensions of the exfoliation, then the maximum permissible initial dimensions are 

T T 

da( , )  . db(T) 
ao=%- J ~ a ~ ;  boffi~,--j" d~ 

o o 

d~. 

LITERATURE CITED 

i. V.V. Bolotin, "Effect of technological factors on the mechanical reliability of compo- 
site structures," Mekh. Polim., No. 3, 529-540 (1972). 

2. V.V. Bolotin, Z. Kh. Zebel'yan, and A. A, Kurzin, "Stability of compression members 
with defects of the delamination type," Probl. Prochn., No. 7, 3-8 (1980). 

3. V.V. Bolotin and Z. Kh, Zebel'yan, "Stability of elastic spherical shells with delami- 
nations," in: Strength Calculations [in Russian], No. 22, Moscow (1981), pp. 150-165. 

4, L.I. Slepyan, Crack Mechanics [in Russian], Leningrad (1981). 
5. H.T. Corten, "Mechanics of failure of composites," in: Fracture [in Russian], Vol. 7, 

Pt. i, Moscow (1976), pp. 367-471. 
6. V.V. Bolotin, "Equations of growth of fatigue cracks," Izv, Akad. Nauk SSSR, Mekh. 

Tverd. Tela, No. 4, 153-160 (1983). 
7. V.V. Bolotin, "A unified model of the fracture of composites under long-term loading," 

Mekh. Kompozitn. Mater., No. 3, 405-420 (1981). 
8. H. Chai, D. Babcock, and W. Knauss, "One-dimensional modeling of failure in laminated 

plates by delaminationbuckling," Int J. Solids Structures, 1/7, No. ii, 1067-1083 
(1981). 

9. E.G. Viktorov, "Growth and fracture of delamination defects in composites in compression," 
Tr. Mosk. Energ. Inst., No. 578, 36-40 (1982). 

i0. V.V. Bolotin, Statistical Methods in Structural Mechanics [in Russian], Moscow (1965). 

188 


