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A theoretical study is presented of the stationary energy transfer between two beams in the writing of a 
reflection hologram in a dynamic medium. The intensities of the two beams both inside the medium and 
at the surfaces are determined asa function of absorption coefficient, the effective coupling constant, 
the initial intensity ratio and the thickness of the medium. Numerical results obtained from the 
computer calculations are presented in graphical form. 

1. Introduction 
The phenomenon of energy transfer (beam coupling) between two beams in writing a volume hologram 
in photorefractive crystals has been known for some time. It was first observed by Staebler and Amodei 
[ 1 ] in the early seventies. Recent years have seen an increasing interest and intensive studies of this 
phenomenon [2-8] and, in particular, the closely related field of the generation of a phase-conjugate 
wave through so-called four-wave mixing (FWM). For instance, Huignard and Marrakchi [7] have 
succeeded in signal beam amplification in Bi12SiO2o(BSO) crystals through the energy transfer between 
two interfering beams. In their two-wave mixing experiments, an additional rr/2 phase shift was intro- 
duced by moving the crystal or the interference fringes at constant speed, and a high external electric 
field (> 8 kV cm -1) was used to obtain signal beam amplification. It was shown that the phase-shift of 
the holographic grating (HG) with respect to the fringe pattern (FP) is responsible for the energy transfer. 
When the phase shift ff is equal to zr/2 due to the diffusion field, the energy transfer will reach its 
maximum [ 1 ]. 

However, in most theoretical and experimental investigations of the beam-coupling [2-8], only trans- 
mission geometry was used and very few works have dealt with a reflection geometry. The work of 
Kukhtarev and Odulov [9] on four-wave mixing in electro-optic crystals includes both the transmission 
and reflection geometries, based on a dynamic theory [5]. Their theory is also applicable to the two- 
wave mixing provided only one pump beam exists. In tt~eir treatment, the absorption in the crystal was 
ignored and the condition of non-depleting pump beams was assumed. However, in practice, the absorp- 
tion may not be ignored in highly sensitive photorefractive crystals such as BSO and BiI2GeO2o(BGO) 
and the condition of non-depletion may not always be met. 

In this paper, theoretical work on the stationary energy transfer [3] between two beams in writing a 
reflection volume hologram in a dynamic medium is reported. The work was stimulated by the gener- 
ation of the phase-conjugate beam through a reflection volume hologram formed in BGO crystals in the 
FWM experiment in which reasonably high wavefront reflectivity was obtained [ 10]. 

When the absorption is taken into account the mathematics involved in solving the coupled wave 
equations in a reflection hologram is much more complicated than that in a transmission hologram [7], 
because we are now dealing with a two-point boundary condition (bc) and the simple and useful relation 
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i Figure ! Two-wave mixing configuration for a reflection 
I geometry. The shadow area denotes the dynamic medium. 

of energy conservation of the wave intensities, such as that given by Huignard and Marrakchi [7] does 
not exist. In our studies, it has been found that, in general, numerical methods have to be used to obtain 
the solutions of the coupled wave equations. 

2. T h e o r y  
The two-wave mixing configuration in a reflection geometry is shown in Fig. 1. The two plane waves 
A. (reference) andA_ (signal)impinge on the dynamic medium from the opposite sides. For simplicity, 
we assume that the incident plane is !in the X - Z  plane to which the polarization vectors of the light are 
perpendicular (H-mode) and A. and A_ both make an angle 0 withi the Z-axis and that the average refrac- 
tive index n inside or outside the medium is the same. 

In order to shed some light onto this problem, we first ignore the absorption inside the medium. 
Based on the coupled wave theory [2, 11 ], and the dynamic theory [5], the coupled wave equations are 

readily derived as follows: 
I_ I .  

d/____= + 2gI_ = 0 (la) 
dZ + I+ 

I_I .  
d/---L+ + 2gi_ - 0 ( lb)  
dZ + I+ 

rrn3.y(A 2 + B2) 1/2 
r = (lc) 

X cos 0 

where g = F sin 4, 

~j = tan-l (B/A ) ( l d )  

where F is the coupling constant, ~ the phase shift of HG with respect to FP [2, 5, 7], X the light wave- 
length in free space, A and B the unshifted and the n/2 shifted components of the electric field grating 
[5], I_ and I+ the intensities of the signal and reference waves, respectively, and 3' the appropriate 
electro-optic coefficient. From Equation 1 it is obvious that parameter g is proportional to the 7r/2 
shifted component of the refractive index modulation [7], which is responsible for the energy transfer, 
and it may be termed the effective coupling constant. 

Subtracting Equation 1 a from Equation lb and integrating we have 

I+-- I_  = A - constant. (2) 

Equation 2 indicates that in a reflection geometry the relation of energy conservation of the wave 
intensities is different from that in a transmission geometry (where I+ + I_ -- constant) because in the 
former case the energy flow of the waves A+ and A_ is along opposite directions. 

Adding Equation la to Equation lb and using Equation 2, the resultant differential equation is 
readily solved and after using the following bc at Z = 0 
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L(O) Lo 
- - Mo (3)  

I§ I+ o 
we obtain 

L ( Z )  = �89 + 2Mo(2e -2gz -- 1) +11/o21 v2 -- (1 --Mo)} (4a) 

I+(Z) = �89 + 2Mo(2e - z ~ z -  1) +M2o] u2 + (1 --Mo)}. (4b) 

where Mo is the resultant beam ratio at the boundary Z = 0. 
For the two-point bc, I+(0) and I_(d) are given, consequently the coefficient Mo in Equation 3 is still 
unknown. Using the bc at Z = d and Equation 4a, it yields 

M - I_(d) 
/+(0) 

From Equation 5, we have 

- �89 + 2Mo(2e - ~ " -  l )  + m g ] ' ~ 2 - - O  - -mo)} .  (5) 

M(M + 1) 
Mo = M + e -2gd" (6) 

where Mis the initial intensity ratio of the two beams. 
An inspection of Equation 6 indicates that when g > 0, then Mo > M, the energy transfers from .4§ to 
.4_, and when g < 0, then Mo < M, the direction of energy transfer is reversed and this is independent 
of  M. That is, the direction of energy transfer depends on the direction of the phase shift of HG and 
the sign of the change of the refractive index. Thus, the energy can even transfer from the weaker beam 
to the stronger beam. 

Comparing Equations 4 and 6 with Equation 9 in [7], with the absorption coefficient a = 0 for 
a transmission geometry, one can see that the relations in a reflection geometry are much more 
complicated. 

Regarding the phases of the .4+ and A_ waves, similarly we have 

d~b_ P cos ~I+ 
-t - 0 (7a) 

dZ I++I_ 

d~+ P cos ~I_ 
- o. (7b)  

dZ 1++1_ 

Subtracting Equation 7a from Equation 7b and using the bc 

~(0)  = ~ §  = ~o, 
we obtain 

r  = r  - ~ _ ( z )  = ~o + P cos ~ z .  (8)  

It can be seen from Equation 8 that the phase difference between the two interfering waves changes 
linearly with Z and depends on the unshifted components of the grating. For a reflection grating formed 
inside a photorefractive crystal such as BGO when no external electric field is applied [10], P cos t~ = 0 
then ~b(Z) -- ~bo. 

When a ~ O, the coupled wave equations become 

I+ k  
d/+ + oar+ + 2g - 0 (9a) 
dZ I+ + I _  

dI_ I+I_ 
- - ~ - - e I _  + 2g i+ + i - - 0 (9b) 

where a = ai/cos 0 and a i is the intensity absorption coefficient. 
Notice the different signs in ear+ and cd_, because A+ and.~_ attenuate along opposite directions 

due to the absorption inside the medium. Subtracting Equation 9b from Equation 9a and denoting 
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2~ = I§ + / _  and using Equation 2, it follows that: 

dA 
- - +  c~2~ = 0. 
dZ 

Adding Equations 9b and a we have 

(lO) 

d2~ (Z2 _ A 2) 
- - + a A + g  - 0. (11) 
dZ 

Multiplying Equation 11 by Z and using Equation 10, Equation 11 becomes 

d(~2- 42) 
- 2g(~ 2 -- A=). (12) 

dZ 

After integration and using the be at Z = 0, we obtain 

I.I_ = MoI2+(O) e - a z  = MoI2+o e -zcz. (13) 

Multiplying Equations 9a and b by I_ and I+, respectively, and then subtracting one from the other, 
we have 

1+0 
where 2Q2(a + g) + 2Q(a - g )  dQ = dZ (14a) 

a = I_if§ (14b) 

Depending on the relative values ofo~ andg, the solutions of Equation 14 have different forms as 
follows: 

(a) fbr lgl ~ a (the general case) 

In {[(a-g)+(c~+g)Q[(o:_g)+(a+g)Mo]l-~(Q__'~+~t\Mo] j = 2(a2--g2)Z (15a) 

except at the singular points where a --g + (c~ + g)Mo = 0 (solutions at these singular points can be 
obtained using the continuity of the function Mo). 

(b) for g = 

(~oo) 1 1 (15b) In Q = 4gZ + -~--M---oo 
(c) forg = -- 

l n ( ~ o o ) = - 4 g Z - Q + M o .  (15c) 

Applying the bc at Z = d to Equations 13 and 15, we then obtain 
(a) for Igl r 

(a - -g )Mo+(a+g)Mg ] [ - - -~oJ  = 2(~2--g2)d (16a) 
(b) for g = o~ 

Mo M ~ (16b) 

(c) forg = - - a  M 2 e 2gd 

2 In = -- 6gd + Mo Mo 

Equation 16 establishes the relation between the unknown Mo and the known M. Unfortunately 
Equations 15 and 16 are nonlinear equations and in general an analytical solution is difficult to obtain 
and a numerical method has to be used. Using a computer the solutions I+(Z) and I_(Z) are easily 
obtained. The procedure is as follows: (a) first solve Equation 16 to obtain the value of Mo from the 
given values of  a, g, d and M; and (b) substitute the obtained value of Mo into Equations 15 and 13, and 
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Figure 2 In tensi ty  of  reference and signal wave I+(Z) and I_(Z) as a func t ion  o f  Z ,  depth in the medium w i th  their  
ini t ial  in tensi ty  rat io M and the actual absorpt ion coef f ic ient  ~ as parameters. Thickness o f  the medium d = 0 .2cm and 
the ef fect ive coupl ing constant g = 6 cm -1 . 

use Equation 14b then solve them to obtain/_(Z) and I§ Note that when a = 0, Equation 16a 
reduces to Equation 6 and so forth. 

The absorption in the medium will not affect the phase difference @ in Equation 8 betweenA§ and 
/]-_, because the absorption has no contribution to the imaginary part of the nonlinear wave equation I 
which determines the phase difference qk 
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Figure 3 I+(Z) and I_(Z) as a funct ion of  Z wi th M and g 
as parameters, and d = 0 .2cm and c= = 2cm -1 . 

3. Computed results and discussions 
Using Equations 15 and 16, the intensities of the signal and the reference wave I_(Z) and I.(Z) at differ- 
ent depths inside the medium are obtained and plotted in Figs. 2 and 3 for a given thickness d of  a 
medium with ~ the actual intensity absorption coefficient, g the effective coupling constant and M the 
initial intensity ratio of  these two waves (in other words, the be) as parameters. In all the figures 1+,_ is 
shown in the units of I .o.  

As a whole, one can see from Figs. 2 and 3 that 
(a) the curves in Figs. 2 and 3 are similar. This indicates that the effect of a and g on I.,_(Z) is 

similar, at least to some degree. 

5 5 2  



Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium 

2.0 

l+Id)  
I_ (Of 

d=O.2 cm 
M=I 

~ \  - -  l + ( d }  

\ . . . . .  I_(O) \ 
\ 

t 5  ~ \  \ \  
\ \ 

i 
0,5 

(a) o~ crn -~ 

2.0 

I . ( d )  
I_(O) 

1.5 

,._,,* 

I . - -  

~1.0  

LM 

LU 
Ct~ 

s 

d=02 cm 
N=0.1 

- -  l .(d) 
. . . . .  [_(0) 

(c) = crn-1 

2.0 

l.(d) 

I (0) 

1.5 

d=O.2 cm 
M=O.5 
- -  I+ (d )  

. . . . . .  I_(O) 

o 

z t0  UO) ~ 

0.5 ~--- ~.. ='~" ~--~- 

1 2 5 i 
(b) c< crfi ~ 

Figure 4 I+(d) and I_(0), the boundary values of  I+ and 
I_ as a funct ion of  the actual absorption coeff ic ient  
wi th M and g as parameters. 

(b) Wheng > O, energy always transfers from the reference wave A§ to the signal wave A_ regardless 
of  whether A§ is stronger or weaker than.zl_. This can be clearly seen from Fig. 2, especially from 
Fig. 2d, in which I§ is always smaller than L (M = 2). 

(c) When g is large enough to compensate for the energy loss of  the signal wave due to the absorption 
of the medium, say g ~> a, signal amplification is achieved as shown by most of the curves of L(Z). The 
competition between these two factors is shown in most of the curves ofl_(Z), in particular, the third 
curve of/_(Z) in Fig. 2a and the second curve of  I_(Z) in Fig. 2d where I_(Z) decreases at first after 
entering the medium at Z = d (=  0.2 cm), due to the dominant role of the absorption, then it increases 
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Figure 5 Curves o f  I+(d) and I ( 0 )  versus the effective 
coupling constant g wi th  M and e as parameters. 

gradually because it obtains more energy from the reference wave A§ than that it loses due to the 
absorption. 

(d) The effect o f  c~ is always to reduce both I§ and I_(Z). Therefore it is desirable to use a medium 
with less absorption in order to obtain a higher net gain. 

(e) When a = 0, the relation of  energy conservation (Equation 2) is clearly shown as the distance 
between the curves o f  I§ and I_(Z) along the co-ordinate axis in Fig. 2 is always constant. 

In Figs. 4 and 5, l§ and I_(0), the intensities o f  the reference and signal waves at the surfaces of  the 
medium, are plotted as the functions o f  t~ or g for a given thickness d and with M, g or ct as parameters. 
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Since Mo =/_(0)/I+(0) is proportional to I_(0) and is a function of M, d, g and u (see Equation 16), 
curves of I_(0) versus ~ or g also represent the dependence of Mo on a or g. 

Inspection of Figs. 4 and 5 indicates that 
(a) The relationships between I§ 1_(0) and a or g are nonlinear. 
(b) With a large g, then I_(0), the end value of /_  when emerging from the medium is larger than 

I§ in many cases even i fM is quite small (e.g. curves in the middle of Fig. 4c). 
(c) The value o fg  at which the two curves of I§ and k (0 )  with the same value of a intersect, i.e. 

I+(d) = I_(0), is independent of e (Fig. 5). This interesting feature is easily explained using Equation 13 
with the condition I§ = 1_((3). Then we have 

I_(d) 
- M = e - ~ a .  ( 1 7 )  

I+o 

The value o f g  in Equation 17 obviously does not depend on a. 
In deriving Equation 9 and solving it with the bc at Z = 0 and d, the following approximations have 

been introduced, i.e. neglecting higher-order waves (only the zeroth and the first order are retained), the 
boundary diffracted waves and the second derivatives of I+ and I_ [11-13]. Thus, Equation 9 is not 
exact. In the most interesting dynamic media such as photorefractive crystals of LiNbO3, KNbO3, BSO 
and BGO etc., the absorption loss per wavelength is small (2nn/X >> ~) and the energy interchange (per 
wavelength) between the two interfering beams is slow (the exponential gains are in the order of 10/cm 
in LiNbO3 [6] and BSO [7]). Then it may be justified to neglect the second derivatives of/+ and I_. 
However, in a recent paper in which rigorous coupled-wave analysis of planar-gating diffraction has 
been used, Moharam and Gaylord [13] pointed out that in a reflection grating the second derivatives of 
the field amplitudes and the boundary diffraction need to be included in the coupled-wave equation to 
produce accurate results. Although they analysed the conventional volume grating only, it is expected 
that their conclusion may be applied to the dynamic volume grating as well, perhaps with some modifi- 
cations. Further work is being carried out in this direction. Using sensitive photorefractive BGO crystals 
in a reflection geometry, energy transfer between two interfering beams in a two-wave mixing exper- 
iment has been observed experimentally. Details of the experimental work and its comparison with the 
theoretical results given in this paper will be reported in due course. 

4. Conclusion 
A theoretical study of  the energy transfer between two waves in writing a reflection hologram in a 
dynamic medium has been carried out. Differing from the case of a transmission geometry [7], numerical 
methods have to be used to obtain the solutions of the coupled-wave equation. It has been found that 
signal beam amplification is possible providing the effective coupling constant is large enough and the 
absorption is not too large. 
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