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i. It is well known that failures of composite bodies subjected to uniaxial compressive 
loading along fibers often take place as a result of delamination. Various models of failure 
of solids in compression by means of delamination were constructed (see, for example [1-8]). 
However, because of the existence of a large number of failure mechanisms, on the one hand, 
and a large number of situations which can arise in practice, on the other hand, it is essen- 
tial to examine the problem further. 

Experimental results obtained for the failure of boron-aluminum pipes in compressive 
loading (it is expected that these results will be published slightly later) are not described 
qualitatively by the existing calculation method [2, 3]. The experiments were characterized 
by the strong dependence of the fracture load on the length of the pipe, by a large scatter 
of fracture loads, and by the sensitivity of the pipe to the defects formed in the manufactur- 
ing process. 

Because of the high labor content of each separate test on a physically real pipe com- 
bined with the large number of design and structural parameters which greatly affect the re- 

sults, the authors believe that it is essential to construct a model of the behavior of the 
compressed pipes suitable for analysis by computing experiments. Such a model is constructed 
in this work; the model is based on the existence and "evolution" of a system of technological 
(manufacturing) or service defects of the quasicrack type. The energy criterion is used for 
describing the splitting of unidirectionally reinforced pipes with buckling of strips formed 
in this phenomenon and by their growth leading to failure whose form resembles the "chinese 
lantern" (Fig. I). The computing experiments were carried out to determine the mean values 
and variances of the main parameters which determine the defectiveness of the pipe and which 
ensure agreement within the calculations of physical experiments. 

2. Initially, we examine a secondary, simpler problem of separation, buckling, and 
growth of a strip in a plate subjected to compressive loading. Similar problems (buckling 
and growth of the strip in compressive loading of a composite rod) were examined several 
times in the past [4, 5] using in most cases the beam approximation [9]. In addition to this, 
more exact approaches have also been used to determine the moment of the loss of stability 

Fig. i. Failure of a composite pipe 
in the form of "chinese lantern," 
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Fig. 2. Delamination process. 

Fig. 3. Dependence of the load P carried by the compressed 
bar on the relative displacement A of its ends. 

of compressed elements with delamination-type defects [6, 7]. In this work, we use an ap- 
proximate approach which results in the full acceptable accuracy in this case. We assume 
that the strip is formed by two parallel continuous cracks with the length L. The distance 
between the cracks is H (Fig. 2). The compressive stresses Oy = -o are applied at infinity; 
the thickness of the plate is h. The stress o = o E at which the strip loses its stability 
according to Euler (it is assumed that the foundation of the edges of the plate itself pre- 

vents its loss of stability), i.e., 

~2EI 
%= S( L)2" 

Here E is Young's modules; I = (Hh3)/12 is the moment of inertia of the cross section; S = 
hH is the cross-sectional area of the strip. The coefficient ~ is determined by the method 
of securing the ends. Taking into account the fact that the results presented below are used 
for the case of buckling of a similar strip in the pipe, we assume that ~ = 1/2, i.e., we 
assume that the ends are fixed almost rigidly. Thus, 

4~2E1 
~E =. SL 2 (1) 

We examined the behavior of the strip at o > o E. It is evident that in the presence 
of a small deviation from the rectilinear form, the strips carries the same load P = oES and 
the displacement of its ends do not change (at the loss of stability the external forces do 
not carry out any work above the system). It is assumed that the difference of the displace- 
ments of the ends of the strip A is determined only by the external forces 

A= (o/E)L 

Consequently, following Euler's analysis [i0] for determining the coordinates of the points 
of the bent axis of the strip described in the Appendix, we obtain, at A << L, the relation- 
ship, between the force P acting on the strip and the displacement of its ends A in the form 

E ? S ;  A ~ A o ;  

P (A) = 64st2E I ( 2 ) 
A>Ao, 

( 4 L + A o _ A ) 2  ' 

where 

4~21 
A~ SL 

The graph of the P(A) dependence is shown schematically in Fig. 3. Since, in the load varia- 
tion range in which we are interested the value A(o) << L, the function (2) can be approximated 
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Fig. 4. Dependence of the 
critical separation stresses 
o, on the length L of the 
buckled strip. 

by the dependence of the type of the deformation curve of an ideally plastic solid 

P(A)= PE; a>Ao 
o r  

where A = (o/E)L. 
in the form 

p(~)=[aS; a~.OE; (3 )  

t PE;  >oE 
The d e p e n d e n c e  ( 3 )  w i l l  be u s e d  i n  s u b s e q u e n t  c o n s i d e r a t i o n s .  

With increasing external loads the length L of the strip which has lost its stability 
(in Euler's sense) can increase as a result of the extension of the cracks which form this 
strip. In this case, we shall discuss the loss of stability according to Griffiths. Immedi- 
atedly after buckling the elastic energy U of the system does not change (as already men- 
tioned) and the bending energy coincides with the elastic energy of the compressed strip: 
U0(L) = 1/2 PEA0. With the increase of the external load as a result of the nonlinearity 
of the P-A diagram (Fig. 3), the variation of the elastic energy AU(L, o) of the system is 
equal to 

a U = - Uo (L) - ~ (L) ( a - A o  (L) )  + 1/2~SA, ( 4 ) 

The stability condition of the strip according to Griffith can be given 

6A ~< 8AU+ 4h~t6L, ( 5 ) 

where 6A is the work of the external forces when the length of the strip increases by ~L; 
y is the effective surface energy of the material. The thermal losses are ignored. The 
forces specify that the boundary (the value o does not change in variation in respect of L), 
we have 6A = 26AU, and the condition (5) is transformed to the form 

aAU 

and ,  a f t e r  s u b s t i t u t i o n  i n t o  ( 4 ) ,  we h a v e  

a2S 4~2Io 24a;4El ~ 
2E- "} L ~ SL 4 <~. 4hu ( 6 ) 

The o = o E t h e  l e f t - h a n d  p a r t  o f  Eq. (6 )  i s  e q u a l  t o  z e r o  and t h e  s t a b i l i t y  c o n d i t i o n  i s  
s a t i s f i e d .  S o l v i n g  t h e  e q u a l i t y  (6 )  i n  r e l a t i o n  t o  o ,  we d e t e r m i n e  t h e  c r i t i c a l  s t r e s s  o ,  
a t  wh ich  t h e  l e n g t h  L o f  t h e  s t r i p  can  i n c r e a s e  

(V 2yE h 1) ~ , (Z)  =aE (Z) 
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Fig. 5. Quasicracks (indicated by arrows) in the wall 
of AI-B composite pipe. 

The o,(L)dependence is shown in Fig. 4, where L 0 ~11/2 i 2~S~U41p% = is the characteristic 

length. If L S ~ L 0 (L S is the initial length), the strip will propagate in an unstable man- 
ner up to the boundaries of the plate when the stresses reach the critical value of o .... At 
the initial length L 0 < L S < L0~ the growth of the strip can be delayed only if its length 
increases to some value L ~ L 0 . Finally, at L S ~ L0V~ the growth of the strip is stable with 
increasing external load up to the stress 

~176176 =2 V 2yEh 
S 

We examine a case in which the strip is formed by blind cracks. We introduce the dimen- 
sionless connection parameter K which is such that at < = 0 we can examine the previously 
discussed case of continuous cracks, and at K = i the cracks do not form. The defect char- 
acterized by K > 0 will be referred to as a quasicrack. 

If the energy losses in the process of formation of new surface in buckling of the strip 
are expressed by 4Lh~N, the value o" E obtained from the energy balance equation has the form 

4n2EI ]/ 8h~yE 
~ = SL 2 F ' S 

AT K = 0 Eq. (8) is the same as Eq. (i). The stability condition (6) remains valid. The 
substitution of (8) into (6) shows that after buckling the strip remains stable only if its 
length satisfies the inequality 

a2---~ / l /  32• L2~ 
l--~ V. ?hS 

Consequently, Eq. (7) remains v a l i d  and the quan t i ty  OE(L) in t h i s  equat ion is  determined 
by Eq. (i) as previously. 

3. To construct the model of failure in axial compression (h << R) of a longitudinal 
reinforced pipe we accept the following assumption based on experimental observations. We 
assume that the pipe contained a system of defects of the quasicrack type (see above) formed 
as a result of technological (manufacturing) process, as in service (heat changes, various 
types of corrosion, etc.). The nature of quasicracks can differ: fiber laying defects, 
separation at the fiber-matrix boundary, a chain of cracked fibers, longitudinal cracks in 
the matrix. Figure 5 shows the photograph of the cross section of part of the wall of the 
boron-reinforced aluminum pipe. Chains of longitudinal cracks (indicated by the arrows) in 
the fibers oriented in the radial direction are clearly visible. The length of such a quasi- 
crack in the axial direction can reach large values and the transverse strength of the de- 
fective area of the wall can be very low. 
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Fig. 6. Dependences of strength P* on the number of strips N 
in the computing experiments and <N> = 13, Nma x = 25, Nmi n = 0, 
<$> = 75 mm, ~$ = 24, <z> = 500 mm, gz = 16, B~p = 0.1, ~ = 0.3 
kgf/mm, K = 0.5, L = 1000 mm. 

Fig. 7. Dependences of <P>* on the mean number of the strips 
<N>. The remaining parameters are the same as in Fig. 6. 

The distribution of the quasicracks is random and the strength of each pipe is also a 
random quantity. Consequently, the quantitative model of failure must be statistical. In 
this connection, all the parameters are divided into two groups, determinate and statistical. 
The first group includes the pipe length L, wall thickness h, diameter 2R, Young' modules 
in the direction of the pipe axis E z, the effective surface energy ~ which characterizes the 
resistance to longitudinal cracks. The second group of the parameters characterizes the de- 
fects; these parameters are random quantities: the number of quasicracks N, the length of 
th j-th quasicrack s the coordinates of the center zj and ~j with the inequalities 

IJ2<zj<i-lj/2; (pl<tp2< �9 �9 �9 <q~N-I<tpN, (9 )  

satisfy, and the connection parameter <j introduced in point 2. 

The function of the distribution density x(N) of the discrete quantity N, i.e., the num- 
ber of quasicracks, is approximated by the binomial distribution 

= Nmax--Nml n N -  Nmln Nmax -- Nmm 

where Nmi n, Nma x, <N> is respectively, the minimum, maximum, and mean number of strips in 
( Nmax--Nm,n ) = (Nmax- Nm,n) ' 

the pipe; the multiplier N-Nmln (N-Nmln)!(Nmax-N)l is the binomial coefficient; 

the variance D N is calculated from the equation 

Nmax--<N> 
D~r = <N> 

Nm~..- N,.l. 

The distribution of the angular coordinate of the j-th quasicrack is specified in the 
form 

mjf~--0+XP~), 

where N is the number of quasicracks formed in the given numerical experiment; X is a randum 
quantity which is uniformly distributed in the section [-0.5, 0.5]. The ccnstant ~ charac- 
terizes the variance. To satisfy the second inequality in (9) we must have 0 ~ go ~ I. 

The length s is governed by Weibull's distribution with the density f(s <s The 

function f(x) has the form 
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(X] ~, <X>) = (~[~X 15-1 exp ( - c~xl~), ( 10 ) 

where 

( ~  :::3 

The quantity B characterizes the variance Dx: 

D"=<x> V 

( I)0 
<x> ; x>O; [~>0. 

I, 

The distribution of the centers of the quasi Cracks can be selected as having either the 
form of Eq. (i0) with the parameters <z>, 8z, or as uniform along the length of the pipe. 
If in the calculation experiments s > L (or zj ~ (s L - s we redetermine s (or 
zj and s 

The connection parameter ~ for each j-th quasicrack is specified by the uniform dis- 
tribution of the random quantity in the section [<K> - BK, <<> + BK] with an allowance made 
for obvious restrictions: 0 ~ Kj < i. In the partial case ~ = 0 and the uniform distribu- 

tion is reduced to the determinate case Kj = <K> (j = i, N). 

We assume that two adjacent quasicracks form a strip. In stressing the pipe the strip 
can lose stability according to Euler and then increase its length when Griffith's condition 
is satisfied. 

The algorithm of loading in the computing experiments has the following form. For each 
j-th strip we determined the external load Pj at which the loss of stability according to 
Euler can take place. We solved the minimum Pk = m~n Pi from this set of the loads. The 

pipe is loaded to the load Pk and the k-th strip is3transferred to the buckled state. Subse- 
quently, we verify with the Griffith condition for the k-th strip is satisfied and determine 
its new length L k, if this condition is satisfied. The configuration of the entire system 
changes, the stresses are recalculated (and are possibly the lengths of the adjacent strips 
Lk_ I, Lk+x), in the process of calculating the set of the external loads is repeated. If 
for any nonbuckled s-th strip the critical external stresses OE(L S) are higher than the com- 
pressive strength for the material o,, the value of o, is assumed to be critical for the s-th 
strip. The strips which lose stability according to Euler can subsequently grow only if spe- 
cific conditions are fulfilled; in this case the load in each such strip can only be increased. 
The loading process of the pipe continues until all the strips lose the stability according 
to Euler. This condition of the pipe is regarded as critical. 

4. We shall describe the operation of this model in a series of computing experiments 
carried out to determine the dependence of the strength of the pipe P* on several parameters. 
In these experiments we "tested" pipes with the following characteristics: L = 1000 mm, R = 
30 mm, h = 1 =~ E z = 24,000 kgf/m 2, a~ = 150 kgf/m 2. ~i02 computing experiments were car- 
ried out for each selected set of the statistical parameters. 

Typical example is shown in Fig. 6 which shows the dependence of P* (in tonnes) of the 
number of strips N without averaging. This dependence is in satisfactory qualitative agree- 
ment with the real physical experiment. Both the P*(N) dependence and the averaged dependence 
<P*>(<N>) shown in Fig. 7 contain a minima. This indicates that the specific number of the 
strips N O is advantageous from the energy viewpoint; this conclusion was obtained previously 

determlnistic" [3] within the limits of the " " model. The dot-and-dash curves in Fig. 7-11 
characterize the rms deviation of the strength P* from the mean value <Pe> ( ). 

Within the limits of the proposed model we can derive the dependence of the compressive 
strength of the pipe on its length L (Fig. 8). It is evident that the strong dependence of 
<P^> on the pipe length can be qualitatively explained by the scale effect. The required 
dependence can be obtained by, for example, the following method: instead of specifying the 
mean value of the number of cracks <N> along the length of the pipe L, we specified the mean 
unit density of the cracks: p = s where s is the total length of the quasicracks. 
Thus, <N> = (2~RLp)/<s In this case, the centers of the quasicracks are distributed uni- 
formly along the z axis and not in accordance with the law of the type of (i0). 
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Fig. 8. Dependences of <P>* on the length of the pipe L at 

N = 13, <s = 75 mm, 8s = 2, <z> = I00 mm, 8z = 2, ~ = 200 mm, 
8~ = 0.i, 7 = 0.3 kgf/mm, K = 0.5. 

Fig. 9. Dependences of <P>* on the mean length of the quasi- 
crack <s at N = 13, Bs = 24, <z> = 500 mm, 8z = 16, 8, = 0.I, 

= 0.3 kgf/mm, ~ = 0.5, L = i000 mm. 

Fig. I0. Dependences of <P>* on the effective surface energy 
y at N = 13, <s = 75 mm, 8s = 24, <z> = 500 mm, ~z = 16, B, = 
0.I, K = 0.5, L : I000 mm. 

Fig. ii. Dependences of <P>* on the connection parameter ~ at 
N = 13, <s = 75 nml, Bs = 24, <z> = 500 mm, 8z = 16, B~ = 0.i, 

= 0.3 kgf/mm, L = i000 mm. 

A simple variant used in this work and described later is based on introducing the char- 
acteristic dimension of the structural element of the pipe i. We examined a pipe with the 
length L as consisting of k structural elements with the length l: L = kl. For each struc- 
tural element we specified its own system of quasicracks with the same statistical parameters. 
We assume that the process of failure in each structural element takes place independently. 
The pipe is assumed to be failed if at least one of the structural elements is completely 
fractured. The characteristic dimensional structure element is selected on the basis of the 
experimental dependences pm(L). It is evident that the <P*>-L dependence becomes stronger 
with increasing variance of the distribution parameters. 
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Fig. 12. Explanation is 
given in text. 

It should be mentioned that the smallest length should be sufficiently large to elimi- 
nate the influence of the edge effect and failure by separation in the loss of stability of 
the system of fibers [8]. In addition to this, the value of L should be sufficiently small 
to ensure that the pipe as a whole does not lose the stability according to Euler. 

Figures 9-11 show the dependences of the strength <P*> on the mean length of the quasi- 
crack <s the effective surface energy ~, and the connection parameter < which are interest- 
ing from the viewpoint of the effect of technology and structure of the material on the 
strength of the structural member. 

5. Thus, we propose the statistical model of failure of the composite pipes in axial 
compression which is suitable for numerical realization and computing experiments. The cal- 
culations are in satisfactory qualitative agreement with the physical experiments. The de- 
tected dependences of the strength of the pipe (both of the mean values and of the scatter 
of the data) on the internal parameters making it possible to select a new approach to opti- 
mizing the technological conditions. 

6. APPENDIX 

We determine the connection between the load P on a rod with the length L which loses 
its stability according to Euler, and the relative displacement of its ends A. The length 
of the arc of the median line of the rod s, the curvature of this line < = dS/ds, where 8 
is the angle between the tangent to the bent axis of the rod and the axis passing through 
its ends (Fig. 12). The ends of the rod are in the rigid restraint conditions 

8=0; s=O; L/2; L. ( 1 1 )  

For hinged support the coordinates of the points of the bent axis of the rod determined on 
the basis of Euler's analysis were published in [i0]. Following this method, we write the 
bending equation in a form dS/ds = -k2y, where k 2 = P/(EI). Differentiating this equation 
in respect of the s and taking into account that dy/ds = -sin 8, we obtain after simple trans- 
formation 

1 d ( d O ) '  
2 dO -~s =_k2 sin O. 

Integrating this equation we can easily obtain that 

dO )2 [ . ~ Oo 
=4k2 ~sm ---~ --sin~O) , ( 1 2 )  

where the integration constant is denoted as 4k 2 sin 2 80/2. It can be seen that 8 o is the 

1~=ol maximum possible value of the angle 8 which is obtained at the inflection points ~ds~ / , 

and namely, at s = L/4, 3L/4. Since 181 ~ 8 0, we replace the variables 

8 80 
s i n - - = s i n ~ s i n %  

2 2 

w h e r e  0 < ~ ~ ~ f o r  0 < s < L / 2 .  C o n s e q u e n t l y ,  Eq.  ( 1 2 )  c an  be  w r i t t e n  i n  t h e  fo rm  

1 d~ 

k V Oo l - s i n 2 - - s i n  2 
2 

Integration of the last relation with an allowance made for the boundary conditions (ii) 
gives 
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1 g d~ 1 
s=- -  J. F(~lm), 

k ~1 - m  ~ sin 2 ~ k 
0 

where F(~lm) is the elliptical integral of the first kind with a parameter m = sin 2 e0/2. 
This parameter is determined from the condition s = L/4 at ~ = ~/2: 

F(=/2[m)=k(L/4). (13) 

After determining the quantity m from Eq. (13) we can easily determine the relative displace- 
ment of the ends of the rod using the equation 

L 

A=Ao+ J']/l-- (dy/ds)2ds-L, 
0 

where A 0 is the relative displacement of the ends prior to the loss of stability (dy/ds = 
0). Since we are interested in the relative displacements A which are small in comparison 
with L (this corresponds to Idy/dsl << i), we can expand the subintegral radical into a series 

] d% we obtain and, after replacing the variable ds = -~ 

2 2~rtn (14) a=~+~ j'sin=Odq~=Ao+ k 
o 

Expanding in Eq. (13) the left part into a series in respect of the exponents m, at m << 1 
we obtain 

~/2 ( 1 + m/4 ) = k (L/4). 

Excluding the quantity m from Eq. (14) using the above equation, we obtain 

L ~-A 
--+ 
2 8 

which specifies the connection between P and A at small deflections: 

4~=El 
p =  

4 ~ 
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