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The effective properties ofheterogeneous media are determined mainly within the frame- 
work of statistical and model approaches~ The generality of the statistical theories in 
these cases is usually due either to the isometric form of the components or to the determina- 
tion of correlation functions. The correctness of statistical approaches is checked by com- 
parison with the results of calculation of the effective properties on model with prescribed 
geometric characteristics. 

The models of piezoelectric composite materials (PCM) proposed in the literature [I, 2], 
based on serial and parallel connection schemes and their combinations, contain several sim- 
plifying assumptions which make it impossible to correctly account for the interaction of 
the elastic and electrical subsystems in a nonuniform anisotropic piezotexture. 

The authors of [3] calculated the effective properties of a laminated PCM consisting 
of alternating symmetrical piezoelectric layers 4 mm thick (the axes of symmetry of the com- 
ponents were parallel and were located in the planes of the interfaces). The use of this 
method to perform calculations for a two-phase PCM with its symmetry axis perpendicular to 
the plane of the interface between the layers for the most part substantiated the statistical 
theory in [4] (only X* l, X*3, X't, e*31 did not coincide with the exact results obtained in 
[3]). Making the requirements in regard to the accuracy of the prediction of PCM effective 
properties more stringent is of more than just academic interest. The increasing range of 
components being used in the development of PCM's (the use of polymers and ferroelectric ma- 
terials, their polarization, an increase in the surface per unit volume of the PCM, the ef- 
fect of the adhesive properties of the polymers) and the attendant manifestation of new ef- 
fects require accurate determination of the effective properties of PCM's - albeit within 
the framework of the linear theory of electroelasticity. 

I. A PCM reinforced with unidirectional fibers is usually produced by placing ferro- 
electric ceramic rods in a polymer matrix or by filling holes drilled in a ceramic block with 
a polymer and subsequently polarizing the specimen. The symmetry of such a PCM is ~m. 

We will assume that the distribution of the fibers in the plane of isotropy is random. 
We surround all of the fibers with as many nonintersecting cylindrical surfaces as possible 
and we assume that each fiber (r = a ) and its surrounding cylindrical matrix (r = b) - a 
compound cylinder - are located in a nonuniform medium having effective properties. Since 
the PCM is assumed to be macroscopically uniform, the average mechanical (a*, ~*) and electri- 
cal (E*, D*) fields in the specimen will be constant and equal to the corresponding quanti- 
ties at the boundary of the compound cylinder (r = b). This approximation, usually used in 
the self-consistent field method, makes it possible to employ the hypothesis of equivalent 
homogeneity and to calculate the effective properties of a PCM on the basis of a single com- 
pound cylinder [5]. In this sense, the formulas obtained should be considered approximate 
in regard to actual PCM's and should most closely reflect the properties of PCM's having fi- 
bers of different cross sections with a/b = const. The results presented here will be exact 
for PCM's which can be represented as a polydisperse model of a medium with cylindrical in- 
clusions [5, 6]. 

We place the origin of the cylindrical coordinate system at the center of the coaxial 
cylinders. The z axis is directed along the s~n~metry axis. With allowance for the symmetry 
of the components ~m, the equations of state of the piezoelectric medium [7] will have the 
form 

gz=SI3E~,+SIBEGO+$33EOz+d83Ez, ~r=$11EOr+$12EOo+Sl3EGz+d31Ezi (~) 
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~e=Sl2Ea~+StlE~e+Sl3~az+d31E~; Dz=d31or+d31eo+dzzez+es3aEz; 
Dr=dlsaz~+ellaE~; 2~z~=sss~,~+dlsEr; Do=dlse,o+e.oEo; (2)  

2~0 = s6sEa~0 + dlsE0; 
2~0  = s68o~0. ( 3 ) 

The idea behind the method in [3], first proposed in [8], is that, in the case of uni- 
dimensional inhomogeneity, certain components of the electric and elastic fields can be de- 
termined from the system of differential equations which describes the thermodynamically 
equilibrium distribution of these fields in a nonuniform medium [9-11]: 

div D=0; rot E=0; Div o=0;  Ink~=0. (4)  

Then the remaining components of the average fields are determined through the equations of 
state (found by simple integration) with allowance for the coordinate dependence of the ma- 
terial tensors. This approach ensures the solution of the averaging problem. 

In materials reinforced with fibers, the ratio of the length to the diameter of the fi- 
bers is usually very large. Thus, all of the quantities in (1-4) are independent of z (8/ 

~z = 0). 

We will determine the effective constants of a PCM by solving boundary-value problems 
of the theory of electroelasticity for a compound cylinder. Here, we use the averaging meth- 
od [3]. For more complex cases, we obtain a solution on the basis of variational estimates, 
comparing the results for different types of boundary conditions (Foigt-Reiss scheme). Two 
basic cases are possible in the measurement of the physicomechanical properties of a PCM. 

2. In the first case, external loading does not alter the symmetry of the medium. If 
an electric field E* z is applied in the PCM along the Z axis, then the symmetry of the prob- 
lem remains ~m, and all of the quantities describing the state of the medium will depend only 
on r. Then it follows from the condition rot E = 0 that E z is independent of r and, thus, 
is equal to its mean value E z = <Ez> (<Ez> = E z). One of the strain compatibility condi- 
tions (4), meanwhile, implies that ~z is independent of r, i.e., ~z = <gz >" The equation 
of equilibrium dor/dr + (o r - o8)/r = 0 needed in this case is satisfied identically if we 

take 

~r = F/r; 00 = dF/dr.  ( 5 ) 

We f i n d  t he  s t r e s s  f u n c t i o n  F ( r )  from the  s t r a i n  c o m p a t i b i l i t y  c o n d i t i o n  d~0/dr  + (~6 - g r ) /  
r = 0, having inserted the strain components from (i) with allowance for (5). Then for F 
we have the equation d2F/dr 2 + (dF/dr)/r - F/r 2 = 0, the general solution of which is 

F = C . r + D / r .  (6)  

We f i n d  t he  c o n s t a n t s  C and D from t he  boundary c o n d i t i o n s  on t he  s u r f a c e s  of  t he  c y l i n d e r s  
f o r  

r f a  o ' r=~ ' r ,  U'r=U"r; ~ r  r=b  O~r=0. (7)  

Here and below, one prime is used to denote quantities pertaining to the internal cylinder 
(0 ~ r 5 a), while two primes denote quantities pertaining to the external cylinder ( a 
r~ b). 

To determine the strain <~z >, we use the integral condition for a mechanically free com- 
pound cylinder: 

2n b 

= j j (8) 
o o 

Equation (8) is an example of determination of the mean value of electric and mechanical 
fields. These mean values, prescribed in the composite in accordance with the external con- 
ditions, will henceforth be denoted with an asterisk. 

Having combined (5-8), we find the distribution of the stresses, strains, and electric 
displacement for system (i) in relation to r. Then, on the basis of the hypothesis of equiv- 
alent homogeneity [5], we can find the effective permittivity of a mechanically free specimen 
and the effective piezomoduli (in the reciprocal piezoeffect) from the definitions 
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*'~ <Dz>/E*~; d* "~ "~E* " e aa= aa=~,~z/I ,, d*a,=<(~r+~a)/2>/E*~; d*v=<Sp~>/E*~. 

The results of the calculations have the form 

~a*o = <ez.a~ - m2m2 (~.~2s~ + 2a~ 2 [s3 aE] - 4 ~ . ~  [ s~  ~] )/A~; 

el% = (so. <d~s ,~]  - 2 [ s , ~ ]  . < da~s,z~ ] + 2mtm~a,sn) / A~; 
d v - d  aa+2d  a,, 

( 9 )  

(1o) 

d.al=[(2mld,alsll.E+m2d.sls).[ss3Z]_2[st~].<d31s,a~] +mlm2aaa(SSl~"~--2Sll"~Sl3'E)]/Ac. ( 1 1 )  

H e r e ,  m~ = a2/b 2 and  m 2 = 1 - m z i s  t h e  v o l u m e  c o n c e n t r a t i o n  o f  t h e  i n c l u s i o n s  and  t h e  ma- 
t r i x ,  r e s p e c t i v e l y .  The s y s t e m  o f  n o t a t i o n  u s e d  be low f o r  t h e  o t h e r  q u a n t i t i e s  h a s  t h e  f o r m  

<8~f> = m~e~/~ + m~e~"a; [ s ~  E] = m~sa~ "~ + m ~ ' ~ ;  ~ = d'~-- d"~; 
< d~=s~v~] =mld'~s~"E+ m2d"~S~v'E; S• =StI~• Sr = [s+] + s ' _ ;  

A~ = s~ [ss3 E] - 2 [s,3 E] 2; s :  s'+ + s'_; s6 = s33'Es,~ " ~ -  s3~"~s ~d E. 

The effective piezomoduli for the direct piezoeffect is determined for short-circuit 
(SC) conditions: E z ffi E~z = 0. To determine the piezomodulus d~az, it is necessary to apply 
a plane stress o~i = O"r(b) = s"8(b) to the specimen. To determine the piezomodulus d*aa 
condition (8) should be replaced by <Sz > = s z" The bulk plezom~dulus is determlned for con- 
ditions of hydrostatic compression: <~z > = O"r(b) = o"8(b) = -p^. Taking these boundary 
conditions into consideration along with Eqs. (I), (5), and (6) and using the operation of 
averaging 

d*a,=,<D~/2o'*x[ ~z)=o ; d'a3=< D~>/~ ~-r d*v=<Dz>/(-P*) , 

we obtain expressions for the effective piezomoduli which coincide with the expressions found 
by the previous method. This agreement is due to the fact that, thanks to the high degree 
of symmetry of the medium, the resulting solutions of the boundary-value problems of electro- 
elasticity theory actually reduce the integrand functions to piecewise-uniform functions. 
This fact also accounts for the exact solution for ~aa~s. 

In assigning the boundary conditions for the displacements (strains), it is necessary 
to examine another system of equations of state in the variables ~, E: 

~ = r  D ~ = e ~ + e ~ E ~ ~  ( 1 2 )  

Taking the same approach as with (i) and examining the first four equations of this system, 
we obtain the following solution to the equilibrium equation in displacements (with allowance 
for the fact that ~z = <~z '>): Ur = Ar + B/r; U z = <~z>Z~ Then assigning the boundary con- 
ditions for the displacements in terms of the strains (~r = dUr/dr; ~8 = Ur/r; ~z =,<~z >) 
consistent with the symmetry of the problem, we find the effective piezoconstants e ~= under 
SC conditions. To determine e~a~, we create plane strain in the plane of isotropy ~ = 
~"r(b) = ~"8(b). To determine e aa, we assign ~*z = <~z >. With allowance for the continu- 
ity of the displacements and the stresses at r = a (7), this proves to be sufficient to 
solve the averaging problem by using the physical definition of the piezoconstants [7]: 

Then, taking into account the conditions of measurement of the effective piezoconstants, we 
obtain 

e'a, = [2mle'a,c~,'~ + m2e'm (c, ~'r + c12 '~ + cl fuz--  c12 "~) ] ]c; ( 13 ) 
e'a3 =<eaa> -- 2re,m2 (e'm -- e"a~) (c~a ' ~ -  c,~ ~) ]c; 

C=C,I "E-CI2 "E+ [(CIIE+C12R)]. (14) 

The effective elastic constants in the first four equations of system (12) are more easily 
determined than the same constants in the first four equations of system (I), since the elas- 
tic moduli case usually are among the elastic properties of the material determined experi- 
mentally. When the elastic moduli are measured in the SC regime, E z = 0, and the problem 
reduces to a purely elastic problem [5, 6]. We will write out the results in the form nor- 
mally used for piezoelectric materials: 

c . * ~  + c,2"~ = [ ( c , , ' ~ -  c,~ "E) <c, l ~ +  cI2E> + (C.  'E + Cl~ 'E) (C, l ' E +  C~2 "~) ]/C; ( 15 ) 
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I n  tE #".E ##E C,3"~=[2 ,Cia Cl, +m2cls (CI*'E+CI9'E+CiI"Z--C,2"E)]/C; 

tE Cza *E =<cszE> -- 2rnffn= (ciz - cm "E) 2/ c. 

(16) 

(17) 

The variational estimates in [5, 6] show that solutions (15)-(17) are exact for the PCM 
model being considered. Here, we also satisfy the familiar relations [7] for the effective 
piezoconstants (i0), (ll) and (13), (14): e ks = d k8C8~ ~E. This confirms the mutual self- 
consistency of the piezoelectric and elastic problems in the proposed PCM model. 

3. In the second case, external loading diminishes the symmetry of the medium. This 
situation is realized in the measurement of the shear modulus, piezomodulus d*is, and permit- 
tivity ell *~ (Eqs. (2) and (3)). 

To measure el~ *~ we direct the electrical displacement D* (or field) perpendicular to 
the axis of the cylinders along the X axis. The mechanical state of the medium corresponds 
to the state of simple shear in the XZ plane [6]. Then the symmetry of the medium + field 
system is reduced, and all of the quantities will depend on r and 0. The equations of elec- 
trical and elastic equilibrium (4) in this case yield a system of two second-order differen- 
tial equations 

a au~  , 0 2Uo ] 
V'  (eis U: - en ~J ) + eis [ -ff-/.r ~ ) "l- d--~b"~-z ] I r : O; 

V2 (c55= U'~ + eis" ) + cssS~ l "-~r " r ( -O-z-z U" + /,:o, 
the general solution of which has the form 

elsUz-en~Op = (Ar+B/r)  cosO; Cs~eUz+e,s~= (Cr+D/r)  cosO; 
(18) 

Ur=EzcosO, Uo= -Ezsin0.  

V 2 1 e l  0 t + 1  0 2 Here, =7~Tr~r~'/] ~ F  is the two-dimensional Laplace operator; els = dlscssF; can E = 

(sssE)-1; e11~ = ~11~ kls=); kls = dls4655E/gllo electromechanical coupling factor. Hav- 
ing inserted (18) into (4), we find that the above solution satisfies the conditions of 
strain compatibility and electric-field potential. The unknown constants A, B, C, D, and 
E in the internal and external cylinders are determined from the boundary conditions on the 
surfaces of the compound cylinders. 

Analysis of solution (18) showed that the success of the method of finding the effective 
constants from system of equations of state (2) by means of definitions of the type (8) de- 
pends on the procedure used to assign the boundary conditions at r = b and, moreover, that 
this method cannot be used to find the exact value. This is due to the fact that, in con- 
trast to the previous case, the field of variables of the solution in (2) turns out to be 
highly nonuniform. Thus, we find variational estimates for the effective properties ofthe 
PCM by applying different types of boundary conditions and calculating the corresponding en- 
ergy stored by the compound cylinder. 

The boundary conditions at r = a will be continuity of the displacements and stresses, 
the tangential component of the electric field, and the normal component of induction: 

U'r=U"r, U'z=U"z; O'zr=O"=; E'0=E"o; D'r=D"r. (19) 

The boundary conditions at r = b will determine the corresponding variational boundary for 
the effective constant. 

Let us find the lower variational boundary for the permittivity of a mechanically free 
*a We assign the electric displacement D* in the plane of isotropy compound cylinder s . 

of the PCM. Then at r = b 

• "  0 zr = ; D"r=D* cosO. (20) 

The electrostatic energy stored by the compound cylinder is equal to 

o o 

i (21) 
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Having calculated ~"(D*) by means of (18)-(20) and having inserted the result into (21), we 
find the lower variational limit for the effective permittivity by comparing U(D*) (21) with 
the energy of an equivalent homogeneous cylinder with the effective properties: U(D *) = 
D'~2Vc/2be11 *~ Here, V c = ~b2s is the volume of the cylinder. 

To determine the upper variational boundary u~11 *~ it is necessary to assign the elec- 
tric potential at r = b (the field E* = -~*/b): 

O"zr=0; ~"=~*cosO (E"e=E*sin0).  (22) 

Then having used (18) ,  (19) ,  and (22) to  de te rmine  D"r(q ,~) and having i n s e r t e d  t he  r e s u l t  
i n to  (21 ) ,  we f i nd  uEl l  *~ by comparing U(~*)  (21) wi th  t he  energy  of  an e q u i v a l e n t  homogene- 
ous cylinder with effective properties: U(~ ~) = uE1z*~ It turns out that the up- 
per and lower estimates of E~*o coincide and thus determine the exact value of permittivity 
in the PCM model being examined: 

�9 m ~ ~ ~ ~E ~ E ~  2 (8H'a+<et~>) (c~5'Z+<c~se> ) - =(~-r-m~)c~5 c5~ u~5 
8.*~ [ i o1, ) . . . . . .  ,E (23) 

(c5~ + < c ~ D )  - rn~2c~5'~c55"~a,~ ~ 

The elastic energy stored up by the compound cylinder with the imposition of mechanical 
boundary conditions in the state of simple shear (U"z(b) = 0) is determined in the form 

We assign the following mechanical and electrical boundary conditions at r = b: 

U"z=0; D%=0; o"zr=~*cose. (25) 

Calculating W(~*) by means of (18), (19), and (25) with allowance for the symmetry of 
the stress tensor and the equilibrium equations and comparing the result with the energy of 

. . . . . .  ~ ~ 2  an equlvalent homogeneous cyllnder wlth effectlve propertles (W(g) = o V~/2.bC55 D), we 
find the lower variational estimate of the effective elastic modulus s *u in the no-load 
regime. 

By assigning boundary conditions for the displacements at r = b 

U ,-0, D"r=0; U~r=~*zcos@, U e=-~zsin@, (26) 

corresponding to simple shear (l~"zr(b)l = l~"ze(b)l = ~*/2), we can find the upper varia- 
~D tional boundary for the effective elastic modulus uCss by comparing the elastic energy of 

the compound cylinder W(~*) (24) calculated from (18), (19), and (26) with the energy of an 
equivalent homogeneous cylinder with effective properties: W(~ *) = uCss*D~*2Vc/2. Calcula- 
~ ~ ~ . . 

tlons of W(a ) and W(~ ) leads to colncldence of the upper and lower variational estimates, 
which establishes the exact value of the effective shear modulus in the no-load regime 

�9 D "D (Css'E+<cssE>) (en'a+<en">)--m2(l+ml)Css'Ecs5"Ea152 
~ 5  = C55 . . . . . . . . . . . . . . .  { ( ~ 5 " E +  [C55 E] ) (8I 1 ,a + <811~ ) --  m=2C55"Ec55"E~152 -- ( 2 7 ) 

vu #D v2 H2 - - 4 m , s n  ~5  (k15 - -k l s  )} 

Calculation of the elastic energy stored in the compound cylinder with mechanical boun- 
dary conditions (25) and (26) in the SC regime (E"8(b) = 0), and its subsequent estimation 
by the above procedure also yield coincident variational boundaries, i.e., the effective elas- 
tic modulus 

�9 E wE (C55'E@< CSSE>) (ell""@ [81I~]) --m22C55"EC55"E~152 
E " - ~  _ �9 ( 2 8 )  Css = C s 5  (C5s"E+[CSS ] ) ( su  +[ella])  m 2 ( l + m z ) c s s ' E c s s " E a z S  2 " 

The electrical state of the medium does not affect the shear modulus in the plane of 
isotropy c'66 = (cii *E - c12"E)/2, and it can be calculated from the solution of the elastic 
problem. Variational estimates for it were given in [6], while an exact solution was pre- 
sented in [5] within the framework of a three-phase model of a medium with cylindrical inclu- 
sions. 

To determine the effective piezomodulus d*is under conditions of simple shear (U"z(b) = 
0), we examine the following boundary conditions at r = b: 
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Fig. i. Effective values of the piezomodulus d'a3 (a !, bulk 
p!ezomodulus d* V (b), and piezoelectric sensitivity g~v = 
d~V/E33 *~ (c) of a PCM in relation to the concentration m I of 
PZT-5 piezoceramic fibers for three types of fillers (with 
e"/e 0 = 5): i) an elastomer with a Young' modulus E = 0.3 
GPa and Poisson's ratio v = 0.45 [12]; 2) epoxy resin with 
E = 3 GPa and v = 0.4 [12]; 3) boron-silicate glass with E = 
74 GPa and v = 0.21 [13]. 

E - o = E ,  sin0; o - i j=0 .  ( 29 )  

The total electric energy stored up by the compound cylinder is equal to O = ~11*~ 
(23). As a result of the piezoeffect, part of this energy is converted to mechanical energy 
equal to W = kxs*2e11*SE*2Vc/2. The upper variational boundary for this energy can be found 
through the maximum strain of the compound cylinder with effective properties (28). It is 
clear from (2) that this value is equal to 2~"Sz(b), averaged over the angle 8, since - by 
virtue of the second condition of (29) - it corresponds to the condition of free expansion 
of the cylinder, i.e., 

! ! 
- '~  k ls*2m W E*2 V~ <~'-~ - css*~ 2~"o~ ( b ) ~ Vo. 

We can  u s e  t h i s  e x p r e s s i o n  t o  o b t a i n  t h e  u p p e r  v a r i a t i o n a l  l i m i t  f o r  t h e  p i e z o m o d u l u s  ( k l ~  2= 
dls*2Css*E/~x1*~ 

< 2~uo~ (b) > = d* l sE*. ( 30 ) 
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However, on the other hand, for an equivalent homogeneous cylinder with the same boundary 
conditions, 2~'8z = d*15E *, i.e., <2~"Sz(b)> = 2~'8z. This means that Eq. (30) gives the 
exact value of the effective piezomodulus (since the strain <2~!'ez(b)> is connected with re- 
distribution of the piezostresses in the compound cylinder between the components of the PCM 
by virtue of (19), then its result will be due to the effective properties of the compound 
cylinder). With allowance for (18), (19), and (29), Eq. (30) gives 

d*lS=d~lS+4ml~5'ESl,Ha~lS/[(C551E+iCs~>) (ell~~ [811 ~ ) -- m22C55'ECss#E~I52]. (31) 

Thus, for the boundary conditions D"r(b) = D * cos 8 and o"ij(b) = 0, we calculate the effec- 

tive piezoelectric sensitivity g*is = <2~"rz(b)>/D*. 

The results obtained for the effective piezoconstants agree with the calculations of 
the dielectric (23) and elastic properties (27), (28) of the PCM, which follows from the rela- 
tions in [7] for homogeneous piezoelectric materials: g*l~ d 15/sn ,- i5=F~n ~5 --ss5 ;. 

It should be noted that a similar relation (~'8 = ~"e(b)) between the strain in a medium 
with effective properties ~*O and the strain of the external coaxial cylinder ~"8(b) follows 
from the continuity of the displacement component U~ at r = b(U*r = U" r) in the self-consis- 
tent field method when the effective piezomodulus d~31 = ~* /E* is calculated Then, with �9 O~ z .,, ~ 
allowance for (7), we can calculate d*~1 from the relation d'~31 = ~"o(b)/E"z wlthout integrat- 
ing. The result coincides with (ii), which once again validates the proposed approximations 
involved in the selection of the theoretical PCM mode. 

4. Figure i shows the dependence of the piezomodulus d*3s, the bulk piezomodulus d* V, 
and the piezoelectric sensitivity g*V of the PCM on the concentration of PZT-5 piezoceramic 
rods [7] for several fillers. The anomalies seen in piezoelectric sensitivity g*~], ge3s, 
g'V, and the increase which occurs in css *E and the piezocoefficients h's3 , h*v, e&33, e* V 
in the PCM compared to the homogeneous piezoceramic can be attributed to the appreciable re- 
distribution of the mechanical and electric fields in the nonuniform piezotexture from one 
component to the next~ This is quite evident from the expressions for the mean fields. For 
example, the anomaly of g's3 (and, accordingly, g'V) is readily discerned by comparing the 
dependences of d'33 and g33 *~ on m I. Thanks to the high degree of compliance of the matrix, 
the stress applied in the measurement of g'33 is taken up by the more rigid PZT. The latter 
for the most part also detemines the effective piezomodulus (=d'3~), despite the "dilution" 
of the ceramic at m I < i. The effective permittivity of such a PCM decreases sharply, which 
also accounts for the anomaly of g~33 with the retention (up to m~ = 20%) of a substantial 
value of d*~s = d'33. 

Thus, the set of matrices obtained for the effective properties of a transversely iso- 
tropic PCM - (9-11), (13), (14-17), (23), (27), (28), and (31) - makes it possible to analyze 
and predict the properties of piezocomposites. This in turn makes it easier to solve one 
of the most basic problems in materials engineering - develop piezoelectric materials with 
prescribed properties. 
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THERMAL EXPANSION OF A POLYMER COMPOSITE WITH AN AGGREGATING 

DISPERSE FILLER 

Yu. A. Dzenis and V. M. Ponomarev UDC 539.376:678.067 

There are few experimental [1-4] and theoretical [5-11] studies of thermal expansion 
of polymer composites with rigid disperse fillers. Ideal dispersion of the filter in the 
material and the absence of contacts between inclusions are assumed in most of them. How- 
ever, it is known that aggregation of particles of the disperse filler can have a significant 
effect on the effective properties of the composites. Effects of an increase in the viscos- 
ity [12, 13], electric and thermal conductivity [14-16], thermostability [17], and dynamic 
stiffness [18, 19] of composites based on thermoelastic and thermoreactive binders caused 
by agglomeration of particles are described in the literature. The possibility of a decrease 
in the thermal expansion coefficients of filled materials due to aggregation is noted in [I, 
20]. It was found in [21, 22] that the effect of aggregation results in a significant in- 
crease in the modulus of elasticity and creep inhibition in high-density polyethylene (HDPE) 
filled with calcite. The presence of aggregation of the mineral filler in a composite has 
been confirmed experimentally. The features of thermal expansion of HDPE with an aggregating 
filler were experimentally studied in a wide range of temperatures and the possibilities of 
predicting the effective thermal expansion coefficient of similar composite materials (CM) 
were also investigated in the present study. 

i. HDPE filled with activated calcite, whose deformation properties were studied in 
[21, 22], were tested. The samples, in the form of 50 x 10 x 3 mm parallelepipeds, were cut 
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Fig. i. Temperature dependences 
of deformation of a composite 
based on HDPE with v = 0 (i); 
0.08 (2); 0.16 (3); 0.26 (4); 
0.34 (5). 
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